Skip to content
2000
Volume 20, Issue 7
  • ISSN: 1573-4129
  • E-ISSN: 1875-676X

Abstract

Introduction

Antiretroviral medications are widely used to treat HIV infections. Lamivudine (3TC) is prescribed for HIV-1 infection management in adults and pediatrics, while valganciclovir (VGC) is a prodrug of ganciclovir derived from valine.

Methods

The Biopharmaceutics Classification System (BCS) estimates the contributions of intestinal permeability, dissolution, and solubility in oral drug absorption. Intestinal permeability refers to a substance's capacity to pass through the protective layer of cells in the intestine. The intestinal permeability of 3TC and VGC was analyzed and categorized using the single-pass intestinal perfusion technique according to the BCS in male Sprague Dawley rats, and a reversed-phase HPLC method was validated for precise and accurate measurement.

Results

According to the BCS, 3TC and VGC have been classified as having low permeability when compared to metoprolol tartrate, which is classified as Class I with good permeability and resolution.

Conclusion

The permeability values derived from this work can be valuable in exposure assessment models.

Loading

Article metrics loading...

/content/journals/cpa/10.2174/0115734129310868240805065851
2024-08-20
2025-01-22
Loading full text...

Full text loading...

References

  1. SanadM.H. RizviS.F.A. FaragA.B. Synthesis, characterization, and bioevaluation of 99m Tc nitrido-oxiracetam as a brain imaging model.Radiochim. Acta2021109647748310.1515/ract‑2021‑0003
    [Google Scholar]
  2. SanadM.H. MarzookF.A. IbrahimI.T. Abd-ElhalimS.M. FarragN.S. Preparation and bioevaluation of radioiodinated omberacetam as a radiotracer for brain imaging.Radiochemistry202365111412110.1134/S1066362223010162
    [Google Scholar]
  3. SanadM. MarzookF. ChallanS. EssamH. FaragA. Radioiodination, and biological assessment of olsalazine, as a highly selective radiotracer for ulcerative colitis imaging in mice. Arab Journal of Nuclear Sciences and Applications, 202300010.21608/ajnsa.2022.163538.1639
    [Google Scholar]
  4. SanadM.H. ChallanS.B. EssamH.M. MassoudA. Assessment of radiolabeled l-carnitine for hepatotoxicity imaging in rats.Radiochemistry202365110111310.1134/S1066362223010150
    [Google Scholar]
  5. SanadM.H. EyssaH.M. MarzookF.A. FaragA.B. RizviS.F.A. Radioiodinated procainamide as radiotracer for myocardial perfusion imaging in mice.Pharm. Chem. J.202357454354910.1007/s11094‑023‑02918‑w
    [Google Scholar]
  6. SanadM.H. GomaaN.M. El BakaryN.M. MarzookF.A. BassemS.A. Radioiodination and biological evaluation of novel quinoline derivative for infective inflammation diagnosis.Pharm. Chem. J.20235771018102810.1007/s11094‑023‑02979‑x
    [Google Scholar]
  7. SanadM.H. EyssaH.M. MarzookF.A. FaragA.B. RizviS.F.A. MandalS.K. Comparative bioevaluation and 99mTc-Sn (II) lansoprazole as a model for peptic ulcer localization.Radiochemistry202163564265010.1134/S1066362221050131
    [Google Scholar]
  8. ChallanS.B. KhaterS.I. RashadA.M. Preparation, molecular modeling and in-vivo evaluation of 99mTc-Oseltamivir as a tumor diagnostic agent.Int. J. Radiat. Res.2022203635642
    [Google Scholar]
  9. SanadM.H. EyssaH.M. MarzookF.A. FaragA.B. ElrefaeiA. FouzyA.S.M. ChallanS.B. Radiocomplexation, biological evaluation, and characterization of [99mtc]-5-[(3-carboxy-4-hydroxyphenyl)diazenyl-2].-hydroxybenzoic acid as a novel agent for imaging of ulcerative colitis in mice.Radiochemistry202365337838610.1134/S1066362223030141
    [Google Scholar]
