Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1570-1646
  • E-ISSN: 1875-6247

Abstract

Background

Recent investigation revealed that arbuscular mycorrhizal fungi (AMF) brought major changes in the transcriptome of non-host plant- Arabidopsis thaliana (A. thaliana) within the AM network constructed by the hyphae of AMF connecting multiple plant roots. Although there is enormous omics data available for A. thaliana, most AM-related information has been restricted to transcriptome studies.

Objective

We aimed to provide a comprehensive toolset for analyzing AM signaling-driven molecular interactions in A. thaliana.

Methods

We developed ten modules: 1) Epigenetic regulation in protein–nucleic acid interactions (PNI), 2) DNA structure and metal binding profiles, 3) Transcription factor (TF) binding profiles, 4) Protein domain–domain interactions (DDI), 5) Profiling of protein-metal and protein-ligand interactions with complex structures (PLP) based on alignment of similar protein structures, 6) Carbohydrate-lipid-protein interactions (CLP) – analysis of lipidome-proteome interactions, N-glycosylation/glycan structure data, and carbohydrate-active enzyme/substrate predictions, 7) Metabolic pathway analysis, 8) Multiple omics association studies, 9) Gene Ontology (GO) and Plant Ontology (PO) analysis, and 10) Medicago transcriptome and epigenetic information.

Results

For the program demonstration, we generated various comparative datasets based on differentially expressed genes (DEGs) from Arabidopsis thaliana (A. thaliana) of non-arbuscular mycorrhizal (non-AM) and arbuscular mycorrhizal (AM) phenotypes, as well as DEGs from Medicago truncatula (M. truncatula). These datasets were analyzed using statistical methods and artificial neural networks. The program demonstrated a range of advantages in studying molecular interactions related to AM symbiosis.

Conclusion

To aid in the inference of AM-driven changes and the identification of AM-derived molecules during AM symbiosis, the program offers a user-friendly platform for generating datasets with key features, which can then be integrated with various downstream statistical methods. The program code is freely available for download at www.artfoundation.kr.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646360927250129095105
2025-02-04
2025-07-08
Loading full text...

Full text loading...

