Skip to content
2000
Volume 20, Issue 6
  • ISSN: 1573-4129
  • E-ISSN: 1875-676X

Abstract

Selective Serotonin Reuptake Inhibitors (SSRIs) are a key development in psychological pharmacology and treatment. It has been demonstrated that serotonin (5-HT) has a pharmacological role in a variety of anxiety- and mood-related conditions. Fluvoxamine, citalopram, escitalopram, paroxetine, sertraline, and fluoxetine are the six primary SSRIs now available in the United States for the treatment of depression and anxiety or mood-related disorders. Despite having a different chemical structure, these compounds function in an analogous fashion. The main mechanism by which SSRIs work is by preventing serotonin from being reabsorbed presynaptically at the serotonin transporter, which raises serotonin at the postsynaptic membrane, which is found in the serotonergic synapse. In order to ensure the effectiveness, safety, and quality control of SSRIs in pharmaceutical formulations, it is crucial to quantify them precisely. The present article provides an overview of the main analytical techniques developed to evaluate SSRIs in different matrices. It covers both conventional and hyphenated approaches and concentrates on the analytical methodologies developed to quantify SSRIs. It offers a general overview of the methods that have been developed and standardized for the evaluation of SSRIs in drug formulations and various matrices. It focuses on the major components of SSRI analysis, such as the solvents used for analysis, chromatographic column selections, detection wavelength, and validation parameters. It also discusses various validation parameters, such as accuracy, precision, retention duration, maximum absorbance wavelength (λmax), range, limit of detection (LOD), and limit of quantitation (LOQ).

Loading

Article metrics loading...

/content/journals/cpa/10.2174/0115734129298467240718104217
2024-07-01
2024-10-18
Loading full text...

Full text loading...

References

  1. EdinoffA.N. AkulyH.A. HannaT.A. OchoaC.O. PattiS.J. GhaffarY.A. KayeA.D. ViswanathO. UritsI. BoyerA.G. CornettE.M. KayeA.M. Selective serotonin reuptake inhibitors and adverse effects: a narrative review.Neurol. Int.202113338740110.3390/neurolint13030038 34449705
    [Google Scholar]
  2. GreenbergP.E. FournierA.A. SisitskyT. PikeC.T. KesslerR.C. The economic burden of adults with major depressive disorder in the United States (2005 and 2010).J. Clin. Psychiatry201576215516210.4088/JCP.14m09298 25742202
    [Google Scholar]
  3. YangH. ChuziS. Sinicropi-YaoL. JohnsonD. ChenY. ClainA. BaerL. McGrathP.J. StewartJ.W. FavaM. PapakostasG.I. Type of residual symptom and risk of relapse during the continuation/maintenance phase treatment of major depressive disorder with the selective serotonin reuptake inhibitor fluoxetine.Eur. Arch. Psychiatry Clin. Neurosci.2010260214515010.1007/s00406‑009‑0031‑3 19572158
    [Google Scholar]
  4. ClevengerS.S. MalhotraD. DangJ. VanleB. IsHakW.W. The role of selective serotonin reuptake inhibitors in preventing relapse of major depressive disorder.Ther. Adv. Psychopharmacol.201881495810.1177/2045125317737264 29344343
    [Google Scholar]
  5. KuhnR. The treatment of depressive states with G 22355 (imipramine hydrochloride).Am. J. Psychiatry1958115545946410.1176/ajp.115.5.459 13583250
    [Google Scholar]
  6. EdwardsJ.G. AndersonI. Systematic review and guide to selection of selective serotonin reuptake inhibitors.Drugs199957450753310.2165/00003495‑199957040‑00005 10235690
    [Google Scholar]
  7. ChuA. WadhwaR. Selective Serotonin Reuptake Inhibitors.StatPearls.Treasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  8. DavidD.J. GourionD. Antidepressant and tolerance: Determinants and management of major side effects.Encephale201642655356110.1016/j.encep.2016.05.006 27423475
    [Google Scholar]