  10. SanadM.H. FaragA.B. MarzookF.A. MandalS.K. Radiocomplexation, chromatographic separation and bioevaluation of [99mtc].dithiocarbamate of procainamide as selective labeled compound for myocardial perfusion imaging.Pharm. Chem. J.202256677778410.1007/s11094‑022‑02709‑9
    [Google Scholar]
  11. SanadM.H. RizviS.F.A. FaragA.B. Radiosynthesis and in silico bioevaluation of 131 I‐Sulfasalazine as a highly selective radiotracer for imaging of ulcerative colitis.Chem. Biol. Drug Des.202198575176110.1111/cbdd.13929 34314572
    [Google Scholar]
  12. SanadM.H. GomaaN.M. El BakaryN.M. IbrahimI.T. MassoudA. Radioiodination of balsalazide, bioevaluation, and characterization as a highly selective radiotracer for imaging of ulcerative colitis in mice.J. Labelled Comp. Radiopharm.2022653718210.1002/jlcr.3961 34984721
    [Google Scholar]
  13. SanadM.H. EyssaH.M. GomaaN.M. MarzookF.A. BassemS.A. Radioiodinated esomeprazole as a model for peptic ulcer localization.Radiochim. Acta2021109971171810.1515/ract‑2021‑1056
    [Google Scholar]
  14. SanadM.H. RizviS.F.A. FaragA.B. Design of novel radiotracer 99mTcN-tetrathiocarbamate as SPECT imaging agent: A preclinical study for GFR renal function.Chem. Zvesti20227621253126310.1007/s11696‑021‑01926‑y
    [Google Scholar]
  15. SanadM.H. FaragA.B. MarzookF.A. MandalS.K. Preparation, characterization, and bioevaluation of 99m Tc-famotidine as a selective radiotracer for peptic ulcer disorder detection in mice.Radiochim. Acta20221101677410.1515/ract‑2021‑1105
    [Google Scholar]
  16. SanadM.H. ChallanS.B. MarzookF.A. Abd-ElhaliemS.M. MarzookE.A. Radioiodination and biological evaluation of Cimetidine as a new highly selective radiotracer for peptic ulcer disorder detection.Radiochim. Acta2021109210911710.1515/ract‑2020‑0046
    [Google Scholar]
  17. SanadM.H. FaragA.B. RizviS.F.A. In silico and in vivo study of radio-iodinated nefiracetam as a radiotracer for brain imaging in mice.Radiochim. Acta2021109757558210.1515/ract‑2020‑0125
    [Google Scholar]
  18. SanadM.H. GizawyM.A. MotalebM.A. IbrahimI.T. SaadE.A. A comparative study of stannous chloride and sodium borohydride as reducing agents for the radiolabeling of 2,3,7,8,12,13,17,18-Octaethyl-21H,23H-Porphine with Technetium-99m for tumor imaging.Radiochemistry202163451251910.1134/S1066362221040159
    [Google Scholar]
  19. SanadM.H. MarzookF.A. RizviS.F.A. FaragA.B. FouzyA.S.M. Radioiodinated azilsartan as a new highly selective radiotracer for myocardial perfusion imaging.Radiochemistry202163452052510.1134/S1066362221040160
    [Google Scholar]
  20. EyssaH.M. El RefayH.M. SanadM.H. Enhancement of the thermal and physicochemical properties of styrene butadiene rubber composite foam using nanoparticle fillers and electron beam radiation.Radiochim. Acta2022110320521810.1515/ract‑2021‑1091
    [Google Scholar]
  21. SanadM.H. FaragA.B. BassemS.A. MarzookF.A. Radioiodination of zearalenone and determination of Lactobacillus plantarum effect of on zearalenone organ distribution:In silico study and preclinical evaluation.Toxicol. Rep.2022947047910.1016/j.toxrep.2022.02.003 35345860
    [Google Scholar]
  22. SanadM.H. EyssaH.M. MarzookF.A. FaragA.B. RizviS.F.A. MandalS.K. PatnaikS.S. FouzyA.S.M. Optimized chromatographic separation and bioevalution of radioiodinated ilaprazole as a new labeled compound for peptic ulcer localization in mice.Radiochemistry202163681181910.1134/S1066362221060138
    [Google Scholar]
  23. SanadM.H. EyssaH.M. MarzookF.A. RizviS.F.A. FaragA.B. FouzyA.S.M. BassemS.A. IbrahimA.A. Synthesis, radiolabeling, and biological evaluation of 99mTc-Tricarbonyl mesalamine as a potential ulcerative colitis imaging agent.Radiochemistry202163683584210.1134/S1066362221060163
