Skip to content
2000
Volume 20, Issue 8
  • ISSN: 1573-4129
  • E-ISSN: 1875-676X

Abstract

Background

Aqueous solubility is a key parameter in understanding drug transport in the body and also in the development of analytical methods. Determination of a complete pH-solubility profile is essential during the pre-formulation stage, and it is also required to define the class of drug according to the biopharmaceutical classification system.

Objectives

This study aimed to generate solubility data to obtain a complete pH-solubility profile for Atorvastatin calcium using the spectrophotometric method and to develop models for the prediction of aqueous solubility of Atorvastatin calcium at a given combination of the pH and temperature.

Methods

The developed pH independent spectrophotometric method was applied to determine the pH solubility profile of the drug at three different temperatures. Models for the prediction of solubility were generated by using a full factorial design and validated by determining solubility experimentally at some combinations of pH and temperature within the design spaces.

Results

Solubility of Atorvastatin calcium was found to increase gradually with pH within a range of pH 1.2-4.0 and pH 9.0-12.0 while increasing drastically with pH within a range of pH 4.0-9.0 at all three temperatures. Experimental values of solubility of Atorvastatin calcium were found to be in good agreement with predicted values from models.

Conclusion

Predictive models generated from the experimental values are good indicative of the solubility of Atorvastatin calcium with respect to temperature and pH of the medium and can be used for accurate prediction of aqueous solubility within the design space of the models.

Loading

Article metrics loading...

/content/journals/cpa/10.2174/0115734129314568241009053724
2024-10-10
2025-06-29
Loading full text...

Full text loading...

