Skip to content
2000
Volume 20, Issue 6
  • ISSN: 1573-4129
  • E-ISSN: 1875-676X

Abstract

Precise measurement of drug concentration in pharmaceutical research is critical, especially for anti-viral drugs like boceprevir, elvitegravir, indinavir, and saquinavir that combat viral infections. It is well-known that analytical techniques play an imperative role in identifying and characterizing active pharmaceutical ingredients in biological samples and drug formulations. Moreover, precise drug assessment directly influences safety, stability, and efficacy while providing in-depth insight into drug pharmacokinetics. Other than this, analytical techniques also aid in identifying impurities, deteriorated products, and potential pollutants. Thus, reliable analytical methods have become crucial for addressing challenges imposed by complex drug formulations. The most commonly used analytical technique is UV spectrophotometry, which does not have the high sensitivity to detect complex drug formulations. In contrast, Liquid Chromatography-Mass Spectrometry/Mass Spectrometry (LC-MS/MS) merges two analytical techniques, chromatography and mass spectrometry, to accurately quantify biological samples. Furthermore, Ultra-Performance Liquid Chromatography (UPLC) provides enhanced resolution, faster analysis in short duration, and low solvent consumption in contrast to HPLC. This comprehensive review aims to critically assess each analytical approach's accuracy, applicability, selectivity, and limitation to provide valuable insights for researchers and analysts. Understanding the weaknesses and strengths of these analytical techniques will enable the researchers to select the suitable analytical method based on their needs and requirements for quality assessment, precise drug quantification, and optimal therapeutic efficiency. Eventually, this review intends to advance pharmaceutical research and development, specifically for anti-viral drugs, by ensuring the effective and secure administration of therapies.

Loading

Article metrics loading...

/content/journals/cpa/10.2174/0115734129302705240703052227
2024-07-01
2024-10-18
Loading full text...

Full text loading...

References

  1. SelcukO. DemirY. ErkmenC. YıldırımS. UsluB. Analytical methods for determination of antiviral drugs in different matrices: Recent advances and trends.Crit. Rev. Anal. Chem.20225271662169310.1080/10408347.2021.190811133983841
    [Google Scholar]
  2. LemboD. DonalisioM. CivraA. ArgenzianoM. CavalliR. Nanomedicine formulations for the delivery of antiviral drugs: A promising solution for the treatment of viral infections.Expert Opin. Drug Deliv.20181519311410.1080/17425247.2017.136086328749739
    [Google Scholar]
  3. SonaliM. A brief review on different analytical techniques for impurity profiling in antiviral drugs.IJCRT202195364
    [Google Scholar]
  4. ChangK.O. KimY. LovellS. RathnayakeA. GroutasW. Antiviral drug discovery: Norovirus proteases and development of inhibitors.Viruses201911219710.3390/v1102019730823509
    [Google Scholar]
  5. GongY. HaqueS. ChowdhuryP. CoryT.J. KodidelaS. YallapuM.M. NorwoodJ.M. KumarS. Pharmacokinetics and pharmacodynamics of cytochrome P450 inhibitors for HIV treatment.Expert Opin. Drug Metab. Toxicol.201915541742710.1080/17425255.2019.160468530951643
    [Google Scholar]
  6. HussenA.A. High-Performance Liquid Chromatography (HPLC): A review.Ann. Adv. Chem.20226010020
    [Google Scholar]
  7. PassosL.C. Detection in UV-visible spectrophotometry: Detectors, detection systems, and detection strategies.Meas. J. Int. Meas. Confed.201913589690410.1016/j.measurement.2018.12.045
    [Google Scholar]
  8. SegerC. SalzmannL. After another decade: LC–MS/MS became routine in clinical diagnostics.Clin. Biochem.20208221110.1016/j.clinbiochem.2020.03.00432188572