  9. XueW. WangP. LiB. LiY. XuX. YangF. YaoX. ChenY.Z. XuF. ZhuF. Identification of the inhibitory mechanism of FDA approved selective serotonin reuptake inhibitors: an insight from molecular dynamics simulation study.Phys. Chem. Chem. Phys.20161843260327110.1039/C5CP05771J 26745505
    [Google Scholar]
  10. RaoN. The clinical pharmacokinetics of escitalopram.Clin. Pharmacokinet.200746428129010.2165/00003088‑200746040‑00002 17375980
    [Google Scholar]
  11. DeVaneC.L. Pharmacokinetics of the selective serotonin reuptake inhibitors.J. Clin. Psychiatry199253Suppl.1320 1531816
    [Google Scholar]
  12. HemaS.R. A review on new analytical method development and validation by RP-HPLC.Int Res J Pharm Biosci.201744150
    [Google Scholar]
  13. RavisankarP. NavyaC.N. PravallikaD. SriD.N. A review on step-by-step analytical method validation.IOSR J. Pharm.2015510719
    [Google Scholar]
  14. SiddiquiM.R. AlOthmanZ.A. RahmanN. Analytical techniques in pharmaceutical analysis: A review.Arab. J. Chem.201710S1409S142110.1016/j.arabjc.2013.04.016
    [Google Scholar]
  15. SinghJ. International conference on harmonization of technical requirements for registration of pharmaceuticals for human use.J. Pharmacol. Pharmacother.20156318518710.4103/0976‑500X.162004 26312010
    [Google Scholar]
  16. CFR - Code of Federal Regulations Title 212008Available from: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm (accessed on 2-7-2024)
  17. EU guidelines for good manufacturing practice for medicinal products for human and veterinary use.2001Available from: https://health.ec.europa.eu/document/download/7c6c5b3c-4902-46ea-b7ab-7608682fb68d_en?filename=2015-10_annex15.pdf (accessed on 2-7-2024)
  18. McDowallR. Practical and Effective Risk Management for Computerized System Validation.Qual. Assur. J.20059319622710.1002/qaj.339
    [Google Scholar]
  19. BansalS.K. LayloffT. BushE.D. HamiltonM. HankinsonE.A. LandyJ.S. LowesS. NasrM.M. St JeanP.A. ShahV.P. Qualification of analytical instruments for use in the pharmaceutical industry: a scientific approach.AAPS PharmSciTech200451E22 15198541
    [Google Scholar]
  20. BedsonP. SargentM. The development and application of guidance on equipment qualification of analytical instruments.Accredit. Qual. Assur.19961626527410.1007/s007690050083
    [Google Scholar]
  21. McPolinO. Validation of analytical methods for pharmaceutical analysis; Lulu.com,2009
  22. Guidance for Industry; Analytical Procedures and Method Validation, Chemistry, Manufacturing, and Controls Documentation.2000Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/analytical-procedures-and-methods-validation-drugs-and-biologics(accessed on 2-7-2024)
  23. International Conference on Harmonization (1994) Validation of analytical procedures: text and methodology Q2 (R1).1994Available from: https://www.ema.europa.eu/en/documents/scientificguideline/ich-guideline-q2r1-validation-analytical-procedurestext-methodology-step-5-first-version_en.pdf (accessed on 2-7-2024)
  24. The United States pharmacopeia 25. The national formulary 20: official from January 1, 2002.Rockville, MDUnited States Pharmacopeial Convention2002
    [Google Scholar]
  25. SaravananC. ThamizhmozhiM. KumarC.S. SudhakarC. RajeshB. KumarG.S. A novel and rapid HPTLC method for the analysis of citalopram hydrobromide in tablet dosage form–development and validation.Int. J. Adv. Sci. Res.20123016264
    [Google Scholar]
  26. GerykR. VozkaJ. KalíkováK. TesařováE. HPLC method for chiral separation and quantification of antidepressant citalopram and its precursor citadiol.Chromatographia2013769-1048348910.1007/s10337‑013‑2426‑6
    [Google Scholar]
  27. HegstadS. HavnenH. HellandA. FalchB.M.H. SpigsetO. Enantiomeric separation and quantification of citalopram in serum by ultra-high performance supercritical fluid chromatography-tandem mass spectrometry.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20171061-106210310910.1016/j.jchromb.2017.07.009 28715684
