Skip to content
2000
Volume 20, Issue 8
  • ISSN: 1573-4129
  • E-ISSN: 1875-676X

Abstract

Purpose

A simple, rapid and precise reverse phase–High performance liquid chromatography (RP-HPLC) method was developed for the determination of degradation impurity . Oxidised follitropin in recombinant Follicle Stimulating Hormone (rFSH) Injection.

Methods

Chromatographic separation was performed using a C column of size: 250 × 4.6 mm, 5 µm along with C Guard Column (SB-C3 size: 125 mm x 4.6 mm, 5 µm) and using gradient elution. The flow rate was kept at 1.0 ml per minute and the detection wavelength was at 210 nm. The retention time of oxidised follitropin was ~14 to 15 minutes. The detector showed a linear response between the range of 2.46–63.325 μg/ml (5% - 125%) with a correlation coefficient value of 0.9987. After establishing the procedure, it was ensured for its intended usage by validation of the analytical parameters like specificity, linearity, accuracy, repeatability, and robustness as per the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) [Q2 (R1) Validation of Analytical Procedures: Text and Methodology].

Results

All of the parameters performed using the current method yielded results that met the acceptance requirements. The detector showed a linear response between the range of 2.46–63.325 μg/ml (5% - 125%) with a correlation coefficient value of 0.9987.

Conclusions

As a result, a newly designed RP-HPLC method was capable of effectively separating impurities while maintaining acceptable limits.

Loading

Article metrics loading...

/content/journals/cpa/10.2174/0115734129316027240830074632
2024-09-04
2025-07-13
Loading full text...

Full text loading...