References

  1. BhattacharS.N. DeschenesL.A. WesleyJ.A. Solubility: it’s not just for physical chemists.Drug Discov. Today20061121-221012101817055411
    [Google Scholar]
  2. HiteM. TurnerS. FedericiC. Part 1: Oral delivery of poorly soluble drugs.Pharmaceutical Manufacturing and Packing SourcerSamedan200313
    [Google Scholar]
  3. SavjaniK.T. GajjarA.K. SavjaniJ.K. Drug solubility: importance and enhancement techniques.ISRN Pharm.2012201219572722830056
    [Google Scholar]
  4. CassensJ. PrudicA. RuetherF. SadowskiG. Solubility of pharmaceuticals and their salts as a function of pH.Ind. Eng. Chem. Res.20135227212731
    [Google Scholar]
  5. GoldbergA.H. GibaldiM. KanigJ.L. Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures II: Experimental evaluation of a eutectic mixture: urea‐acetaminophen system.J. Pharm. Sci.196655482487
    [Google Scholar]
  6. GoldbergA.H. GibaldiM. KanigJ.L. Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures. I. Theoretical considerations and discussion of the literature.J. Pharm. Sci.1965548114511485882218
    [Google Scholar]
  7. GoldbergA.H. GibaldiM. KanigJ.L. MayersohnM. Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures. IV. Chloramphenicol--urea system.J. Pharm. Sci.19665565815835924122
    [Google Scholar]
  8. SuganoK. OkazakiA. SugimotoS. TavornvipasS. OmuraA. ManoT. Solubility and dissolution profile assessment in drug discovery.Drug Metab. Pharmacokinet.200722422525417827779
    [Google Scholar]
  9. Lucero-BorjaD. CastillaÒ. BarbasR. SubiratsX. RàfolsC. Solubility-pH profiles of a free base and its salt: Sibutramine as a case study.ADMET DMPK20175253256
    [Google Scholar]
  10. SiegerP. CuiY. ScheuererS. pH-dependent solubility and permeability profiles: A useful tool for prediction of oral bioavailability.Eur. J. Pharm. Sci.2017105829028478135
    [Google Scholar]
  11. OhyamaM. KudoS. AmariS. TakiyamaH. Production of crystalline particles with high homogeneity in reaction crystallization by using pH-solubility-profile.J. Ind. Eng. Chem.2019753843
    [Google Scholar]
  12. ShahJ.C. ManiarM. pH-Dependent solubility and dissolution of bupivacaine and its relevance to the formulation of a controlled release system.J. Control. Release199323261270
    [Google Scholar]
  13. MadloolD.T. Al-AniI. AtaT. DayyihW.A. Solubility, pH-Solubility Profile, pH-Rate Profile, and Kinetic Stability of the Tyrosine Kinase Inhibitor, Alectinib.Pharmaceuticals (Basel)202417677638931444
    [Google Scholar]
  14. HamedR. AwadallahA. SunoqrotS. TarawnehO. NazzalS. AlBaraghthiT. Al SayyadJ. AbbasA. pH-dependent solubility and dissolution behavior of carvedilol—case example of a weakly basic BCS class II drug.AAPS PharmSciTech201617241842626202065
    [Google Scholar]
  15. ShoghiE. FuguetE. BoschE. RàfolsC. Solubility-pH profiles of some acidic, basic and amphoteric drugs.Eur. J. Pharm. Sci.2013481-229130023178441
    [Google Scholar]
  16. VolkovaT.V. SimonovaO.R. LevshinI.B. PerlovichG.L. Physicochemical profile of new antifungal compound: pH-dependent solubility, distribution, permeability and ionization assay.J. Mol. Liq.2021336116535
    [Google Scholar]
  17. VölgyiG. BakaE. BoxK.J. ComerJ.E.A. Takács-NovákK. Study of pH-dependent solubility of organic bases. Revisit of Henderson-Hasselbalch relationship.Anal. Chim. Acta20106731404620630176
    [Google Scholar]
  18. MarkovićO.S. PešićM.P. ShahA.V. SerajuddinA.T.M. VerbićT.Ž. AvdeefA. Solubility-pH profile of desipramine hydrochloride in saline phosphate buffer: Enhanced solubility due to drug-buffer aggregates.Eur. J. Pharm. Sci.201913326427430914359
    [Google Scholar]
  19. NINGSIH BW SUWALDI S, NUGROHO AK. Effects of pH and Ionic Strength on the Solubility Profile of Ofloxacin.Jurnal Ilmu Kefarmasian Indonesia.2014122531
    [Google Scholar]
  20. ButcherG. ComerJ. AvdeefA. pKa-critical interpretations of solubility–pH profiles: PG-300995 and NSC-639829 case studies.ADMET DMPK20153131140
    [Google Scholar]
  21. WangZ. BurrellL.S. LambertW.J. Solubility of E2050 at various pH: a case in which apparent solubility is affected by the amount of excess solid.J. Pharm. Sci.200291614451455https://www.sciencedirect.com/science/article/pii/S0022354916310152[Internet].12115844
    [Google Scholar]
  22. WuZ. RazzakM. TuckerI.G. MedlicottN.J. Physicochemical characterization of ricobendazole: I. Solubility, lipophilicity, and ionization characteristics.J. Pharm. Sci.2005945983993https://www.sciencedirect.com/science/article/pii/S0022354916317701[Internet].15793800