    [Google Scholar]
  28. MenegolaJ. SteppeM. SchapovalE.E.S. Development and validation of column high-performance liquid chromatographic and ultraviolet spectrophotometric methods for citalopram in tablets.J. AOAC Int.2008911525810.1093/jaoac/91.1.52 18376585
    [Google Scholar]
  29. RazaA. Development and application of spectrophotometric methods for the determination of citalopram hydrobromide in dosage forms.Chem. Pharm. Bull. (Tokyo)200654443243410.1248/cpb.54.432 16595940
    [Google Scholar]
  30. Nageswara RaoR. Narasa RajuA. NagarajuD. Development and validation of a liquid chromatographic method for determination of enantiomeric purity of citalopram in bulk drugs and pharmaceuticals.J. Pharm. Biomed. Anal.200641128028510.1016/j.jpba.2005.10.025 16321492
    [Google Scholar]
  31. BalaI. VermaS. HaqueA. SinghB. Determination of acceptable residual limit by using newly developed and validated RP-HPLC method for citalopram hydrobromide residues that swabbed from surfaces of pharmaceutical manufacturing equipment.International Journal of Drug Delivery Technology201991101410.25258/ijddt.9.1.2
    [Google Scholar]
  32. El-GindyA. EmaraS. MesbahM.K. HadadG.M. Liquid chromatography determination of citalopram enantiomers using beta-cyclodextrin as a chiral mobile phase additive.J. AOAC Int.20068916570 16512230
    [Google Scholar]
  33. BagheriH. KhalilianF. BabanezhadE. Es-haghiA. RouiniM.R. Modified solvent microextraction with back extraction combined with liquid chromatography-fluorescence detection for the determination of citalopram in human plasma.Anal. Chim. Acta2008610221121610.1016/j.aca.2008.01.047 18291131
    [Google Scholar]
  34. CaoX.Q. ChenX.Y. ZhangY.F. ZhongD.F. [Determination of citalopram in human plasma with LC-MS/MS method and its bioequivalent evaluation].Yao Xue Xue Bao2007424450454 17633218
    [Google Scholar]
  35. HauptD. Determination of citalopram enantiomers in human plasma by liquid chromatographic separation on a Chiral-AGP column.J. Chromatogr., Biomed. Appl.1996685229930510.1016/S0378‑4347(96)00177‑6 8953171
    [Google Scholar]
  36. RamuB. Method Development and Validation for the Determination of Citalopram Hbr by HPLC method in bulk drug and pharmaceutical dosage form.Pharm. Anal. Acta201785362
    [Google Scholar]
  37. RahmanA. HaqueM.R. RahmanM.M. RashidM.A. Development and validation of a chiral HPLC method for quantitative analysis of enantiomeric escitalopram.Dhaka University Journal of Pharmaceutical Sciences201816216517210.3329/dujps.v16i2.35253
    [Google Scholar]
  38. VaghelaB.K. RaoS.S. Development and validation of stability indicating RP-LC, short runtime method for the estimation of escitalopram in escitalopram dosage form.World J. Pharm. Res.2013210181030
    [Google Scholar]
  39. MahadikM.V. DhaneshwarS.R. KulkarniM.J. Application Of Stability Indicating HPTLC method for quantitative determination of Escitalopram Oxalate in pharmaceutical dosage form.Eurasian Journal of Analytical Chemistry.200722
    [Google Scholar]
  40. DhaneshwarS.R. MahadikM.V. KulkarniM.J. Column liquid chromatography-ultraviolet and column liquid chromatography/mass spectrometry evaluation of stress degradation behavior of escitalopram oxalate.J. AOAC Int.200992113814710.1093/jaoac/92.1.138 19382571
    [Google Scholar]
  41. SungthongB. JáčP. ScribaG.K.E. Development and validation of a capillary electrophoresis method for the simultaneous determination of impurities of escitalopram including the R-enantiomer.J. Pharm. Biomed. Anal.200846595996510.1016/j.jpba.2007.05.029 17629435
    [Google Scholar]
  42. DeepthiV. Bioanalytical Method Development and Validation for the Estimation of Escitalopram Oxalate in Human Plasma by Using RP-HPLC Method.,. Doctoral dissertation, KMCH College of Pharmacy, Coimbatore.
