Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1570-1646
  • E-ISSN: 1875-6247

Abstract

Background

The application of molecular docking and Machine Learning (ML) calculations in evaluating peptide-based inhibitors allows for the systematic investigation of sequence-activity relationships, guiding the design of potent peptides with optimal binding characteristics.

Objective

This study aimed to screen short peptides using computational simulation to identify promising inhibitors against SARS-CoV-2 Mpro.

Methods

Short peptides were screened using molecular docking to identify promising candidates. The ML model was applied to confirm the docking outcome. The PreADME server was then used to analyze the HIA and toxicity of the peptides.

Results

168,420 short peptides were docked to identify 5 tetrapeptides with promising docking scores against SARS-CoV-2 Mpro including, PYPW, WWPF, WWPY, HYPW, and WYPF. The obtained results were also confirmed ML calculations. The analyses highlighted the importance of residues Thr190 and Asn142 that are crucial in the binding process. All of top-lead peptides adopt low toxicity and can be absorbed the human intestine. They can also cross the blood brain barier.

Conclusion

This work enhances our understanding of Mpro interactions and informs future ligand design, contributing to the development of therapeutic strategies against COVID-19.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646362106250320080525
2025-03-25
2025-06-19
Loading full text...

Full text loading...

References

  1. WHO Director-General's opening remarks at the media briefing on COVID-19 - 11 March 2020.2020Available from: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020
  2. JinZ. DuX. XuY. DengY. LiuM. ZhaoY. ZhangB. LiX. ZhangL. PengC. DuanY. YuJ. WangL. YangK. LiuF. JiangR. YangX. YouT. LiuX. YangX. BaiF. LiuH. LiuX. GuddatL.W. XuW. XiaoG. QinC. ShiZ. JiangH. RaoZ. YangH. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors.Nature2020582781128929310.1038/s41586‑020‑2223‑y32272481
    [Google Scholar]
  3. LvZ. CanoK.E. JiaL. DragM. HuangT.T. OlsenS.K. Targeting SARS-CoV-2 proteases for COVID-19 antiviral development.Front Chem.2022981916510.3389/fchem.2021.81916535186898
    [Google Scholar]
  4. JeongG.U. SongH. YoonG.Y. KimD. KwonY.C. Therapeutic strategies against COVID-19 and structural characterization of SARS-CoV-2: a review.Front. Microbiol.202011172310.3389/fmicb.2020.0172332765482
    [Google Scholar]
  5. UllrichS. NitscheC. The SARS-CoV-2 main protease as drug target.Bioorg. Med. Chem. Lett.2020301712737710.1016/j.bmcl.2020.12737732738988
    [Google Scholar]
  6. Abu-SalehA.A.A.A. AwadI.E. YadavA. PoirierR.A. Discovery of potent inhibitors for SARS-CoV-2's main protease by ligand-based/structure-based virtual screening, MD simulations, and binding energy calculations.Phys. Chem. Chem. Phys.20202240230992310610.1039/D0CP04326E33025993
    [Google Scholar]
  7. CoelhoC. GalloG. CamposC.B. HardyL. WürteleM. Biochemical screening for SARS-CoV-2 main protease inhibitors.PLoS One20201510e024007910.1371/journal.pone.024007933022015
    [Google Scholar]
  8. NguyenD.D. GaoK. ChenJ. WangR. WeiG.W. Unveiling the molecular mechanism of SARS-CoV-2 main protease inhibition from 137 crystal structures using algebraic topology and deep learning.Chem. Sci. (Camb.)20201144120361204610.1039/D0SC04641H34123218
    [Google Scholar]
  9. FrecerV. MiertusS. Antiviral agents against COVID-19: structure-based design of specific peptidomimetic inhibitors of SARS-CoV-2 main protease.RSC Advances20201066402444026310.1039/D0RA08304F35520818
    [Google Scholar]
  10. ZhangL. LinD. SunX. CurthU. DrostenC. SauerheringL. BeckerS. RoxK. HilgenfeldR. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors.Science2020368648940941210.1126/science.abb340532198291
    [Google Scholar]