    [Google Scholar]
  23. HansenN.T. KouskoumvekakiI. JørgensenF.S. BrunakS. JónsdóttirS.O. Prediction of pH-dependent aqueous solubility of druglike molecules.J. Chem. Inf. Model.20064662601260917125200
    [Google Scholar]
  24. JorgensenW.L. DuffyE.M. Prediction of drug solubility from structure.Adv. Drug Deliv. Rev.200254335536611922952
    [Google Scholar]
  25. YanA. GasteigerJ. Prediction of aqueous solubility of organic compounds by topological descriptors.QSAR Comb. Sci.200322821829
    [Google Scholar]
  26. BlakeJ.F. Chemoinformatics - predicting the physicochemical properties of ‘drug-like’ molecules.Curr. Opin. Biotechnol.200011110410710679344
    [Google Scholar]
  27. HuuskonenJ. Estimation of aqueous solubility for a diverse set of organic compounds based on molecular topology.J. Chem. Inf. Comput. Sci.200040377377710850781
    [Google Scholar]
  28. HuuskonenJ. Estimation of aqueous solubility in drug design.Comb. Chem. High Throughput Screen.20014331131611375745
    [Google Scholar]
  29. DelaneyJ.S. ESOL: estimating aqueous solubility directly from molecular structure.J. Chem. Inf. Comput. Sci.20044431000100515154768
    [Google Scholar]
  30. WegnerJ.K. ZellA. Prediction of aqueous solubility and partition coefficient optimized by a genetic algorithm based descriptor selection method.J. Chem. Inf. Comput. Sci.20034331077108412767167
    [Google Scholar]
  31. HouT.J. XiaK. ZhangW. XuX.J. ADME evaluation in drug discovery. 4. Prediction of aqueous solubility based on atom contribution approach.J. Chem. Inf. Comput. Sci.200444126627514741036
    [Google Scholar]
  32. LiuR. SunH. SoS-S. Development of quantitative structure-property relationship models for early ADME evaluation in drug discovery. 2. Blood-brain barrier penetration.J. Chem. Inf. Comput. Sci.20014161623163211749589
    [Google Scholar]
  33. KlopmanG. WangS. BalthasarD.M. Estimation of aqueous solubility of organic molecules by the group contribution approach. Application to the study of biodegradation.J. Chem. Inf. Comput. Sci.19923254744821400663
    [Google Scholar]
  34. RanY. JainN. YalkowskyS.H. Prediction of aqueous solubility of organic compounds by the general solubility equation (GSE).J. Chem. Inf. Comput. Sci.20014151208121711604020
    [Google Scholar]
  35. HuuskonenJ. SaloM. TaskinenJ. Aqueous solubility prediction of drugs based on molecular topology and neural network modeling.J. Chem. Inf. Comput. Sci.19983834504569611785
    [Google Scholar]
  36. McFarlandJ.W. AvdeefA. BergerC.M. RaevskyO.A. Estimating the water solubilities of crystalline compounds from their chemical structures alone.J. Chem. Inf. Comput. Sci.20014151355135911604037
    [Google Scholar]
  37. KlamtA. EckertF. HornigM. BeckM.E. BürgerT. Prediction of aqueous solubility of drugs and pesticides with COSMO-RS.J. Comput. Chem.200223227528111924739
    [Google Scholar]
  38. TetkoI.V. TanchukV.Y. KashevaT.N. VillaA.E.P. Estimation of aqueous solubility of chemical compounds using E-state indices.J. Chem. Inf. Comput. Sci.20014161488149311749573
    [Google Scholar]
  39. LennernäsH. Clinical pharmacokinetics of atorvastatin.Clin. Pharmacokinet.200342131141116014531725
    [Google Scholar]
  40. ColhounH.M. BetteridgeD.J. DurringtonP.N. HitmanG.A. NeilH.A.W. LivingstoneS.J. ThomasonM.J. MacknessM.I. Charlton-MenysV. FullerJ.H. CARDS investigators Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial.Lancet2004364943568569615325833
    [Google Scholar]
  41. LennernäsH. Human jejunal effective permeability and its correlation with preclinical drug absorption models.J. Pharm. Pharmacol.19974976276389255703
    [Google Scholar]
  42. WuX. WhitfieldL.R. StewartB.H. Atorvastatin transport in the Caco-2 cell model: contributions of P-glycoprotein and the proton-monocarboxylic acid co-transporter.Pharm. Res.200017220921510751037
    [Google Scholar]
  43. CorsiniA. BellostaS. BaettaR. FumagalliR. PaolettiR. BerniniF. New insights into the pharmacodynamic and pharmacokinetic properties of statins.Pharmacol. Ther.199984341342810665838
    [Google Scholar]
  44. CillaD.D.Jr WhitfieldL.R. GibsonD.M. SedmanA.J. PosvarE.L. Multiple-dose pharmacokinetics, pharmacodynamics, and safety of atorvastatin, an inhibitor of HMG-CoA reductase, in healthy subjects.Clin. Pharmacol. Ther.19966066876958988072
    [Google Scholar]
