Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1570-1646
  • E-ISSN: 1875-6247

Abstract

Background

study plays an important role in bioinformatics. It is a fast-expanding field to modelling, predicting and explaining biological activity at the molecular level using computational methods. Peroxidases are heme or non-heme-containing key antioxidant enzyme belonging to the oxidoreductase family. They can bioremediate the different environmental pollutants such as dioxins, petroleum hydrocarbons, synthetic dyes, herbicides, pesticides, chlorinated hydrocarbons, different phenolic and nonphenolic compounds . The current work aims to extend knowledge among researchers in better understanding structure of peroxidase purified from by analysing it’s physicochemical properties, secondary structure prediction, and 3D modelling of protein sequences and its validation using a variety of conventional computational methods.

Objective

Using bioinformatics techniques, it is feasible to figure out the relationship between sequence, structure, and function using enzyme protein sequences. To improve catalytic efficacy, thermostability, structure prediction, and validation, studies of the protein sequences of several industrially important enzymes have been performed recently.

Methods

The physical and chemical parameters of radish peroxidase was analysed by using protparam tool-Expasy. SOPMA, SWISS MODEL, PROCHECK, ERRAT and Verify3D tools were used for structural analysis and validation of peroxidase protein sequence of . The Molecular Evolutionary Genetics Analysis (MEGA 11) tool was used to align the protein sequences automatically and manually using the query sequence and peroxidase from various plant sources. Interaction of Radish peroxidase with the different organic substrates like guaiacol, o-cresol, m-cresol, p-cresol, hydroquinone, catechol, resorcinol, benzaldehyde and aniline were analysed by molecular docking technique.

Results

This research gave critical information regarding the properties and functioning of peroxidase. The computational molecular weight for the query protein sequence of radish peroxidase was found to be 37.503 KDa. The analysis of secondary structure prediction using SOPMA tool revealed that random coil (Cc) was present in the highest percentage as 39.18%. From the instability index (II) value and the aliphatic index value it was confirmed that the protein was slightly unstable but thermally stable in a wide range of temperature. The phylogenetic tree constructed by Molecular Evolutionary Genetics Analysis (MEGA 11) server revealed that the peroxidase and other plant peroxidases had been evolved from a common ancestor. Molecular docking analysis revealed that all the ligand had binding energy > -4.0 Kcal/mol. The interaction involved in the docking of radish peroxidase with selected ligands were conventional hydrogen bond, pi-cation, alkyl, pi-alkyl, pi-pi stacked, pi-sigma, carbon hydrogen bond, pi-lone pair.

Conclusion

In summary, these investigations provide a strong basis for carrying out wet-lab experiments to boost production, research for novel sources with a metagenomics strategy and attempt directed evolution to include desired functional features. From this study, we found the active site of the enzyme and the key amino acid residues that are used in the enzyme-ligand interaction. The novel information presented in this work will promote proteomics research and the development of novel bioinformatics techniques. The investigation of enzyme-ligand interactions will aid in the creation of a fresh approach to the synthesis of organic molecules.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646358965241221185918
2025-01-03
2025-07-04
Loading full text...

Full text loading...