    [Google Scholar]
  9. SaxenaS.K. MishraN. SaxenaR. Our knowledge about viruses has increased tremendously owing to rapid developments in science and technology.Medicine20094101107
    [Google Scholar]
  10. AtharF. BegM.A. Anti-HIV and Anti-HCV drugs are the putative inhibitors of RNA-dependent-RNA polymerase activity of NSP12 of the SARS CoV-2 (COVID-19).Pharm. Pharmacol. Int. J.20208316317210.15406/ppij.2020.08.00292
    [Google Scholar]
  11. TompaD.R. ImmanuelA. SrikanthS. KadhirvelS. Trends and strategies to combat viral infections: A review on FDA approved antiviral drugs.Int. J. Biol. Macromol.202117252454110.1016/j.ijbiomac.2021.01.07633454328
    [Google Scholar]
  12. WassnerC. BradleyN. LeeY. A review and clinical understanding of tenofovir: Tenofovir disoproxil fumarate versus tenofovir alafenamide.J. Int. Assoc. Provid. AIDS Care20201910.1177/232595822091923132295453
    [Google Scholar]
  13. MollarasouliF. Dogan-TopalB. CaglayanM.G. Taskin-TokT. OzkanS.A. Electrochemical, spectroscopic, and molecular docking studies of the interaction between the anti-retroviral drug indinavir and dsDNA.J. Pharm. Anal.202010547348110.1016/j.jpha.2020.08.00433133731
    [Google Scholar]
  14. PereiraM. ValeN. Repurposing alone and in combination of the antiviral saquinavir with 5-fluorouracil in prostate and lung cancer cells.Int. J. Mol. Sci.202223201224010.3390/ijms23201224036293096
    [Google Scholar]
  15. GonçalvesA. BertrandJ. KeR. CometsE. de LamballerieX. MalvyD. PizzornoA. TerrierO. Rosa CalatravaM. MentréF. SmithP. PerelsonA.S. GuedjJ. Timing of antiviral treatment initiation is critical to reduce SARS-CoV-2 viral load.CPT Pharmacometrics Syst. Pharmacol.20209950951410.1002/psp4.1254332558354
    [Google Scholar]
  16. AmaraA. PenchalaS.D. ElseL. HaleC. FitzGeraldR. WalkerL. LyonsR. FletcherT. KhooS. The development and validation of a novel LC-MS/MS method for the simultaneous quantification of Molnupiravir and its metabolite ß-d-N4-hydroxycytidine in human plasma and saliva.J. Pharm. Biomed. Anal.202120611435610.1016/j.jpba.2021.11435634509661
    [Google Scholar]
  17. RazonableR.R. Antiviral drugs for viruses other than human immunodeficiency virus.Mayo Clin. Proc.201186101009102610.4065/mcp.2011.030921964179
    [Google Scholar]
  18. RamachandraB. Development of impurity profiling methods using modern analytical techniques.Crit Rev Anal Chem20174712436
    [Google Scholar]
  19. BansalV. MalviyaR. PalO.P. SharmaP.k. High performance liquid chromatography: A short review.J. Glob. Pharma Technol.201022226
    [Google Scholar]
  20. SankarP.R. SnehalathaK.S. FirdoseS.T. BabuP.S. Applications of HPLC in pharmaceutical analysis.Int. J. Pharm. Sci. Rev. Res.201459117124
    [Google Scholar]
  21. NikolinB. ImamovićB. Medanhodžić-VukS. SoberM. High performance liquid chromatography in pharmaceutical analyses.Bosn. J. Basic Med. Sci.2004425910.17305/bjbms.2004.340515629016
    [Google Scholar]
  22. PatelS. RauljiA. PatelD. PanchalD. DalwadiM. UpadhyayU. A review on “Uv visible spectroscopy”.Int. J. Pharm. Res. Appl.202271151
    [Google Scholar]
  23. BrownB. WardA. FaziliZ. ØstergaardJ. Asare-AddoK. Application of UV dissolution imaging to pharmaceutical systems.Adv. Drug Deliv. Rev.202117711394910.1016/j.addr.2021.11394934461199
    [Google Scholar]
  24. ParmarA. SharmaS. Derivative UV-vis absorption spectra as an invigorated spectrophotometric method for spectral resolution and quantitative analysis: Theoretical aspects and analytical applications: A review.Trends Analyt. Chem.201677445310.1016/j.trac.2015.12.004
    [Google Scholar]