  43. SharmaS. RajpurohitH. BhandariA. ChoudharyV.R. JainT. SonwalC. Zero order spectrophotometric method for estimation of escitalopram oxalate in tablet formulations.J. Young Pharm.20102442042310.4103/0975‑1483.71626 21264107
    [Google Scholar]
  44. SamantaT. DeyS. SamalH.B. KumarD.B. MohantyD.L. BharK. RPHPLC method for the estimation of escitalopram in bulk and in dosage forms.Int. J. Chem. Res.201120111115
    [Google Scholar]
  45. SuneethaA. SundarB.S. A validated UV spectrophotometric method for estimation of Escitalopram Oxalate in bulk and pharmaceutical dosage forms.Asian J. Res. Chem201034935937
    [Google Scholar]
  46. RevathiS. RahamanS. PrathyushaV. MaheswariG. NeeharikaM. Development and validation of UV spectrophotometric method for the estimation of fluvoxamine maleate in bulk and pharmaceutical dosage form.Indo Am. J. Pharm. Res.2013363736380
    [Google Scholar]
  47. DarwishI.A. AmerS.M. AbdineH.H. Al-RayesL.I. Spectrofluorimetric determination of fluvoxamine in dosage forms and plasma via derivatization with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole.J. Fluoresc.200919346347110.1007/s10895‑008‑0433‑z 18949539
    [Google Scholar]
  48. GuptaK.R. Force degradation study and RP-HPLC method development for estimation of fluvoxamine maleate in tablet.Int. J. Pharm. Pharm. Sci.201576196202
    [Google Scholar]
  49. SouriE. DonyayiH. KhanihaR.A. Barazandeh TehraniM. A stability indicating HPLC method for the determination of fluvoxamine in pharmaceutical dosage forms.Iran. J. Pharm. Res.201514410591065 26664372
    [Google Scholar]
  50. UluS.T. Determination and validation of an LC method for fluvoxamine in tablets.Chromatographia2006643-416917310.1365/s10337‑006‑0016‑6
    [Google Scholar]
  51. UluS.T. HPLC method for the determination of fluvoxamine in human plasma and urine for application to pharmacokinetic studies.J. Pharm. Biomed. Anal.20074341444145110.1016/j.jpba.2006.11.005 17157470
    [Google Scholar]
  52. Abu-hassanA.A. OmarM.A. DerayeaS.M. Use of acetylacetone for nano‐level assay of fluvoxamine maleate in pure form and pharmaceutical formulation.Luminescence20203581360136510.1002/bio.3898 32519373
    [Google Scholar]
  53. NouwsH.P.A. Delerue-MatosC. BarrosA.A. RodriguesJ.A. Santos-SilvaA. Electroanalytical study of fluvoxamine.Anal. Bioanal. Chem.200538271662166810.1007/s00216‑005‑3310‑5 15983767
    [Google Scholar]
  54. DarwishI.A. AmerS.M. AbdineH.H. Al-RayesL.I. New spectrophotometric and fluorimetric methods for determination of fluoxetine in pharmaceutical formulations.Int. J. Anal. Chem.2009200925730610.1155/2009/257306
    [Google Scholar]
  55. VimalakkannanT. ReddyK.R. NaveenaP. Development and validation of new analytical method for the estimation of fluoxetine in bulk and dosage form by UV spectrophotometry.International Journal of Research in Pharmaceutical Chemistry and Analysis.201912363910.33974/ijrpca.v1i2.54
    [Google Scholar]
  56. El-dawyM.A. MabroukM.M. El-BarbaryF.A. Liquid chromatographic determination of fluoxetine.J. Pharm. Biomed. Anal.200230356157110.1016/S0731‑7085(02)00312‑6 12367681
    [Google Scholar]
  57. HessM. HöfnerG. WannerK.T. Development and validation of a rapid LC-ESI-MS/MS method for quantification of fluoxetine and its application to MS binding assays.Anal. Bioanal. Chem.2011400103505351510.1007/s00216‑011‑4997‑0 21516443
    [Google Scholar]
  58. MukhopadhyayA. PradhanK.K. SamantaR. Development and validation of an UV-spectrophotometric method for the estimation of fluoxetine in pure and tablet dosage forms.Int. J. Pharm. Sci. Res.2014583418