  45. KearneyA.S. CrawfordL.F. MehtaS.C. RadebaughG.W. The interconversion kinetics, equilibrium, and solubilities of the lactone and hydroxyacid forms of the HMG-CoA reductase inhibitor, CI-981.Pharm. Res.19931010146114658272408
    [Google Scholar]
  46. Expert Committee on Specifications for Pharmaceutical Preparations (ECSPP)2009Available from: https://www.who.int/teams/health-product-policy-and-standards/standards-and-specifications/norms-and-standards-for-pharmaceuticals/expert-committee-on-specifications-for-pharmaceutical-preparations(accessed on 28-9-2024)
  47. AhirwarK. ShuklaR. Preformulation studies: A versatile tool in formulation design.Drug Formulation DesignIntech Open2023
    [Google Scholar]
  48. JonesT.M. Preformulation studies.Pharmaceutical Formulation: The Science and Technology of Dosage FormsThe Royal Society of Chemistry2018
    [Google Scholar]
  49. TongW.Q. Practical Aspects of Solubility Determination in Pharmaceutical PreformulationSolvent Systems and Their Selection in Pharmaceutics and Biopharmaceutics. AugustijnsP. BrewsterM.E. New York, NYSpringer New York2007137149
    [Google Scholar]
  50. BodiwalaK.B. ShahJ. SurejaD.K. DhameliyaT.M. KhadelaA. Generation of predictive models for oxidative degradation kinetics of dapagliflozin with the applications of DOE and stability indicating HPLC method.Int. J. Chem. Kinet.202254712725
    [Google Scholar]
  51. MaroliaB.P. PrajapatiP.B. BodiwalaK.B. VaghelaM.P. ShahS.A. SuhagiaB.N. Hydrolytic degradation kinetic study of balofloxacin by stability indicating reversed phase high performance liquid chromatography method.Pharm. Methods2016713947
    [Google Scholar]
  52. BodiwalaK.B. ShahS. ThakorJ. MaroliaB. PrajapatiP. Degradation kinetics study of alogliptin benzoate in alkaline medium by validated stability-indicating HPTLC Method.J. AOAC Int.20169961505151227608919
    [Google Scholar]
  53. CanbayH.S. Spectrophotometric determination of acid dissociation constants of some arylpropionic acids and arylacetic acids in acetonitrile-water binary mixtures at 25°C.Braz. J. Pharm. Sci.202358111[Internet].10.1590/s2175‑97902022e20740
    [Google Scholar]
  54. ŞanlıS. BaşaranF. ŞanlıN. AkmeşeB. Buldukİ. Determination of Dissociation Constants of Some Antifungal Drugs by Two Different Methods at 298 K.J. Solution Chem.20134219761987[Internet].10.1007/s10953‑013‑0083‑x
    [Google Scholar]
  55. SanjeevR. JagannadhamV. VrathR.V. Implications of a novel interpretation of the isosbestic point.Chem. New Zealand20122012133135
    [Google Scholar]
  56. LotfyH.M. SalehS.S. HassanN.Y. SalemH. A comparative study of novel spectrophotometric methods based on isosbestic points; application on a pharmaceutical ternary mixture.Spectrochim. Acta A Mol. Biomol. Spectrosc.2014126112121https://www.sciencedirect.com/science/article/pii/S1386142514001607[Internet].24589996
    [Google Scholar]
  57. SalgadoL.E.V. Vargas-HernándezC. Spectrophotometric determination of the pKa, isosbestic point and equation of absorbance vs. pH for a universal pH indicator.Am. J. Anal. Chem.201451290
    [Google Scholar]
  58. BodiwalaK. PrajapatiP.B. MaroliaB.P. RathodI.S. ShahS.A. Development and validation of pH independent spectrophotometric method for determination of pravastatin sodium in dosage forms.J. Pharm. Appl. Sci. [Internet]201412328https://www.researchgate.net/profile/Kunjan-Bodiwala/publication/299452347_Development_and_Validation_of_pH_Independent_Spectrophotometric_Method_for_Determination_of_Pravastatin_Sodium_in_Dosage_Forms/links/56f8c56008ae95e8b6d36678/Development-and-Validation-of-pH-Independent-Spectrophotometric-Method-for-Determination-of-Pravastatin-Sodium-in-Dosage-Forms.pdf
    [Google Scholar]
  59. LuY. TangN. QiJ. WuW. Phase solubility behavior of hydrophilic polymer/cyclodextrin/lansoprazole ternary system studied at high polymer concentration and by response surface methodology.Pharm. Dev. Technol.2012172236241[Internet].10.3109/10837450.2010.53173821067338
    [Google Scholar]
  60. IzadiyanZ. BasriM. Fard MasoumiH.R. Abedi KarjibanR. SalimN. KalantariK. Improvement of physicochemical properties of nanocolloidal carrier loaded with low water solubility drug for parenteral cancer treatment by Response Surface Methodology.Mater. Sci. Eng. C201994841849https://www.sciencedirect.com/science/article/pii/S092849311830119X[Internet].30423770
    [Google Scholar]
/content/journals/cpa/10.2174/0115734129314568241009053724
Loading
/content/journals/cpa/10.2174/0115734129314568241009053724
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test