  25. ParasuramanS. RaoA. BalamuruganS. MuralidharanS. Jayaraj KumarK. VijayanV. An overview of liquid chromatography-mass spectroscopy instrumentation.Pharm. Methods201654755
    [Google Scholar]
  26. WongA. XiangX. OngP. MitchellE. SynN. WeeI. KumarA. YongW. SethiG. GohB. HoP. WangL. A review on liquid chromatography-tandem mass spectrometry methods for rapid quantification of oncology drugs.Pharmaceutics201810422110.3390/pharmaceutics1004022130413076
    [Google Scholar]
  27. LoosG. Van SchepdaelA. CabooterD. Quantitative mass spectrometry methods for pharmaceutical analysis.Philos Trans A Math Phys Eng Sci2016374207920150366
    [Google Scholar]
  28. SuryavanshiR.U. RajasekaranS. HPLC vs UPLC: The extent of the area in analytical chemistry.Int. J. Creat. Res. Thoughts20219b796b809
    [Google Scholar]
  29. PawarP.V. DahaleP.p. Ultra High Performance Liquid Chromatography (UPLC): A new look in analysis-a review.Int. J. Pharm. Res. Appl.202273136
    [Google Scholar]
  30. TaleuzzamanM. AliS. GilaniS. ImanS. HafeezA. Ultra Performance Liquid Chromatography (UPLC) - A review.Austin J. Anal. Pharm. Chem.201521056
    [Google Scholar]
  31. KhalilH.A. HassaneinN.A. El-YazbiA.F. Recent analytical methodologies for the determination of anti-covid-19 drug therapies in various matrices: A critical review.RSC Adv20231319132241323910.1039/D3RA00654A37124020
    [Google Scholar]
  32. RavisankarP. GowthamiS. RaoG.D. A review on analytical method development.Indian J. Res. Pharm. Biotechnol.201421183
    [Google Scholar]
  33. DhanshriF.P. A review on analytical method development.Int. J. Creat. Res. Thoughts202210840854
    [Google Scholar]
  34. ChandramowliB. KumarB.M.S. BhikshapathiD.V.R.N. RajkamalB.B. A New quantitative analytical method development and validation for the analysis of boceprevir in bulk and marketed formulation.Int. J. Pharm. Sci. Drug Res.201810320120510.25004/IJPSDR.2018.100314
    [Google Scholar]
  35. SunithaP. PriyankaS. SupriyaT. Method development and validation of indinavir sulphate capsules by RP-HPLC method.20152108110
    [Google Scholar]
  36. HamidiM. Pharmacokinetic properties of indinavir in rat: Some limitations of noncompartmental analysis.Drug Dev. Ind. Pharm.201036335536110.3109/0363904090317356419722914
    [Google Scholar]
  37. GonçalvesT.M. PiresB.X.F. BedorD.C.G. SouzaV.C. AbreuL.R.P. SantanaD.P. Determination of indinavir in human plasma and its use in pharmacokinetic study.RBCF Rev. Bras. Cienc. Farm.200743463964710.1590/S1516‑93322007000400018
    [Google Scholar]
  38. MudigondaK. JukantiR. ApteS.S. AjjalaD.R. ShrivastavaW. KandikereV.N. NirogiR.V.S. HPLC quantification of the HIV-1 protease inhibitor saquinavir in brain and testis of mice.Biomed. Chromatogr.200620101028103210.1002/bmc.63116506264
    [Google Scholar]
  39. UcpinarS.D. StavchanskyS. Quantitative determination of saquinavir from Caco-2 cell monolayers by HPLC-UV.Biomed. Chromatogr.2003171212510.1002/bmc.20512583001
    [Google Scholar]
  40. BaldelliS. MarrubiniG. CattaneoD. ClementiE. CereaM. Application of quality by design approach to bioanalysis: Development of a method for elvitegravir quantification in human plasma.Therapeut Drug Monitor20173950428
    [Google Scholar]
  41. KumarT.R. RajeswariV. ReddyL.S. Analytical method development and validation for the estimation of indinavir by RP-HPLC.J. Chem. Pharm. Res.2016811261131
    [Google Scholar]
  42. JancicB. MedenicaM. IvanovicD. MalenovicA. Evaluation of a liquid chromatographic method for analysis of indinavir and degradation products arising from hydrolysis of its amide bond.Chromatographia2005625-623323810.1365/s10337‑005‑0617‑5
    [Google Scholar]
  43. CampaneroM.A. EscolarM. ArangoaM.A. SádabaB. AzanzaJ.R. Development of a chromatographic method for the determination of saquinavir in plasma samples of HIV patients.Biomed. Chromatogr.200216171210.1002/bmc.10211816005