  11. DaiW. ZhangB. JiangX.M. SuH. LiJ. ZhaoY. XieX. JinZ. PengJ. LiuF. LiC. LiY. BaiF. WangH. ChengX. CenX. HuS. YangX. WangJ. LiuX. XiaoG. JiangH. RaoZ. ZhangL.K. XuY. YangH. LiuH. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease.Science202036864971331133510.1126/science.abb448932321856
    [Google Scholar]
  12. TamN.M. PhamM.Q. HaN.X. NamP.C. PhungH.T.T. Computational estimation of potential inhibitors from known drugs against the main protease of SARS-CoV-2.RSC Advances20211128174781748610.1039/D1RA02529E35479689
    [Google Scholar]
  13. FuL. YeF. FengY. YuF. WangQ. WuY. ZhaoC. SunH. HuangB. NiuP. SongH. ShiY. LiX. TanW. QiJ. GaoG.F. Both Boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease.Nat. Commun.2020111441710.1038/s41467‑020‑18233‑x32887884
    [Google Scholar]
  14. KatreS.G. AsnaniA.J. PratyushK. SakharkarN.G. BhopeA.G. SawarkarK.T. NimbekarV.S. Review on development of potential inhibitors of SARS-CoV-2 main protease (MPro).Future Journal of Pharmaceutical Sciences2022813610.1186/s43094‑022‑00423‑735756354
    [Google Scholar]
  15. Agost-BeltránL. de la Hoz-RodríguezS. Bou-IserteL. RodríguezS. Fernández-de-la-PradillaA. GonzálezF.V. Advances in the development of SARS-CoV-2 Mpro inhibitors.Molecules2022278252310.3390/molecules2708252335458721
    [Google Scholar]
  16. TamN.M. NguyenT.H. PhamM.Q. HongN.D. TungN.T. VuV.V. QuangD.T. NgoS.T. Upgrading nirmatrelvir to inhibit SARS-CoV-2 Mpro via DeepFrag and free energy calculations.J. Mol. Graph. Model.202312410853510.1016/j.jmgm.2023.10853537295158
    [Google Scholar]
  17. NgoS.T. NguyenT.H. TungN.T. VuV.V. PhamM.Q. MaiB.K. Characterizing the ligand-binding affinity toward SARS-CoV-2 Mpro via physics- and knowledge-based approaches.Phys. Chem. Chem. Phys.20222448292662927810.1039/D2CP04476E36449268
    [Google Scholar]
  18. NgoS.T. NguyenT.H. TungN.T. MaiB.K. Insights into the binding and covalent inhibition mechanism of PF-07321332 to SARS-CoV-2 M pro.RSC Advances20221263729373710.1039/D1RA08752E35425393
    [Google Scholar]
  19. ZhaoY. FangC. ZhangQ. ZhangR. ZhaoX. DuanY. WangH. ZhuY. FengL. ZhaoJ. ShaoM. YangX. ZhangL. PengC. YangK. MaD. RaoZ. YangH. Crystal structure of SARS-CoV-2 main protease in complex with protease inhibitor PF-07321332.Protein Cell202213968969310.1007/s13238‑021‑00883‑234687004
    [Google Scholar]
  20. OwenD.R. AllertonC.M.N. AndersonA.S. AschenbrennerL. AveryM. BerrittS. BorasB. CardinR.D. CarloA. CoffmanK.J. DantonioA. DiL. EngH. FerreR. GajiwalaK.S. GibsonS.A. GreasleyS.E. HurstB.L. KadarE.P. KalgutkarA.S. LeeJ.C. LeeJ. LiuW. MasonS.W. NoellS. NovakJ.J. ObachR.S. OgilvieK. PatelN.C. PetterssonM. RaiD.K. ReeseM.R. SammonsM.F. SathishJ.G. SinghR.S.P. SteppanC.M. StewartA.E. TuttleJ.B. UpdykeL. VerhoestP.R. WeiL. YangQ. ZhuY. An oral SARS-CoV-2 M pro inhibitor clinical candidate for the treatment of COVID-19.Science202137465751586159310.1126/science.abl478434726479
    [Google Scholar]
  21. DrożdżalS. RosikJ. LechowiczK. MachajF. SzostakB. PrzybycińskiJ. LorzadehS. KotfisK. GhavamiS. ŁosM.J. An update on drugs with therapeutic potential for SARS-CoV-2 (COVID-19) treatment.Drug Resist. Updat.20215910079410.1016/j.drup.2021.10079434991982
    [Google Scholar]
  22. WójcikP. BerlickiŁ. Peptide-based inhibitors of protein–protein interactions.Bioorg. Med. Chem. Lett.201626370771310.1016/j.bmcl.2015.12.08426764190
    [Google Scholar]
  23. DuQ.S. XieN.Z. HuangR.B. Recent development of peptide drugs and advance on theory and methodology of peptide inhibitor design.Med. Chem.201511323524710.2174/157340641166614122916335525548931
    [Google Scholar]
  24. CitarellaA. ScalaA. PipernoA. MicaleN. SARS-CoV-2 Mpro: a potential target for peptidomimetics and small-molecule inhibitors.Biomolecules202111460710.3390/biom1104060733921886
    [Google Scholar]