    [Google Scholar]
  24. SanadM.H. MarzookF.A. FaragA.B. MandalS.K. RizviS.F.A. GuptaJ.K. Preparation, biological evaluation and radiolabeling of [ 99m Tc]-technetium tricarbonyl procainamide as a tracer for heart imaging in mice.Radiochim. Acta2022110426727710.1515/ract‑2021‑1079
    [Google Scholar]
  25. RizviS.F.A. JabbarT. ShahidW. SanadM.H. ZhangH. Facile one-pot strategy for radiosynthesis of 99mTc-Doxycycline to diagnose staphylococcus aureus in infectious animal models.Appl. Biochem. Biotechnol.202219462672268310.1007/s12010‑022‑03856‑1 35239149
    [Google Scholar]
  26. SanadM.H. MarzookF.A. MandalS.K. BaidyaM. Radiocomplexation and biological evaluation of99 [mTc]. tricarbonyl rabeprazole as a radiotracer for peptic ulcer localization.Radiochemistry202264221121810.1134/S1066362222020138
    [Google Scholar]
  27. SanadM.H. EyssaH.M. MarzookF.A. FaragA.B. Preparation and bioevaluation of [ 99mTc]. tricarbonyl omeprazole for gastric ulcer localization in mice.Radiochemistry2022641546110.1134/S106636222201009X
    [Google Scholar]
  28. SanadM.H. RizviS.F.A. MarzookF.A. FaragA.B. In-Silico study, preparation and biological evaluation of 99MTC-mesalamine complex as radiotracer for diagnostics and monitoring of ulcerative colitis in mice.Pharm. Chem. J.202256675476110.1007/s11094‑022‑02706‑y
    [Google Scholar]
  29. EyssaH.M. MonaY.E. MagdyM.Z. Impact of graphene oxide nanoparticles and carbon black on the gamma radiation sensitization of acrylonitrile–butadiene rubber seal materials.Radiochim. Acta2021611128432860
    [Google Scholar]
  30. EyssaH.M. El MogyS.A. YoussefH.A. Impact of foaming agent and nanoparticle fillers on the properties of irradiated rubber.Radiochim. Acta2021109212714210.1515/ract‑2020‑0015
    [Google Scholar]
  31. Treatment information for adults. 2023. Available from: HIV Treatment Information for Adultshttps://www.fda.gov/drugs/hiv-treatment/hiv-treatment-information-adults
  32. DezaniT.M. DezaniA.B. SerraC.H.R. Development and validation of RP-HPLC method for simultaneous determination of lamivudine, stavudine, and zidovudine in perfusate samples: Application to the single-pass intestinal perfusion (SPIP) studies.Braz. J. Pharm. Sci.202157e1907310.1590/s2175‑97902020000419073
    [Google Scholar]
  33. CvetkovićR.S. WellingtonK. Valganciclovir: A review of its use in the management of CMV infection and disease in immunocompromised patients.Drugs200565685987810.2165/00003495‑200565060‑00012 15819597
    [Google Scholar]
  34. PescovitzM.D. RabkinJ. MerionR.M. PayaC.V. PirschJ. FreemanR.B. O’GradyJ. RobinsonC. ToZ. WrenK. BankenL. BuhlesW. BrownF. Valganciclovir results in improved oral absorption of ganciclovir in liver transplant recipients.Antimicrob. Agents Chemother.200044102811281510.1128/AAC.44.10.2811‑2815.2000 10991864
    [Google Scholar]
  35. HumarA. SnydmanD. AST infectious diseases community of practice. Cytomegalovirus in solid organ transplant recipients.Am. J. Transplant.20099Suppl. 4S78S8610.1111/j.1600‑6143.2009.02897.x 20070700
    [Google Scholar]
  36. VaziriS. PezhmanZ. SayyadB. MansouriF. JanbakhshA. AfsharianM. NajafiF. Efficacy of valganciclovir and ganciclovir for cytomegalovirus disease in solid organ transplants: A meta-analysis.J. Res. Med. Sci.2014191211851192 25709661
    [Google Scholar]
  37. KimI. ChuX. KimS. ProvodaC.J. LeeK.D. AmidonG.L. Identification of a human valacyclovirase: Biphenyl hydrolase-like protein as valacyclovir hydrolase.J. Biol. Chem.200327828253482535610.1074/jbc.M302055200 12732646