    [Google Scholar]
  44. KnebelN.G. SharpS.R. MadiganM.J. Quantification of the anti-HIV drug saquinavir by high-speed on-line high‐performance liquid chromatography/tandem mass spectrometry.J. Mass Spectrom.19953081149115610.1002/jms.1190300812
    [Google Scholar]
  45. PathakS.M. KumarA.R. SubramanianG. UdupaN. Development and validation of a reversed-phase liquid chromatographic method with fluorescence detection for the study of Saquinavir pharmacokinetics in rat plasma.Anal. Chim. Acta2007594224825610.1016/j.aca.2007.05.02817586122
    [Google Scholar]
  46. HaH.R. FollathF. BloemhardY. KrähenbühlS. Determination of saquinavir in human plasma by high-performance liquid chromatography.J. Chromatogr., Biomed. Appl.1997694242743310.1016/S0378‑4347(97)00165‑59252059
    [Google Scholar]
  47. WiltshireH.R. WiltshireB.G. ClarkeA.F. WorthE. PriorK.J. TjiaJ.F. Chromatographic and immunochemical approaches to the analysis of the HIV protease inhibitor saquinavir in plasma.Anal. Biochem.2000281110511410.1006/abio.2000.454510847617
    [Google Scholar]
  48. HoetelmansR.M.W. van EssenbergM. MeenhorstP.L. MulderJ.W. BeijnenJ.H. Determination of saquinavir in human plasma, saliva, and cerebrospinal fluid by ion-pair high-performance liquid chromatography with ultraviolet detection.J. Chromatogr., Biomed. Appl.19976981-223524110.1016/S0378‑4347(97)00268‑59367213
    [Google Scholar]
  49. RuanQ. PetermanS. SzewcM.A. MaL. CuiD. HumphreysW.G. ZhuM. An integrated method for metabolite detection and identification using a linear ion trap/Orbitrap mass spectrometer and multiple data processing techniques: Application to indinavir metabolite detection.J. Mass Spectrom.200843225126110.1002/jms.131117968853
    [Google Scholar]
  50. RunjaC. Ravi KumarP. AvanapuS.R. A validated stability indicating RP-HPLC method for the determination of emtricitabine, tenofovir disoproxil fumarate, elvitegravir and cobicistat in pharmaceutical dosage form.J. Chromatogr. Sci.201654575976410.1093/chromsci/bmw00426865655
    [Google Scholar]
  51. JampalaR.R. KumarV.K. Raju NemalaA. Development and application of liquid chromatographic method for simultaneous determination of elvitegravir, tenofovir disoproxil fumarate, emtricitabine, and cobicistat in fixed dosage form.Pharm. Methods20145171310.5530/phm.2014.1.2
    [Google Scholar]
  52. RaoP.P. ReddyD.M. RamachandranD. Stability indicating HPLC method for simultaneous estimation of emtricitabine, tenofovir disoproxyl fumarate, cobicistat and elvitegravir in pharmaceutical dosage form.World J. Pharm. Sci.2014218221829
    [Google Scholar]
  53. ZhengY. AbouraR. BoujaafarS. LuiG. HirtD. HPLC-MS / MS method for the simultaneous quantification of.J. Pharm. Biomed. Anal.2020182113119
    [Google Scholar]
  54. LangmannP. KlinkerH. SchirmerD. ZillyM. BienertA. RichterE. High-performance liquid chromatographic method for the simultaneous determination of HIV-1 protease inhibitors indinavir, saquinavir and ritonavir in plasma of patients during highly active antiretroviral therapy.J. Chromatogr., Biomed. Appl.19997351415010.1016/S0378‑4347(99)00388‑610630889
    [Google Scholar]
  55. DonnererJ. KronawetterM. KapperA. HaasI. KesslerH.H. Therapeutic drug monitoring of the HIV/AIDS drugs abacavir, zidovudine, efavirenz, nevirapine, indinavir, lopinavir, and nelfinavir.Pharmacology2003694197204
    [Google Scholar]
  56. MartinJ. DeslandesG. DaillyE. RenaudC. ReliquetV. RaffiF. JollietP. A liquid chromatography – tandem mass spectrometry assay for quantification of efavirenz, tipranavir, darunavir and maraviroc in the plasma of patients infected with HIV.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20098773072308210.1016/j.jchromb.2009.07.03119699694