    [Google Scholar]
  59. KhanM.F. AhmadI. UllahZ. KhanM.I. AlahmarA.K. Development and validation of an automated solid-phase extraction-LC-MS/MS method for the bioanalysis of fluoxetine in human plasma.J. Adv. Pharm. Technol. Res.202112326727310.4103/japtr.JAPTR_308_20 34345606
    [Google Scholar]
  60. KumarA. JainS.K. Development and validation of uv-spectroscopy based stability indicating method for the determination of fluoxetine hydrochloride.Anal. Chem. Lett.20166689490210.1080/22297928.2016.1278180
    [Google Scholar]
  61. QueirozM.E.C. OliveiraE.B. BretonF. PawliszynJ. Immunoaffinity in-tube solid phase microextraction coupled with liquid chromatography–mass spectrometry for analysis of fluoxetine in serum samples.J. Chromatogr. A200711741-2727710.1016/j.chroma.2007.09.026 17936291
    [Google Scholar]
  62. Rodríguez FloresJ. Barzas NevadoJ.J. Contento SalcedoA.M. Cabello DíazM.P. Development and validation method for determination of Paroxetine and its metabolites by nonaqueous capillary electrophoresis in human urine. Experimental design for evaluating the ruggedness of the method.Electrophoresis200425345446210.1002/elps.200305686 14760637
    [Google Scholar]
  63. Vergi-AthanasiouN. Atta-PolitouJ. KoupparisM. SpyropoulosJ. Development and validation of an HPLC method, with fluorescence detection, for simultaneous determination of paroxetine and its metabolites in plasma.J. Liq. Chromatogr. Relat. Technol.200730111641165510.1080/10826070701224853
    [Google Scholar]
  64. ShahH.J. KundlikM.L. KakadA. PatelN.K. PandyaA. KhatriV. PrajapatiS. SubbaiahG. PatelC.N. Quantification of paroxetine in human plasma by liquid chromatography coupled with electrospray ionization tandem mass spectrometry.J. AOAC Int.201093114114910.1093/jaoac/93.1.141 20334176
    [Google Scholar]
  65. ÖnalA. ÖztunçA. Determination of paroxetine in human plasma by high-performance liquid chromatography using 7,7,8,8-tetracyanoquinodimethane as the derivatization reagent.Ther. Drug Monit.200628218018410.1097/01.ftd.0000185768.36878.49 16628128
    [Google Scholar]
  66. SankarPR. RojaC. RahulKS. PravallikaD. BabuPS. RaniKA. Development and validation of rapid RP-HPLC method for the determination of Paroxetine in bulk and pharmaceutical dosage form.Schol. Res. Libr.834352
    [Google Scholar]
  67. SharmaM.C. SharmaS.M. Validated simultaneous spectrophotometric estimation of paroxetine HCL bulk and tablet dosage form using ferric chloride.J. Optoelectro. Biomed. Mater.20102185189
    [Google Scholar]
  68. DarwishI.A. AbdineH.H. AmerS.M. Al-RayesL.I. Simple spectrophotometric method for determination of paroxetine in tablets using 1,2-naphthoquinone-4-sulphonate as a chromogenic reagent.Int. J. Anal. Chem.200920091810.1155/2009/237601 20107559
    [Google Scholar]
  69. JangaR.B. JalaS. Analytical method development and Validation for the estimation of paroxetine hydrochloride by UV Spectrophotometry and RP-HPLC in its pharmaceutical dosage form.World J. Pharmaceut. Res.20209823092321
    [Google Scholar]
  70. FerrettiR. GallinellaB. La TorreF. TurchettoL. Validated chiral high-performance liquid chromatographic method for the determination of trans-(−)-paroxetine and its enantiomer in bulk and pharmaceutical formulations.J. Chromatogr., Biomed. Appl.19987101-215716410.1016/S0378‑4347(98)00098‑X 9686883
    [Google Scholar]