    [Google Scholar]
  38. PuenteX.S. López-OtnC. Cloning and expression analysis of a novel human serine hydrolase with sequence similarity to prokaryotic enzymes involved in the degradation of aromatic compounds.J. Biol. Chem.199527021129261293210.1074/jbc.270.21.12926 7759552
    [Google Scholar]
  39. Lamivudine.Available from: https://go.drugbank.com/drugs/DB00709
  40. Michael GibsonC. Valganciclovir hydrochloride.Available from: https://www.wikidoc.org/index.php/Valganciclovir_hydrochloride
    [Google Scholar]
  41. PereiraB.G. Vianna-SoaresC.D. RighiA. PinheiroM.V.B. FloresM.Z.S. BezerraE.M. FreireV.N. LemosV. CaetanoE.W.S. CavadaB.S. Identification of lamivudine conformers by raman scattering measurements and quantum chemical calculations.J. Pharm. Biomed. Anal.20074351885188910.1016/j.jpba.2007.01.014 17303364
    [Google Scholar]
  42. ShalaevaM. KensethJ. LombardoF. BastinA. Measurement of dissociation constants (pKa values) of organic compounds by multiplexed capillary electrophoresis using aqueous and cosolvent buffers.J. Pharm. Sci.20089772581260610.1002/jps.21287 18228610
    [Google Scholar]
  43. ŞanlıS. ŞanlıN. LunteC. Determination and validation of capillary electrophoretic and liquid chromatographic methods for concurrent assay of valganciclovir and lamivudine in pharmaceutical formulations.Curr. Pharm. Anal.2017131313810.2174/1573412912666160728153846
    [Google Scholar]
  44. LukacovaV. GoelzerP. ReddyM. GreigG. ReignerB. ParrottN. A physiologically based pharmacokinetic model for ganciclovir and its prodrug valganciclovir in adults and children.AAPS J.20161861453146310.1208/s12248‑016‑9956‑4 27450227
    [Google Scholar]
  45. StefanidisD. BrandlM. Reactivity of valganciclovir in aqueous solution.Drug Dev. Ind. Pharm.200531987988410.1080/03639040500271951 16305999
    [Google Scholar]
  46. KomarovT.N. ShohinI.E. TokarevaM.A. ArchakovaO.A. BogdanovaD.S. AleshinaA.A. BagaevaN.S. DavydanovaV.V. Development and validation of valganciclovir and its active metabolite ganciclovir determination in human plasma by HPLCMS/ MS method. Drug development & registration, 202110112012810.33380/2305‑2066‑2021‑10‑1‑120‑128
    [Google Scholar]
  47. BarveK.H. PatelJ.R. Intestinal permeability of lamivudine using single pass intestinal perfusion.Indian J. Pharm. Sci.201274547848110.4103/0250‑474X.108441 23716881
    [Google Scholar]
  48. AmidonG.L. SinkoP.J. FleisherD. Estimating human oral fraction dose absorbed: a correlation using rat intestinal membrane permeability for passive and carrier-mediated compounds.Pharm. Res.198851065165410.1023/A:1015927004752 3244618
    [Google Scholar]
  49. ArturssonP. KarlssonJ. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells.Biochem. Biophys. Res. Commun.1991175388088510.1016/0006‑291X(91)91647‑U 1673839
    [Google Scholar]
  50. HillgrenK.M. KatoA. BorchardtR.T. In vitro systems for studying intestinal drug absorption.Med. Res. Rev.19951528310910.1002/med.2610150202 7537838
    [Google Scholar]
  51. SalphatiL. ChildersK. PanL. TsutsuiK. TakahashiL. Evaluation of a single-pass intestinal-perfusion method in rat for the prediction of absorption in man.J. Pharm. Pharmacol.20105371007101310.1211/0022357011776252 11480535
    [Google Scholar]
  52. FagerholmU. JohanssonM. LennernäsH. Comparison between permeability coefficients in rat and human jejunum.Pharm. Res.19961391336134210.1023/A:1016065715308 8893271
    [Google Scholar]