    [Google Scholar]
  57. YamadaH. KotakiH. NakamuraT. IwamotoA. Simultaneous determination of the HIV protease inhibitors indinavir, amprenavir, saquinavir, ritonavir and nelfinavir in human plasma by high-performance liquid chromatography.J. Chromatogr., Biomed. Appl.20017551-2858910.1016/S0378‑4347(00)00617‑411393736
    [Google Scholar]
  58. ProustV. TothK. HulinA. TaburetA.M. GimenezF. SinglasE. Simultaneous high-performance liquid chromatographic determination of the antiretroviral agents amprenavir, nelfinavir, ritonavir, saquinavir, delavirdine and efavirenz in human plasma.J. Chromatogr., Biomed. Appl.2000742245345810.1016/S0378‑4347(00)00208‑510901152
    [Google Scholar]
  59. PanchagnulaR. BansalT. VarmaM.V.S. KaulC.L. Reversed-phase liquid chromatography with ultraviolet detection for simultaneous quantitation of indinavir and propranolol from ex- vivo rat intestinal permeability studies.J Chromatogr B Analyt Technol Biomed Life Sci.2004806277282
    [Google Scholar]
  60. DrosteJ.A.H. WissenC.P.W.G.M.V. BurgerD.M. Simultaneous determination of the HIV drugs indinavir , amprenavir , saquinavir , ritonavir , lopinavir , nelfinavir , the nelfinavir hydroxymetabolite m8 , and nevirapine in human plasma by reversed-phase high-performance liquid chromatography.Ther Drug Monit.20032533939
    [Google Scholar]
  61. KreuzD.M. HowardA.L. IpD. Determination of indinavir, potassium sorbate, methylparaben, and propylparaben in aqueous pediatric suspensions.J. Pharm. Biomed. Anal.199919572573510.1016/S0731‑7085(98)00297‑010698536
    [Google Scholar]
  62. VerbesseltR. Van WijngaerdenE. de HoonJ. Simultaneous determination of 8 HIV protease inhibitors in human plasma by isocratic high-performance liquid chromatography with combined use of UV and fluorescence detection: Amprenavir, indinavir, atazanavir, ritonavir, lopinavir, saquinavir, nelfinavir and M8-nelfinavir metabolite.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20078451516010.1016/j.jchromb.2006.07.06816997640
    [Google Scholar]
  63. MarzoliniC. TelentiA. BuclinT. BiollazJ. DecosterdL.A. Simultaneous determination of the HIV protease inhibitors indinavir, amprenavir, saquinavir, ritonavir, nelfinavir and the non-nucleoside reverse transcriptase inhibitor efavirenz by high-performance liquid chromatography after solid-phase extraction.J. Chromatogr., Biomed. Appl.20007401435810.1016/S0378‑4347(99)00573‑310798293
    [Google Scholar]
  64. JustesenU.S. PedersenC. KlitgaardN.A. Simultaneous quantitative determination of the HIV protease nelfinavir and the nelfinavir active metabolite M8 in plasma by liquid chromatography.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.200378349150010.1016/S1570‑0232(02)00728‑612482492
    [Google Scholar]
  65. RemmelR.P. KawleS.P. WellerD. FletcherC.V. Simultaneous HPLC assay for quantification of indinavir, nelfinavir, ritonavir, and saquinavir in human plasma.Clin. Chem.2000461738110.1093/clinchem/46.1.7310620574
    [Google Scholar]
  66. KunaM. DannanaG.S. Development and validation of stability indicating reverse-phase highperformance liquid chromatography method for the simultaneous quantification of saquinavir, ritonavir, and amprenavir.Asian J. Pharm. Clin. Res.201811639039610.22159/ajpcr.2018.v11i6.25205
    [Google Scholar]
  67. HugenP.W.H. Verweij-van WissenC.P.W.G.M. BurgerD.M. WuisE.W. KoopmansP.P. HeksterY.A. Simultaneous determination of the HIV-protease inhibitors indinavir, nelfinavir, saquinavir and ritonavir in human plasma by reversed-phase high-performance liquid chromatography.J. Chromatogr., Biomed. Appl.19997271-213914910.1016/S0378‑4347(99)00079‑110360433
    [Google Scholar]