  71. AgrawalN. Esteve-RomeroJ. DubeyN.P. DurgbanshiA. BoseD. Peris VicenteJ. Carda-BrochS. Determination of paroxetine in pharmaceutical preparations using HPLC with electrochemical detection.Open Analyt. Chem. J.201371510.2174/1874065001307010001
    [Google Scholar]
  72. KnoellerJ. Vogt-SchenkelR. BrettM.A. A simple and robust HPLC method for the determination of paroxetine in human plasma.J. Pharm. Biomed. Anal.1995134-563563810.1016/0731‑7085(95)01315‑C 9696579
    [Google Scholar]
  73. LambropoulosJ. SpanosG.A. LazaridisN.V. Method development and validation for the HPLC assay (potency and related substances) for 20 mg paroxetine tablets.J. Pharm. Biomed. Anal.199919579380210.1016/S0731‑7085(98)00309‑4 10698543
    [Google Scholar]
  74. NaidongW. EerkesA. Development and validation of a hydrophilic interaction liquid chromatography–tandem mass spectrometric method for the analysis of paroxetine in human plasma.Biomed. Chromatogr.2004181283610.1002/bmc.288 14872546
    [Google Scholar]
  75. NouwsH.P.A. Delerue-MatosC. BarrosA.A. RodriguesJ.A. Electroanalytical determination of paroxetine in pharmaceuticals.J. Pharm. Biomed. Anal.200642334134610.1016/j.jpba.2006.04.015 16765014
    [Google Scholar]
  76. MarellaV. LalithaK. PravallikaM. NalluriB.N. Novel RP-HPLC Method for the Determination of Paroxetine in Pure Form and in Tablet Formulation.Pharm. Methods201791454810.5530/phm.2018.1.9
    [Google Scholar]
  77. MassarotiP. CassianoN.M. DuarteL.F. CamposD.R. MarchiorettoM.A. BernasconiG. CalafattiS. BarrosF.A. MeurerE.C. PedrazzoliJ. Validation of a selective method for determination of paroxetine in human plasma by LC-MS/MS.J. Pharm. Pharm. Sci.200582340347 16124946
    [Google Scholar]
  78. VenkatachalamA. ChatterjeeV.S. Stability-indicating high performance thin layer chromatography determination of Paroxetine hydrochloride in bulk drug and pharmaceutical formulations.Anal. Chim. Acta2007598231231710.1016/j.aca.2007.07.014 17719907
    [Google Scholar]
  79. WalshM. BelalF. El-EnanyN. ElmansiH. Spectrofluorimetric Determination of Paroxetine HCl in Pharmaceuticals via Derivatization with 4-chloro-7- nitrobenzo-2-oxa-1,3-diazole (NBD-Cl).J. Fluoresc.201121110511210.1007/s10895‑010‑0693‑2 20593227
    [Google Scholar]
  80. HeL. FengF. WuJ. Determination of sertraline in human plasma by high-performance liquid chromatography-electrospray ionization mass spectrometry and method validation.J. Chromatogr. Sci.2005431053253510.1093/chromsci/43.10.532 16438795
    [Google Scholar]
  81. ZhangM. GaoF. CuiX. ZhangY. SunY. GuJ. SunY. Development and validation of an improved method for the quantitation of sertraline in human plasma using LC-MS-MS and its application to bioequivalence studies.J. Chromatogr. Sci.2011492899310.1093/chrsci/49.2.89 21223631
    [Google Scholar]
  82. WalashM.I. BelalF.F. El-EnanyN.M. ElmansiH. Development and validation of stability indicating method for determination of sertraline following ICH guidlines and its determination in pharmaceuticals and biological fluids.Chem. Cent. J.2011516110.1186/1752‑153X‑5‑61 21996025
    [Google Scholar]
  83. VenugopalK. Murali KrishnaN.V. RagalathaP. MounikaT. Analytical method development and validation of sertraline in pure form by using uv spectrophotometry.World J. Pharmaceut. Res.20176415941603
    [Google Scholar]
  84. BairagiS.H. GhoshR.S. Development and Validation of RP-HPLC method for the determination of sertraline in bulk drug and dosage form.World J. Pharm. Res.2020912361246
    [Google Scholar]