References

  1. KumarV. KumarP. A review on feasibility of phytoremediation technology for heavy metals removal.Archives of Agriculture and Environmental Science20194332634110.26832/24566632.2019.0403011
    [Google Scholar]
  2. YunH.S. KwaaitaalM. KatoN. YiC. ParkS. SatoM.H. Schulze-LefertP. KwonC. Requirement of vesicle-associated membrane protein 721 and 722 for sustained growth during immune responses in Arabidopsis.Mol. Cells201335648148810.1007/s10059‑013‑2130‑2 23661365
    [Google Scholar]
  3. CosmeM. FernándezI. Van der HeijdenM.G.A. PieterseC.M.J. Non-mycorrhizal plants: The exceptions that prove the rule.Trends Plant Sci.201823757758710.1016/j.tplants.2018.04.004 29753631
    [Google Scholar]
  4. FernándezI. CosmeM. StringlisI.A. YuK. de JongeR. van WeesS.M. PozoM.J. PieterseC.M.J. van der HeijdenM.G.A. Molecular dialogue between arbuscular mycorrhizal fungi and the nonhost plant Arabidopsis thaliana switches from initial detection to antagonism.New Phytol.2019223286788110.1111/nph.15798 30883790
    [Google Scholar]
  5. HornsteinE.D. CharlesM. FranklinM. EdwardsB. VintilaS. KleinerM. SederoffH. Re-engineering a lost trait: IPD3, a master regulator of arbuscular mycorrhizal symbiosis.bioRxiv202310.1101/2023.03.06.531368
    [Google Scholar]
  6. YamazakiA. BattenbergK. ShimodaY. HayashiM. NDR1/HIN1-Like protein 13 interacts with symbiotic receptor kinases and regulates nodulation in Lotus japonicus.Mol. Plant Microbe Interact.202235984585610.1094/MPMI‑11‑21‑0263‑R 36107197
    [Google Scholar]
  7. NarusakaY. ShinyaT. NarusakaM. MotoyamaN. ShimadaH. MurakamiK. ShibuyaN. Presence of LYM2 dependent but CERK1 independent disease resistance in Arabidopsis.Plant Signal. Behav.201389e2534510.4161/psb.25345 23803749
    [Google Scholar]
  8. QuetglasS. LevequeC. MiquelisR. SatoK. SeagarM. Ca 2+ -dependent regulation of synaptic SNARE complex assembly via a calmodulin- and phospholipid-binding domain of synaptobrevin.Proc. Natl. Acad. Sci. USA200097179695970010.1073/pnas.97.17.9695 10944231
    [Google Scholar]
  9. HollandS. RothR. Extracellular vesicles in the arbuscular mycorrhizal symbiosis: Current understanding and future perspectives.Mol. Plant Microbe Interact.202336423524410.1094/MPMI‑09‑22‑0189‑FI 36867731
    [Google Scholar]
  10. LiuY. XiongZ. WuW. LingH.Q. KongD. Iron in the symbiosis of plants and microorganisms.Plants20231210195810.3390/plants12101958 37653875
    [Google Scholar]
  11. RichM.K. NouriE. CourtyP.E. ReinhardtD. Diet of arbuscular mycorrhizal fungi: Bread and butter?Trends Plant Sci.201722865266010.1016/j.tplants.2017.05.008 28622919
    [Google Scholar]
  12. GaoM.Y. ChenX.W. HuangW.X. WuL. YuZ.S. XiangL. MoC.H. LiY.W. CaiQ.Y. WongM.H. LiH. Cell wall modification induced by an arbuscular mycorrhizal fungus enhanced cadmium fixation in rice root.J. Hazard. Mater.202141612589410.1016/j.jhazmat.2021.125894 34492832
    [Google Scholar]
  13. LomizeM.A. LomizeA.L. PogozhevaI.D. MosbergH.I. OPM: orientations of proteins in membranes database.Bioinformatics200622562362510.1093/bioinformatics/btk023 16397007
    [Google Scholar]
  14. FuL.Y. ZhuT. ZhouX. YuR. HeZ. ZhangP. WuZ. ChenM. KaufmannK. ChenD. ChIP-Hub provides an integrative platform for exploring plant regulome.Nat. Commun.2022131341310.1038/s41467‑022‑30770‑1 35701419
    [Google Scholar]
  15. Castro-MondragonJ.A. Riudavets-PuigR. RauluseviciuteI. Berhanu LemmaR. TurchiL. Blanc-MathieuR. LucasJ. BoddieP. KhanA. Manosalva PérezN. FornesO. LeungT.Y. AguirreA. HammalF. SchmelterD. BaranasicD. BallesterB. SandelinA. LenhardB. JASPAR 2022: The 9th release of the open-access database of transcription factor binding profiles.Nucleic Acids Res.202250D16510.1093/nar/gkab1113
    [Google Scholar]
  16. LiuY. TianT. ZhangK. YouQ. YanH. ZhaoN. YiX. XuW. SuZ. PCSD: A plant chromatin state database.Nucleic Acids Res.201846D1D1157D116710.1093/nar/gkx919 29040761
    [Google Scholar]
  17. TanG. LenhardB. TFBSTools: An R/bioconductor package for transcription factor binding site analysis.Bioinformatics201632101555155610.1093/bioinformatics/btw024 26794315