References

  1. Kesik-BrodackaM. Progress in biopharmaceutical development.Biotechnol. Appl. Biochem.201865330632210.1002/bab.161728972297
    [Google Scholar]
  2. LuR.M. HwangY.C. LiuI.J. LeeC.C. TsaiH.Z. LiH.J. WuH.C. Development of therapeutic antibodies for the treatment of diseases.J. Biomed. Sci.2020271110.1186/s12929‑019‑0592‑z31894001
    [Google Scholar]
  3. WangL. WangN. ZhangW. ChengX. YanZ. ShaoG. WangX. WangR. FuC. Therapeutic peptides: current applications and future directions.Signal Transduct. Target. Ther.2022714810.1038/s41392‑022‑00904‑435165272
    [Google Scholar]
  4. BousfieldG.R. HarveyD.J. Follicle-Stimulating Hormone Glycobiology.Endocrinology201916061515153510.1210/en.2019‑0000131127275
    [Google Scholar]
  5. CarsonS.A. KallenA.N. Diagnosis and Management of Infertility.JAMA20213261657610.1001/jama.2021.478834228062
    [Google Scholar]
  6. BergandiL. CanosaS. CarossoA.R. PascheroC. GennarelliG. SilvagnoF. BenedettoC. RevelliA. Human Recombinant FSH and Its Biosimilars: Clinical Efficacy, Safety, and Cost-Effectiveness in Controlled Ovarian Stimulation for In Vitro Fertilization.Pharmaceuticals (Basel)202013713610.3390/ph1307013632605133
    [Google Scholar]
  7. ChandrawanshiH.K. PilaniyaK. PilaniyaU. ManchandaniP. JainP. SinghN. Recent trends in the impurity profile of pharmaceuticals.J. Adv. Pharm. Technol. Res.20101330231010.4103/0110‑5558.7242222247862
    [Google Scholar]
  8. JonesM. PalackalN. WangF. Gaza-BulsecoG. HurkmansK. ZhaoY. ChitikilaC. ClavierS. LiuS. MenesaleE. SchonenbachN.S. SharmaS. ValaxP. WaernerT. ZhangL. ConnollyT. “High‐risk” host cell proteins (HCPs): A multi‐company collaborative view.Biotechnol. Bioeng.202111882870288510.1002/bit.2780833930190
    [Google Scholar]
  9. ValenteK.N. LenhoffA.M. LeeK.H. Expression of difficult‐to‐remove host cell protein impurities during extended Chinese hamster ovary cell culture and their impact on continuous bioprocessing.Biotechnol. Bioeng.201511261232124210.1002/bit.2551525502542
    [Google Scholar]
  10. SinegubovaM. VorobievI. KlishinA. EreminD. OrlovaN. OrlovaN. PolzikovM. Purification Process of a Recombinant Human Follicle Stimulating Hormone Biosimilar (Primapur®) to Yield a Pharmaceutical Product with High Batch-to-Batch Consistency.Pharmaceutics20221419610.3390/pharmaceutics1401009635056992
    [Google Scholar]
  11. PilelyK. JohansenM.R. LundR.R. KofoedT. JørgensenT.K. SkriverL. MørtzE. Monitoring process-related impurities in biologics–host cell protein analysis.Anal. Bioanal. Chem.2022414274775810.1007/s00216‑021‑03648‑234595561
    [Google Scholar]
  12. ManziL. SepeN. MigliaccioW. LanzoniL. IozzinoL. D’AngeloF. ColarussoL. MontenegroS. PalmeseA. D’HoogheT. Ulloa-AguirreA. KolodaY. LispiM. Comparative Assessment of the Structural Features of Originator Recombinant Human Follitropin Alfa Versus Recombinant Human Follitropin Alfa Biosimilar Preparations Approved in Non-European Regions.Int. J. Mol. Sci.20222312676210.3390/ijms2312676235743204
    [Google Scholar]
  13. DayaS. Follicle-stimulating hormone in clinical practice: an update.Treat. Endocrinol.20043316117110.2165/00024677‑200403030‑0000416026112
    [Google Scholar]
  14. LoureiroR.F. Ezequiel de OliveiraJ. TorjesenP.A. BartoliniP. RibelaM.T.C.P. Analysis of intact human follicle-stimulating hormone preparations by reversed-phase high-performance liquid chromatography.J. Chr. A2006113611018
    [Google Scholar]
  15. FurukawaK. YamotoM. KokawaN. NakanoR. Purification of high-molecular-weight follicle-stimulating hormone binding inhibitor in porcine follicular fluids.Eur. J. Endocrinol.1994130662563310.1530/eje.0.13006258205266
    [Google Scholar]
  16. Follicle stimulating Hormone Injection.Indian PharmacopoeiaIndian Pharmacopoeia Commission.2022
    [Google Scholar]
  17. European Pharmacopoeia (Ph. Eur.) 11th Edition. 1994Available from: https://www.edqm.eu/en/european-pharmacopoeia-ph.-eur.-11th-edition(accessed on 20-8-2024)
  18. Folliotropin concentrated solution.British PharmacopoeiaBritish Pharmacopoeia Commission2024
    [Google Scholar]
  19. International council for harmonisation of technical requirements for pharmaceuticals for human use.1994Available from: https://database.ich.org/sites/default/files/ICH_Q2-R2_Document_Step2_Guideline_2022_0324.pdf(accessed on 20-8-2024)
  20. HearnM.T.W. GuthridgeM. BertoliniJ. High-performance liquid chromatography of amino acids, peptides and proteins.J. Chromatogr. A1987397C37137810.1016/S0021‑9673(01)85021‑43654827
    [Google Scholar]
  21. DongM.W. Regulations, HPLC System Qualification, Method Validation, and Transfer.HPLC and UHPLC for Practicing ScientistsJohn Wiley & Sons, Inc.2019
    [Google Scholar]
  22. MantC.T. ChenY. YanZ. PopaT.V. KovacsJ.M. MillsJ.B. TripetB.P. HodgesR.S. HPLC analysis and purification of peptides.Methods Mol. Biol.200738635510.1007/978‑1‑59745‑430‑8_118604941
    [Google Scholar]
  23. SabirA.M. MoloyM. BhasinP.S. HPLC Method Development and Validation: A Review.International Research Journal of Pharmacy201644394610.7897/2230‑8407.04407
    [Google Scholar]
  24. GanjiS. DhulipalaS. NemalaA.R. Development and validation of RP HPLC method for the estimation of Sofosbuvir and related impurity in bulk and pharmaceutical dosage form.Future Journal of Pharmaceutical Sciences20217115410.1186/s43094‑021‑00285‑5
    [Google Scholar]
  25. SaeedM.A. AnsariM.T. ChB.A. ZamanM. RP-HPLC Method for the Determination and Quantification of Artesunate.J. Chromatogr. Sci.202058869569910.1093/chromsci/bmaa03732719858
    [Google Scholar]
  26. AlmeidaB.E. OliveiraJ.E. DamianiR. DalmoraS.L. BartoliniP. RibelaM.T.C.P. A pilot study on potency determination of human follicle-stimulating hormone: A comparison between reversed-phase high-performance liquid chromatography method and the in vivo bioassay.J. Pharm. Biomed. Anal.201154468168610.1016/j.jpba.2010.10.01821093191
    [Google Scholar]
  27. GrassJ. PabstM. ChangM. WoznyM. AltmannF. Analysis of recombinant human follicle-stimulating hormone (FSH) by mass spectrometric approaches.Anal. Bioanal. Chem.201140082427243810.1007/s00216‑011‑4923‑521461863
    [Google Scholar]
  28. JimenezM. SpalivieroJ.A. GrootenhuisA.J. VerhagenJ. AllanC.M. HandelsmanD.J. Validation of an ultrasensitive and specific immunofluorometric assay for mouse follicle-stimulating hormone.Biol. Reprod.2005721788510.1095/biolreprod.104.03365415342359
    [Google Scholar]
  29. KarnesH.T. MarchC. Precision, accuracy, and data acceptance criteria in biopharmaceutical analysis.Pharm. Res.199310101420142610.1023/A:10189588057958272402
    [Google Scholar]
  30. TrajkovićG. Measurement: Accuracy and Precision.Reliability and Validity. Encyclopedia of Public HealthSpringer2008888892
    [Google Scholar]
  31. QureshiH.K. VeereshamC. SrinivasC. Analytical Method Development and Validation of Etanercept by UV and RP-UFLC Methods.Am. J. Anal. Chem.2021121249350510.4236/ajac.2021.1212031
    [Google Scholar]
  32. Vander HeydenY. NijhuisA. Smeyers-VerbekeJ. VandeginsteB.G.M. MassartD.L. Guidance for robustness/ruggedness tests in method validation.J. Pharm. Biomed. Anal.2001245-672375310.1016/S0731‑7085(00)00529‑X11248467
    [Google Scholar]
  33. ListerA.S. Validation of HPLC methods in pharmaceutical analysis.Sep. Sci. Technol.20056C191217
    [Google Scholar]
  34. Rambla-AlegreM. Esteve-RomeroJ. Carda-BrochS. Is it really necessary to validate an analytical method or not? That is the question.J. Chromatogr. A2012123210110910.1016/j.chroma.2011.10.05022099221
    [Google Scholar]
/content/journals/cpa/10.2174/0115734129316027240830074632
Loading
/content/journals/cpa/10.2174/0115734129316027240830074632
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test