  68. Sarasa-NacentaM. López-PúaY. MallolasJ. BlancoJ.L. GatellJ.M. CarnéX. Simultaneous determination of the HIV-protease inhibitors indinavir, amprenavir, ritonavir, saquinavir and nelfinavir in human plasma by reversed-phase high-performance liquid chromatography.J. Chromatogr., Biomed. Appl.2001757232533210.1016/S0378‑4347(01)00172‑411417878
    [Google Scholar]
  69. AlbertV. ModamioP. LastraC.F. MariñoE.L. Determination of saquinavir and ritonavir in human plasma by reversed-phase high-performance liquid chromatography and the analytical error function.J. Pharm. Biomed. Anal.200436483584010.1016/j.jpba.2004.08.01315533677
    [Google Scholar]
  70. van HeeswijkR.P.G. HoetelmansR.M.W. HarmsR. MeenhorstP.L. MulderJ.W. LangeJ.M.A. BeijnenJ.H. Simultaneous quantitative determination of the HIV protease inhibitors amprenavir, indinavir, nelfinavir, ritonavir and saquinavir in human plasma by ion-pair high-performance liquid chromatography with ultraviolet detection.J. Chromatogr., Biomed. Appl.19987191-215916810.1016/S0378‑4347(98)00392‑29869376
    [Google Scholar]
  71. ReddyP.G. KumarV.K. RajuV.V.S.S.A. RamJ.R. RrajuN.A. Novel spectrophotometric method development for the estimation of boceprevir in bulk and in pharmaceutical formulations.Res J Pharm Technol20171012431310.5958/0974‑360X.2017.00789.2
    [Google Scholar]
  72. ErkN. Spectrophotometric determination of indinavir in bulk and pharmaceutical formulations using bromocresol purple and bromothymol blue.Pharmazie200459183186
    [Google Scholar]
  73. RaoK.P. SrirangamG.M. RamanaG.V. RaoM.C. Development and validation of some new UV- visible spectrophotometric methods for the assay of indinavir in pure and dosage forms.Rasayan J. Chem.20169393400
    [Google Scholar]
  74. RathodB.H. RaniS.S. KartheekN. KumarA.A. A rapid and cost effective uv spectrophotometric method development and validation for the quantitative estimation of indinavir sulphate in capsules.Rasayan J. Chem.2014671749
    [Google Scholar]
  75. MiddeN.M. RahmanM.A. RathiC. LiJ. MeibohmB. LiW. KumarS. Effect of ethanol on the metabolic characteristics of hiv-1 integrase inhibitor elvitegravir and elvitegravir/cobicistat with CYP3A: An analysis using a newly developed LC-MS/MS method.PLoS One2016112e014922510.1371/journal.pone.014922526872388
    [Google Scholar]
  76. YuX. CuiD. DavisM.R. Identification of in vitro metabolites of indinavir by “intelligent automated LC-MS/MS” (INTAMS) utilizing triple quadrupole tandem mass spectrometry.J. Am. Soc. Mass Spectrom.199910217518310.1016/S1044‑0305(98)00132‑99926409
    [Google Scholar]
  77. PereiraM. OliveiraD. VenisseN. CouetW. OlivierJ. LC-MS/MS determination of the HIV-1 protease inhibitor indinavir in brain and testis of mice.J Pharm Biomed Anal20064023539
    [Google Scholar]
  78. AnariM.R. SanchezR.I. BakhtiarR. FranklinR.B. BaillieT.A. Integration of knowledge-based metabolic predictions with liquid chromatography data-dependent tandem mass spectrometry for drug metabolism studies: Application to studies on the biotransformation of indinavir.Anal. Chem.200476382383210.1021/ac034980s14750881
    [Google Scholar]
  79. BurhenneJ. RiedelK.D. Martin-FacklamM. MikusG. HaefeliW.E. Highly sensitive determination of saquinavir in biological samples using liquid chromatography–tandem mass spectrometry.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2003784223324210.1016/S1570‑0232(02)00803‑612505771
    [Google Scholar]
  80. AouriM. CalmyA. HirschelB. TelentiA. BuclinT. CavassiniM. RauchA. DecosterdL.A. A validated assay by liquid chromatography–tandem mass spectrometry for the simultaneous quantification of elvitegravir and rilpivirine in HIV positive patients.J. Mass Spectrom.201348561662510.1002/jms.320023674286
    [Google Scholar]