    [Google Scholar]
  18. HigoK. UgawaY. IwamotoM. HigoH. PLACE: A database of plant cis-acting regulatory DNA nlms.Nucleic Acids Res.199826135835910.1093/nar/26.1.358 9399873
    [Google Scholar]
  19. KikinO. D’AntonioL. BaggaP.S. QGRS Mapper: A webbased server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res.,200634Web ServerW676W68210.1093/nar/gkl25316845096
    [Google Scholar]
  20. AptekmannA.A. BuongiornoJ. GiovannelliD. GlamoclijaM. FerreiroD.U. BrombergY. Mebipred: Identifying metal-binding potential in protein sequence.Bioinformatics202238143532354010.1093/bioinformatics/btac358 35639953
    [Google Scholar]
  21. BentsenM. HegerV. SchultheisH. KuenneC. LoosoM. TF-COMB - Discovering grammar of transcription factor binding sites.Comput. Struct. Biotechnol. J.20222040404051
    [Google Scholar]
  22. MoscaR. CéolA. SteinA. OlivellaR. AloyP. 3did: A catalog of domain-based interactions of known three-dimensional structure.Nucleic Acids Res.201442D1D374D37910.1093/nar/gkt887 24081580
    [Google Scholar]
  23. JumperJ. EvansR. PritzelA. GreenT. FigurnovM. RonnebergerO. TunyasuvunakoolK. BatesR. ŽídekA. Highly accurate protein structure prediction with AlphaFold.Nature2021596787358358910.1038/s41586‑021‑03819‑2
    [Google Scholar]
  24. van KempenM. KimS. TumescheitC. MirditaM. LeeJ. GilchristC.L.M. SödingJ. SteineggerM. Fast and accurate protein structure search with Foldseek.Nat. Biotechnol.2023422243 37156916
    [Google Scholar]
  25. BermanH.M. WestbrookJ. FengZ. GillilandG. BhatT.N. WeissigH. ShindyalovI.N. BourneP.E. The protein data bank.Nucleic Acids Res.2000281235 10592235
    [Google Scholar]
  26. WangR. FangX. LuY. WangS. The PDBbind database: Collection of binding affinities for protein-ligand complexes with known three-dimensional structures.J. Med. Chem.200447122977298010.1021/jm030580l 15163179
    [Google Scholar]
  27. BahammouD. RecorbetG. CassimA.M. RobertF. BalliauT. DelftP.V. Revealing the lipidome and proteome of Arabidopsis thaliana plasma membrane.bioRxiv2023.05.14.54064310.1101/2023.05.14.540643
    [Google Scholar]
  28. YamadaI. ShiotaM. ShinmachiD. OnoT. TsuchiyaS. HosodaM. FujitaA. AokiN.P. WatanabeY. FujitaN. AngataK. KajiH. NarimatsuH. OkudaS. Aoki-KinoshitaK.F. The GlyCosmos portal: A unified and comprehensive web resource for the glycosciences.Nat. Methods202017764965010.1038/s41592‑020‑0879‑8 32572234
    [Google Scholar]
  29. YinY. MaoX. YangJ. ChenX. MaoF. XuY. dbCAN: A web resource for automated carbohydrate-active enzyme annotation.Nucleic Acids Res.201240W1W445W45110.1093/nar/gks479 22645317
    [Google Scholar]
  30. FinnR.D. ClementsJ. EddyS.R. HMMER web server: Interactive sequence similarity searching.Nucleic Acids Res.201139W2910.1093/nar/gkr367
    [Google Scholar]
  31. HawkinsC. GinzburgD. ZhaoK. DwyerW. XueB. XuA. RiceS. ColeB. PaleyS. KarpP. RheeS.Y. Plant metabolic network 15: A resource of genome-wide metabolism databases for 126 plants and algae.J. Integr. Plant Biol.202163111888190510.1111/jipb.13163 34403192
    [Google Scholar]
  32. LanY. SunR. OuyangJ. DingW. KimM.J. WuJ. LiY. ShiT. AtMAD: Arabidopsis thaliana multi-omics association database.Nucleic Acids Res.202149D1D1445D145110.1093/nar/gkaa1042 33219693
    [Google Scholar]
  33. TianH. LiY. WangC. XuX. ZhangY. ZebQ. ZicolaJ. FuY. TurckF. LiL. LuZ. LiuL. Photoperiod-responsive changes in chromatin accessibility in phloem companion and epidermis cells of Arabidopsis leaves.Plant Cell202133347549110.1093/plcell/koaa043 33955490
    [Google Scholar]
  34. SerenÜ. GrimmD. FitzJ. WeigelD. NordborgM. BorgwardtK. KorteA. AraPheno: A public database for Arabidopsis thaliana phenotypes.Nucleic Acids Res.201745D1D1054D105910.1093/nar/gkw986 27924043
    [Google Scholar]
  35. BerardiniT.Z. ReiserL. LiD. MezheritskyY. MullerR. StraitE. HualaE. The arabidopsis information resource: Making and mining the “gold standard” annotated reference plant genome.Genesis201553847448510.1002/dvg.22877 26201819
    [Google Scholar]