  25. BanerjeeR. PereraL. TillekeratneL.M.V. Potential SARS-CoV-2 main protease inhibitors.Drug Discov. Today202126380481610.1016/j.drudis.2020.12.00533309533
    [Google Scholar]
  26. Johansen-LeeteJ. UllrichS. FryS.E. FrkicR. BeddingM.J. AggarwalA. AshhurstA.S. EkanayakeK.B. MahawaththaM.C. SasiV.M. LuedtkeS. FordD.J. O’DonoghueA.J. PassiouraT. LaranceM. OttingG. TurvilleS. JacksonC.J. NitscheC. PayneR.J. Antiviral cyclic peptides targeting the main protease of SARS-CoV-2.Chem. Sci. (Camb.)202213133826383610.1039/D1SC06750H35432913
    [Google Scholar]
  27. LeeD. JungH.G. ParkD. BangJ. CheongD.Y. JangJ.W. KimY. LeeS. LeeS.W. LeeG. KimY.H. HongJ.H. HwangK.S. LeeJ.H. YoonD.S. Bioengineered amyloid peptide for rapid screening of inhibitors against main protease of SARS-CoV-2.Nat. Commun.2024151210810.1038/s41467‑024‑46296‑738453923
    [Google Scholar]
  28. ChanH.T.H. MoesserM.A. WaltersR.K. MallaT.R. TwidaleR.M. JohnT. DeeksH.M. Johnston-WoodT. MikhailovV. SessionsR.B. DawsonW. SalahE. LukacikP. Strain-DamerellC. OwenC.D. NakajimaT. ŚwiderekK. LodolaA. MolinerV. GlowackiD.R. SpencerJ. WalshM.A. SchofieldC.J. GenoveseL. ShoemarkD.K. MulhollandA.J. DuarteF. MorrisG.M. Discovery of SARS-CoV-2 M pro peptide inhibitors from modelling substrate and ligand binding.Chem. Sci. (Camb.)20211241136861370310.1039/D1SC03628A34760153
    [Google Scholar]
  29. KreutzerA.G. KrumbergerM. DiessnerE.M. ParrochaC.M.T. MorrisM.A. GuaglianoneG. ButtsC.T. NowickJ.S. A cyclic peptide inhibitor of the SARS-CoV-2 main protease.Eur. J. Med. Chem.202122111353010.1016/j.ejmech.2021.11353034023738
    [Google Scholar]
  30. NgoS.T. TamN.M. PhamM.Q. NguyenT.H. Benchmark of Popular Free Energy Approaches Revealing the Inhibitors Binding to SARS-CoV-2 Mpro.J. Chem. Inf. Model.20216152302231210.1021/acs.jcim.1c0015933829781
    [Google Scholar]
  31. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.2133419499576
    [Google Scholar]
  32. AudieJ. BoydC. The synergistic use of computation, chemistry and biology to discover novel peptide-based drugs: the time is right.Curr. Pharm. Des.201016556758210.2174/13816121079036142519929848
    [Google Scholar]
  33. KilburgD. GallicchioE. Recent advances in computational models for the study of protein–peptide interactions.Adv. Protein Chem. Struct. Biol.2016105275710.1016/bs.apcsb.2016.06.00227567483
    [Google Scholar]
  34. MauryaN.S. KushwahaS. ManiA. Recent advances and computational approaches in peptide drug discovery.Curr. Pharm. Des.201925313358336610.2174/138161282566619091116110631544714
    [Google Scholar]
  35. WangH. DawberR.S. ZhangP. WalkoM. WilsonA.J. WangX. Peptide-based inhibitors of protein–protein interactions: Biophysical, structural and cellular consequences of introducing a constraint.Chem. Sci. (Camb.)202112175977599310.1039/D1SC00165E33995995
    [Google Scholar]
  36. DelaunayM. Ha-DuongT. Computational Tools and Strategies to Develop Peptide-Based Inhibitors of Protein-Protein Interactions.Computational Peptide Science: Methods and Protocols. SimonsonT. New York, NYSpringer US202220523010.1007/978‑1‑0716‑1855‑4_11
    [Google Scholar]
  37. SinghE. KhanR.J. JhaR.K. AmeraG.M. JainM. SinghR.P. MuthukumaranJ. SinghA.K. A comprehensive review on promising anti-viral therapeutic candidates identified against main protease from SARS-CoV-2 through various computational methods.J. Genet. Eng. Biotechnol.20201816910.1186/s43141‑020‑00085‑z33141358
    [Google Scholar]
  38. Al-KhafajiK. Al-DuhaidahawiD. Taskin TokT. Using integrated computational approaches to identify safe and rapid treatment for SARS-CoV-2.J. Biomol. Struct. Dyn.20213993387339532364041
    [Google Scholar]
  39. NgoS.T. Quynh Anh PhamN. Thi LeL. PhamD.H. VuV.V. Computational Determination of Potential Inhibitors of SARS-CoV-2 Main Protease.J. Chem. Inf. Model.202060125771578010.1021/acs.jcim.0c0049132530282