  85. ChenD. JiangS. ChenY. HuY. HPLC determination of sertraline in bulk drug, tablets and capsules using hydroxypropyl-β-cyclodextrin as mobile phase additive.J. Pharm. Biomed. Anal.200434123924510.1016/j.japna.2003.08.013 14738940
    [Google Scholar]
  86. ChenX. DuanX. DaiX. ZhongD. Development and validation of a liquid chromatographic/tandem mass spectrometric method for the determination of sertraline in human plasma.Rapid Commun. Mass Spectrom.200620162483248910.1002/rcm.2610 16862624
    [Google Scholar]
  87. FerrariniA. HuidobroA.L. PellatiF. BarbasC. Development and validation of a HPLC method for the determination of sertraline and three non-chiral related impurities.J. Pharm. Biomed. Anal.201053212212910.1016/j.jpba.2010.01.036 20138727
    [Google Scholar]
  88. HussainA. RahmanM.A. HussainM.S. MirzaM.A. IqbalZ. HarwanshR. SinghL.R. HPTLC method for analysis of sertraline in pure bulk drug and lipidic nano delivery system: a stress degradation studies.J. Liq. Chromatogr. Relat. Technol.201336670071610.1080/10826076.2012.673208
    [Google Scholar]
  89. JainD.S. SanyalM. SubbaiahG. PandeU.C. ShrivastavP. Rapid and sensitive method for the determination of sertraline in human plasma using liquid chromatography–tandem mass spectrometry (LC–MS/MS).J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20058291-2697410.1016/j.jchromb.2005.09.035 16233994
    [Google Scholar]
  90. KhraiweshA. PapoutsisI. NikolaouP. PistosC. SpiliopoulouC. AthanaselisS. Development and validation of an EI-GC/MS method for the determination of sertraline and its major metabolite desmethyl-sertraline in blood.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2011879252576258210.1016/j.jchromb.2011.07.015 21813341
    [Google Scholar]
  91. Al-NimryS.S. JaberM.A. Development and Validation of an HPLC-UV Method for Determination of Sertraline Hydrochloride and Application to Study Dissolution of Tablets.Lat. Am. J. Pharm.2017364665672
    [Google Scholar]
  92. MandrioliR. SaracinoM.A. FerrariS. BerardiD. KenndlerE. RaggiM.A. HPLC analysis of the second-generation antidepressant sertraline and its main metabolite N-desmethylsertraline in human plasma.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20068361-211611910.1016/j.jchromb.2006.03.026 16581317
    [Google Scholar]
  93. ChaudhariV. PatilS. PatilM.S. PawarS. Development and validation of RP-UHPLC method for determination of sertraline in bulk drug and dosage form.J. Anal. Bioanal. Tech.2022137469
    [Google Scholar]
  94. Mee KimK. Hwa JungB. Ho ChoiM. Soo WooJ. PaengK.J. Chul ChungB. Rapid and sensitive determination of sertraline in human plasma using gas chromatography–mass spectrometry.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2002769233333910.1016/S1570‑0232(02)00027‑2 11996499
    [Google Scholar]
  95. RatniaR. YadavV. KumarA. Method Development and Its Validation for Estimation of Sertraline Hydrochloride by Using UV Spectroscopy.Int. J. Pharma Res. Health Sci.20153616620
    [Google Scholar]
  96. RahmanM.A. HussainA. IqbalZ. MirzaM.A. Estimation of sertraline by chromatographic (HPLC-UV273 nm) technique under hydrolytic stress conditions.Pharm. Methods201232626710.4103/2229‑4708.103874 23781480
    [Google Scholar]
  97. RosettiA. FerrettiR. ZanittiL. CasulliA. VillaniC. CirilliR. Single-run reversed-phase HPLC method for determining sertraline content, enantiomeric purity, and related substances in drug substance and finished product.J. Pharm. Anal.202010661061610.1016/j.jpha.2020.11.002 33425455