  36. SzklarczykD. GableA.L. LyonD. JungeA. WyderS. Huerta-CepasJ. SimonovicM. DonchevaN.T. MorrisJ.H. BorkP. JensenL.J. MeringC. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets.Nucleic Acids Res.201947D1D607D61310.1093/nar/gky1131 30476243
    [Google Scholar]
  37. TeamR.C. R A language and environment for statistical computing.2022https://www.R-project.org/
    [Google Scholar]
  38. BashirK. RasheedS. KobayashiT. SekiM. NishizawaN.K. Regulating subcellular metal homeostasis: The key to crop improvement.Front. Plant Sci.20167119210.3389/fpls.2016.01192 27547212
    [Google Scholar]
  39. WuQ.S. SilvaF.S.B. HijriM. KapoorR. Editorial: Arbuscular mycorrhiza-mediated augmentation of plant secondary metabolite production.Front. Plant Sci.202314115090010.3389/fpls.2023.1150900 36860900
    [Google Scholar]
  40. BlakneyA.J.C. BainardL.D. St-ArnaudM. HijriM. Soil chemistry and soil history significantly structure oomycete communities in Brassicaceae crop rotations.Appl. Environ. Microbiol.2023891e01314e0132210.1128/aem.01314‑22 36629416
    [Google Scholar]
  41. HijriM. Microbial-based plant biostimulants.Microorganisms202311368610.3390/microorganisms11030686 36985259
    [Google Scholar]
  42. ZambelliB. MusianiF. CiurliS. Metal ion-mediated DNA-protein interactions.Met. Ions Life Sci.20121013517010.1007/978‑94‑007‑2172‑2_5 22210338
    [Google Scholar]
  43. SongW.J. SontzP.A. AmbroggioX.I. TezcanF.A. Metals in protein-protein interfaces.Annu. Rev. Biophys.201443140943110.1146/annurev‑biophys‑051013‑023038 24773016
    [Google Scholar]
  44. ZhuH. KimD.J. BaekJ.M. ChoiH.K. EllisL.C. KüesterH. McCombieW.R. PengH.M. CookD.R. Syntenic relationships between Medicago truncatula and Arabidopsis reveal extensive divergence of genome organization.Plant Physiol.200313131018102610.1104/pp.102.016436 12644654
    [Google Scholar]
  45. Reaction classification and ontology.https://www.genome.jp/reaction/
  46. SulaimanH.Y. LiuB. KaurilindE. NiinemetsÜ. Phloem-feeding insect infestation antagonizes volatile organic compound emissions and enhances heat stress recovery of photosynthesis in Origanum vulgare.Environ. Exp. Bot.202118910455110.1016/j.envexpbot.2021.104551
    [Google Scholar]
  47. FrankE. HallM.A. WittenI.H. The WEKA Workbench.In: Data Mining: Practical Machine Learning Tools and Techniques.Morgan Kaufmann2016
    [Google Scholar]
  48. FisherD.H. Knowledge acquisition via incremental conceptual clustering.Mach. Learn.19872213917210.1007/BF00114265
    [Google Scholar]
  49. GennariJ.H. LangleyP. FisherD. Models of incremental concept formation.Artif. Intell.1989401-3116110.1016/0004‑3702(89)90046‑5
    [Google Scholar]
  50. McCallumA. NigamK. UngarL.H. Efficient clustering of high dimensional data sets with application to reference matching.Proceedings of the Sixth ACM SIGKDD Internation Conference on Knowledge Discovery and Data Mining ACM-SIAM Symposium on Discrete AlgorithmsBoston, Massachusetts, USA200016917810.1145/347090.347123
    [Google Scholar]
  51. BreimanL. Random forests.Mach. Learn.200145153210.1023/A:1010933404324
    [Google Scholar]
  52. HohnjecN. Czaja-HasseL.F. HogekampC. KüsterH. Pre-announcement of symbiotic guests: Transcriptional reprogramming by mycorrhizal lipochitooligosaccharides shows a strict co-dependency on the GRAS transcription factors NSP1 and RAM1.BMC Genomics201516199410.1186/s12864‑015‑2224‑7 26597293
    [Google Scholar]
  53. FisherK. TurnerS. PXY, a receptor-like kinase essential for maintaining polarity during plant vascular-tissue development.Curr. Biol.200717121061106610.1016/j.cub.2007.05.049 17570668
    [Google Scholar]
  54. ZhangQ. WangS. XieQ. XiaY. LuL. WangM. WangG. LongS. CaiY. XuL. WangE. JiangY. Control of arbuscule development by a transcriptional negative feedback loop in Medicago.Nat. Commun.2023141574310.1038/s41467‑023‑41493‑2 37717076
    [Google Scholar]
/content/journals/cp/10.2174/0115701646360927250129095105
Loading
/content/journals/cp/10.2174/0115701646360927250129095105
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test