  53. BartheL. WoodleyJ. HouinG. Gastrointestinal absorption of drugs: Methods and studies.Fundam. Clin. Pharmacol.199913215416810.1111/j.1472‑8206.1999.tb00334.x 10226759
    [Google Scholar]
  54. DezaniT.M. DezaniA.B. JuniorJ.B.S. SerraC.H.R. Single-pass intestinal perfusion (SPIP) and prediction of fraction absorbed and permeability in humans: A study with antiretroviral drugs.Eur. J. Pharm. Biopharm.201610413113910.1016/j.ejpb.2016.04.020 27130787
    [Google Scholar]
  55. LindenbergM. KoppS. DressmanJ.B. Classification of orally administered drugs on the world health organization model list of essential medicines according to the biopharmaceutics classification system.Eur. J. Pharm. Biopharm.200458226527810.1016/j.ejpb.2004.03.001 15296954
    [Google Scholar]
  56. WuC.Y. BenetL.Z. Predicting drug disposition via application of BCS: Transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system.Pharm. Res.2005221112310.1007/s11095‑004‑9004‑4 15771225
    [Google Scholar]
  57. WagnerD. Spahn-LangguthH. HanafyA. KoggelA. LangguthP. Intestinal drug efflux: Formulation and food effects.Adv. Drug Deliv. Rev.200150Suppl. 1S13S3110.1016/S0169‑409X(01)00183‑1 11576693
    [Google Scholar]
  58. KimJ.S. MitchellS. KijekP. TsumeY. HilfingerJ. AmidonG.L. The suitability of an in situ perfusion model for permeability determinations: Utility for BCS class I biowaiver requests.Mol. Pharm.20063668669410.1021/mp060042f 17140256
    [Google Scholar]
  59. BerggrenS. HoogstraateJ. FagerholmU. LennernäsH. Characterization of jejunal absorption and apical efflux of ropivacaine, lidocaine and bupivacaine in the rat using in situ and in vitro absorption models.Eur. J. Pharm. Sci.200421455356010.1016/j.ejps.2003.12.004 14998587
    [Google Scholar]
  60. LindahlA. FridS. UngellA.L. LennernasH. No evidence for the involvement of the multidrug resistance-associated protein and/or the monocarboxylic acid transporter in the intestinal transport of fluvastatin in the rat.AAPS PharmSci200023e2610.1208/ps020326 11741242
    [Google Scholar]
  61. GrassiM. CadelliG. Theoretical considerations on the in vivo intestinal permeability determination by means of the single pass and recirculating techniques.Int. J. Pharm.20012291-29510510.1016/S0378‑5173(01)00848‑1 11604262
    [Google Scholar]
  62. BarrW.H. The role of intestinal metabolism on bioavailability. Pharm. Bioequivalence, 19911491168
    [Google Scholar]
  63. TRS 1025 - Annex 12: WHO “Biowaiver List”: proposal to waive in vivo bioequivalence requirements for WHO Model List of Essential Medicines immediate-release, solid oral dosage forms.2006Available from: https://www.who.int/publications/m/item/trs-1025-annex-12-who-biowaiver-eml
  64. KasimN.A. WhitehouseM. RamachandranC. BermejoM. LennernäsH. HussainA.S. JungingerH.E. StavchanskyS.A. MidhaK.K. ShahV.P. AmidonG.L. Molecular properties of WHO essential drugs and provisional biopharmaceutical classification.Mol. Pharm.200411859610.1021/mp034006h 15832504
    [Google Scholar]
  65. HuangW. ChenS. SunL. WwangH. QiaoH. Study on the intestinal permeability of lamivudine using Caco-2 cells monolayer and Single-pass intestinal perfusion.Saudi J. Biol. Sci.20222942247225210.1016/j.sjbs.2021.11.052 35531213
    [Google Scholar]
  66. AtesM. KaynakM.S. SahinS. Effect of permeability enhancers on paracellular permeability of acyclovir.J. Pharm. Pharmacol.201668678179010.1111/jphp.12551 27061718
    [Google Scholar]
/content/journals/cpa/10.2174/0115734129310868240805065851
Loading
/content/journals/cpa/10.2174/0115734129310868240805065851
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test