    [Google Scholar]
  98. VadlamudiG.A. A novel validated UV spectrophotometric method for quantitative analysis of vilazodone in pharmaceutical dosage form.Der Pharmacia. Lettre201465296300
    [Google Scholar]
  99. RedasaniV.K. SancayJ.S. Development and Validation of Vilazodone Hcl by Rp-Hplc in bulk and in pharmaceutical formulation along with its application in dissolution.Int. J. Anayt. Techniq.20173117
    [Google Scholar]
  100. AgrawalN. MittalA. Ultrafast Bioanalytical Assay for Vilazodone Quantification in Human Plasma Using Vilazodone D8 Internal Standard by Uplc- Ms/ms. Research Square, 05 Dec2022
    [Google Scholar]
  101. YadavN. GoyalA. A validated spectrophotometric method for determination of Vilazodone Hydrochloride in pharmaceutical dosage form.Int. J. Curr. Pharm. Res.20169113210.22159/ijcpr.2017v9i1.16637
    [Google Scholar]
  102. IqbalM. EzzeldinE. Al-RashoodK.A. BajraiA.A. A simple and fast UHPLC-MS-MS assay for rapid determination of vilazodone in plasma sample.J. Anal. Toxicol.201539210611210.1093/jat/bku126 25404657
    [Google Scholar]
  103. El-BagaryR. HashemH. FouadM. TarekS. UPLC–MS-MS method for the determination of Vilazodone in human plasma: application to a pharmacokinetic study.J. Chromatogr. Sci.20165481365137210.1093/chromsci/bmw084 27209054
    [Google Scholar]
  104. PandaS.S. Ravi KumarV.V.B. BegS. SahuS.K. MuniS. Development and validation of a stability-indicating liquid chromatographic method for estimating vilazodone hydrochloride in pharmaceutical dosage form using quality by design.J. Chromatogr. Sci.201654101713172210.1093/chromsci/bmw127 27601040
    [Google Scholar]
  105. MaziC. KaraderiS. AriozF. Determination of UV-Vis spectrophotometric method of metal complexes stoichiometry between Cu (II) and Zn (II) with vilazodone hydrochloride.Int. J. Pharmaceut. Res. Allied Sci.201873146152
    [Google Scholar]
  106. FekryA.M. MohamedG.G. Abou AttiaF.M. IbrahimN.S. AzabS.M. A nanoparticle modified carbon paste sensor for electrochemical determination of the antidepressant agent vilazodone.J. Electroanal. Chem. 201984811330510.1016/j.jelechem.2019.113305
    [Google Scholar]
  107. DeviG.R. SaravananG. YunoosM. KrishnaM.S. A simple validated UV spectrophotometric method for the estimation of Vilazodone hydrochloride in pure and marketed formulation.Indian J. Res. Pharm. Biotechnol.201752164167
    [Google Scholar]
  108. RedasaniV.K. ChhajedC.F. PatilP.D. SuranaS.J. Development and validation of spectroscopic methods for the estimation of Vilazodone in bulk and in tablet formulation.J. Pharm. Res.2014131202210.18579/jpcrkc/2014/13/1/78404
    [Google Scholar]
  109. KualitiM.P. Spectrophotometric quantification of Vilazodone hydrochloride in pharmaceutical dosage form using quality by design approach.Malays. J. Anal. Sci.2015195920
    [Google Scholar]
  110. RavisankarP. GowthamiS. DevadasuC.H. Srinivasa BabuP. Venkateswar ReddyP. A Novel Validated RP HPLC Method for the Estimation of Vilazodone in Bulk and Pharmaceutical Dosage Form. Am.J. PharmTech Res.201445
    [Google Scholar]
  111. GhoshS. VenkateshS. RavikumarB.V. Development of stability indicating RP-HPLC method and validation for the estimation of vilazodone hydrochloride.Int. J. Pharm. Tech. Res.20157204211
    [Google Scholar]
/content/journals/cpa/10.2174/0115734129298467240718104217
Loading
/content/journals/cpa/10.2174/0115734129298467240718104217
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test