  81. TsuchiyaK. OhuchiM. YamaneN. AikawaH. GatanagaH. OkaS. HamadaA. High-performance liquid chromatography–tandem mass spectrometry for simultaneous determination of raltegravir, dolutegravir and elvitegravir concentrations in human plasma and cerebrospinal fluid samples.Biomed. Chromatogr.2018322e405810.1002/bmc.405828762239
    [Google Scholar]
  82. PrathipatiP.K. MandalS. DestacheC.J. Simultaneous quantification of tenofovir, emtricitabine, rilpivirine, elvitegravir and dolutegravir in mouse biological matrices by LC–MS/MS and its application to a pharmacokinetic study.J. Pharm. Biomed. Anal.201612947348110.1016/j.jpba.2016.07.04027497648
    [Google Scholar]
  83. RaoR.N. PrasadK.G. KumarK.V.S. RameshB. Diatomaceous earth supported liquid extraction and LC-MS/MS determination of elvitegravir and ritonavir in rat plasma: Application to a pharmacokinetic study.Anal. Methods20135236693669910.1039/c3ay41346b
    [Google Scholar]
  84. PenchalaS.D. FawcettS. ElseL. EganD. AmaraA. ElliotE. ChallengerE. BackD. BoffitoM. KhooS. The development and application of a novel LC–MS/MS method for the measurement of Dolutegravir, Elvitegravir and Cobicistat in human plasma.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2016102717418010.1016/j.jchromb.2016.05.04027290668
    [Google Scholar]
  85. ColomboS. BeguinA. TelentiA. BiollazJ. BuclinT. RochatB. DecosterdL.A. Intracellular measurements of anti-HIV drugs indinavir, amprenavir, saquinavir, ritonavir, nelfinavir, lopinavir, atazanavir, efavirenz and nevirapine in peripheral blood mononuclear cells by liquid chromatography coupled to tandem mass spectrometry.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2005819225927610.1016/j.jchromb.2005.02.01015833290
    [Google Scholar]
  86. ChiJ. JayewardeneA.L. StoneJ.A. MotoyaT. AweekaF.T. Simultaneous determination of five HIV protease inhibitors nelfinavir, indinavir, ritonavir, saquinavir and amprenavir in human plasma by LC/MS/MS.J. Pharm. Biomed. Anal.200230367568410.1016/S0731‑7085(02)00357‑612367693
    [Google Scholar]
  87. DjeradaZ. FeliuC. TournoisC. VautierD. BinetL. RobinetA. MartyH. GozaloC. LamiableD. MillartH. Validation of a fast method for quantitative analysis of elvitegravir, raltegravir, maraviroc, etravirine, tenofovir, boceprevir and 10 other antiretroviral agents in human plasma samples with a new UPLC-MS/MS technology.J. Pharm. Biomed. Anal.20138610011110.1016/j.jpba.2013.08.00223995753
    [Google Scholar]
  88. BollenP.D.J. de Graaff-TeulenM.J.A. SchalkwijkS. van ErpN.P. BurgerD.M. Development and validation of an UPLC-MS/MS bioanalytical method for simultaneous quantification of the antiretroviral drugs dolutegravir, elvitegravir, raltegravir, nevirapine and etravirine in human plasma.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20191105768410.1016/j.jchromb.2018.12.00830572204
    [Google Scholar]
  89. MishraT.D. KuraniH. SinghalP. ShrivastavP.S. Simultaneous quantitation of HIV-protease inhibitors ritonavir, lopinavir and indinavir in human plasma by UPLC-ESI-MS-MS.J. Chromatogr. Sci.201250762563510.1093/chromsci/bms04822562821
    [Google Scholar]
  90. KanuA.B. Recent developments in sample preparation techniques combined with high-performance liquid chromatography: A critical review.J. Chromatogr. A2021165446244410.1016/j.chroma.2021.46244434380070
    [Google Scholar]
  91. McDowallR.D. DoyleE. MurkittG.S. PicotV.S. Sample preparation for the HPLC analysis of drugs in biological fluids.J. Pharm. Biomed. Anal.1989791087109610.1016/0731‑7085(89)80047‑02490115
    [Google Scholar]
/content/journals/cpa/10.2174/0115734129302705240703052227
Loading
/content/journals/cpa/10.2174/0115734129302705240703052227
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test