    [Google Scholar]
  40. PhamT.T.D. ThaiQ.M. TuyenP.N.K. PhungH.T.T. NgoS.T. Computational discovery of tripeptide inhibitors targeting monkeypox virus A42R profilin-like protein.J. Mol. Graph. Model.202413210883710.1016/j.jmgm.2024.10883739098150
    [Google Scholar]
  41. AndiB. KumaranD. KreitlerD.F. SoaresA.S. KeereetaweepJ. JakoncicJ. LazoE.O. ShiW. FuchsM.R. SweetR.M. ShanklinJ. AdamsP.D. SchmidtJ.G. HeadM.S. McSweeneyS. Hepatitis C virus NS3/4A inhibitors and other drug-like compounds as covalent binders of SARS-CoV-2 main protease.Sci. Rep.20221211219710.1038/s41598‑022‑15930‑z35842458
    [Google Scholar]
  42. MaierJ.A. MartinezC. KasavajhalaK. WickstromL. HauserK.E. SimmerlingC. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB.J. Chem. Theory Comput.20151183696371310.1021/acs.jctc.5b0025526574453
    [Google Scholar]
  43. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.2125619399780
    [Google Scholar]
  44. ForliS. HueyR. PiqueM.E. SannerM.F. GoodsellD.S. OlsonA.J. Computational protein–ligand docking and virtual drug screening with the AutoDock suite.Nat. Protoc.201611590591910.1038/nprot.2016.05127077332
    [Google Scholar]
  45. GasteigerJ. MarsiliM. A new model for calculating atomic charges in molecules.Tetrahedron Lett.197819343181318410.1016/S0040‑4039(01)94977‑9
    [Google Scholar]
  46. GasteigerJ. MarsiliM. Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges.Tetrahedron198036223219322810.1016/0040‑4020(80)80168‑2
    [Google Scholar]
  47. TanchukV.Y. TaninV.O. VovkA.I. PodaG. A New, Improved Hybrid Scoring Function for Molecular Docking and Scoring Based on AutoDock and AutoDock Vina.Chem. Biol. Drug Des.201687461862510.1111/cbdd.1269726643167
    [Google Scholar]
  48. NguyenN.T. NguyenT.H. PhamT.N.H. HuyN.T. BayM.V. PhamM.Q. NamP.C. VuV.V. NgoS.T. Autodock Vina Adopts More Accurate Binding Poses but Autodock4 Forms Better Binding Affinity.J. Chem. Inf. Model.202060120421110.1021/acs.jcim.9b0077831887035
    [Google Scholar]
  49. NguyenT.H. TamN.M. TuanM.V. ZhanP. VuV.V. QuangD.T. NgoS.T. Searching for potential inhibitors of SARS-COV-2 main protease using supervised learning and perturbation calculations.Chem. Phys.202356411170910.1016/j.chemphys.2022.11170936188488
    [Google Scholar]
  50. ChenT. GuestrinC. XGBoost: A Scalable Tree Boosting System.KDD ’16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining20167859410.1145/2939672.2939785
    [Google Scholar]
  51. BergstraJ. YaminsD. CoxD. Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures.Proceedings of the 30th International Conference on Machine Learning201311523
    [Google Scholar]
  52. SchrödingerLLC P The PyMOL molecular graphics system.2010Available from: https://www.scirp.org/reference/ReferencesPapers?ReferenceID=1571978
  53. LeeS.K. LeeI.H. KimH.J. ChangG.S. ChungJ.E. NoK.T. The PreADME approach: Web-based program for rapid prediction of physico-chemical, drug absorption and drug-like properties.EuroQSAR 2002 Designing Drugs and Crop Protectants: Processes, Problems and Solutions.Blackwell PublishingMaldenh, MA2003418420
    [Google Scholar]
  54. HuQ. XiongY. ZhuG.H. ZhangY.N. ZhangY.W. HuangP. GeG.B. The SARS‐CoV‐2 main protease (M pro ): Structure, function, and emerging therapies for COVID‐19.MedComm202233e15110.1002/mco2.15135845352
    [Google Scholar]
  55. BackmanT.W.H. CaoY. GirkeT. ChemMine tools: An online service for analyzing and clustering small molecules.Nucleic Acids Res.201139Web Server issueW486W49110.1093/nar/gkr32021576229
    [Google Scholar]
/content/journals/cp/10.2174/0115701646362106250320080525
Loading
/content/journals/cp/10.2174/0115701646362106250320080525
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): ADME; COVID-19; inhibitors; Mpro; SARS-CoV-2; tetrapeptides
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test