References

  1. PandeyV.P. AwasthiM. SinghS. TiwariS. DwivediU.N. A comprehensive review on function and application of plant peroxidases.Biochem. Anal. Biochem.20176130810.4172/2161‑1009.1000308
    [Google Scholar]
  2. AtyA.A.M. SalamaW.H. BadryE.M.O. SalahH.A. BarakatA.Z. FahmyA.S. MohamedS.A. Purification and characterization of peroxidases from garden cress sprouts and their roles in lignification and removal of phenol and p -chlorophenol.J. Food Biochem.2021451e1352610.1111/jfbc.13526 33140461
    [Google Scholar]
  3. ZeyadiM. AlmulaikyY.Q. A novel peroxidase from Ziziphus jujuba fruit: Purification, thermodynamics and biochemical characterization properties.Sci. Rep.2020101800710.1038/s41598‑020‑64599‑9 32409642
    [Google Scholar]
  4. TwalaP.P. MitemaA. BaburamC. FetoA.N. Breakthroughs in the discovery and use of different peroxidase isoforms of microbial origin.AIMS Microbiol.20206333034910.3934/microbiol.2020020 33134747
    [Google Scholar]
  5. SaikiaS. YadavM. HoqueR.A. YadavH.S. Bioremediation mediated by manganese peroxidase – An overview.Biocatal. Biotransform.202341316117310.1080/10242422.2022.2113517
    [Google Scholar]
  6. BazE.A. ShetaiaY. AbdelghaniD.Y. AbazaA.A. Myco-remediation in industrial wastewater treatment, Trends Biol. Process.IndiaWastewater Treat20241112
    [Google Scholar]
  7. BansalN. KanwarS.S. Peroxidase(s) in environment protection.ScientificWorldJournal20132013171463910.1155/2013/714639 24453894
    [Google Scholar]
  8. PatroL.P.P. Computational tools to model and analyze biomolecular structures and interactions(Doctoral dissertation, IIT: HYDERABAD)2016
    [Google Scholar]
  9. ManisekharS.R. SiddeshG.M. ManviS.S. Introduction to bioinformatics, Stat.Model. Mach. Learn. Princ. Bioinforma. Tech. Tools, Appl202039
    [Google Scholar]
  10. EricS.D. NicholasT.K.D.D. TheophilusK.A. Bioinformatics with basic local alignment search tool (BLAST) and fast alignment (FASTA).J. Bioinformat. Sequ. Analy.2014611610.5897/IJBC2013.0086
    [Google Scholar]
  11. BasumataryD. SaikiaS. YadavH.S. YadavM. In silico analysis of peroxidase from Luffa acutangula.3 Biotech.202313125
    [Google Scholar]
  12. BredaA. ValadaresN.F. Souzad.O.N. CharlesR. Chapter A06 Protein structure, modelling and applications, Garratt, Bioinforma; Trop. Dis. Res. A Pract. Case-Study Approach.(US)National Center for Biotechnology Information2008
    [Google Scholar]
  13. BurleyS.K. BermanH.M. DuarteJ.M. FengZ. FlattJ.W. HudsonB.P. LoweR. PeisachE. PiehlD.W. RoseY. SaliA. SekharanM. ShaoC. VallatB. VoigtM. WestbrookJ.D. YoungJ.Y. ZardeckiC. Protein data bank: A comprehensive review of 3D structure holdings and worldwide utilization by researchers, educators, and students.Biomolecules20221210142510.3390/biom12101425 36291635
    [Google Scholar]
  14. EnanyS. Structural and functional analysis of hypothetical and conserved proteins of Clostridium tetani.J. Infect. Public Health20147429630710.1016/j.jiph.2014.02.002 24802661
    [Google Scholar]
  15. GasteigerE. HooglandC. GattikerA. WilkinsM.R. AppelR.D. BairochA. Protein identification and analysis tools on the ExPASy server, Proteomics Protoc; Handb.Humana Press2005571607
    [Google Scholar]
  16. SahayA. PiprodheA. PiseM. In silico analysis and homology modeling of strictosidine synthase involved in alkaloid biosynthesis in catharanthus roseus.J. Genet. Eng. Biotechnol.20201814410.1186/s43141‑020‑00049‑3 32857261
    [Google Scholar]
  17. GeourjonC. DeléageG. SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments.Bioinformatics199511668168410.1093/bioinformatics/11.6.681 8808585
    [Google Scholar]
  18. TamuraK. DudleyJ. NeiM. KumarS. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0.Mol. Biol. Evol.20072481596159910.1093/molbev/msm092 17488738
    [Google Scholar]
  19. TamuraK. StecherG. KumarS. MEGA11: Molecular evolutionary genetics analysis version 11.Mol. Biol. Evol.20213873022302710.1093/molbev/msab120 33892491
    [Google Scholar]
  20. AttiqueS.A. HassanM. UsmanM. AtifR.M. MahboobS. GhanimA.K.A. BilalM. NawazM.Z. A molecular docking approach to evaluate the pharmacological properties of natural and synthetic treatment candidates for use against hypertension.Int. J. Environ. Res. Public Health201916692310.3390/ijerph16060923 30875817
    [Google Scholar]
  21. PawarR.P. RohaneS.H. Role of autodock vina in PyRx molecular docking.J. Res. Chem.2021142132134
    [Google Scholar]
  22. SinghR. KumarS. BhardwajV.K. PurohitR. Screening and reckoning of potential therapeutic agents against DprE1 protein of Mycobacterium tuberculosis.J. Mol. Liq.202235811910110.1016/j.molliq.2022.119101
    [Google Scholar]
  23. SinghR. BhardwajV.K. PurohitR. Computational targeting of allosteric site of MEK1 by quinoline‐based molecules.Cell Biochem. Funct.202240548149010.1002/cbf.3709 35604288
    [Google Scholar]
  24. SinghR. BhardwajV.K. DasP. PurohitR. New ecdysone receptor agonists: A computational approach for rational discovery of insecticides for crop protection.Mol. Syst. Des. Eng.202161193694510.1039/D1ME00047K
    [Google Scholar]
  25. SinghR. BhardwajV.K. DasP. PurohitR. Identification of 11β-HSD1 inhibitors through enhanced sampling methods.Chem. Commun.202258325005500810.1039/D1CC06894F 35362492
    [Google Scholar]
  26. KumarS. BhardwajK.V. SinghR. PurohitR. Explicit-solvent molecular dynamics simulations revealed conformational regain and aggregation inhibition of I113T SOD1 by Himalayan bioactive molecules.J. Mol. Liq.202133911679810.1016/j.molliq.2021.116798
    [Google Scholar]
  27. KumarS. BhardwajV.K. SinghR. DasP. PurohitR. Identification of acridinedione scaffolds as potential inhibitor of DENV‐2 C protein: An in silico strategy to combat dengue.J. Cell. Biochem.2022123593594610.1002/jcb.30237 35315127
    [Google Scholar]
  28. SinghI. ShahK. Evidences for structural basis of altered ascorbate peroxidase activity in cadmium-stressed rice plants exposed to jasmonate.Biometals201427224726310.1007/s10534‑014‑9705‑z 24442518
    [Google Scholar]
  29. PandeyV.P. SinghS. JaiswalN. AwasthiM. PandeyB. DwivediU.N. Papaya fruit ripening: ROS metabolism, gene cloning, characterization and molecular docking of peroxidase.J. Mol. Catal., B Enzym.2013989810510.1016/j.molcatb.2013.10.005
    [Google Scholar]
  30. KimS.J. LeeJ.A. JooJ.C. YooY.J. KimY.H. SongB.K. The development of a thermostable CiP (Coprinus cinereus peroxidase) through in silico design.Biotechnol. Prog.20102641038104610.1002/btpr.408 20730760
    [Google Scholar]
  31. HerreroJ. PérezF.F. YebraT. UzalN.E. PomarF. PedreñoM.Á. CuelloJ. GuéraA. CarrascoE.A. ZapataJ.M. Bioinformatic and functional characterization of the basic peroxidase 72 from Arabidopsis thaliana involved in lignin biosynthesis.Planta201323761599161210.1007/s00425‑013‑1865‑5 23508663
    [Google Scholar]
  32. BakerM.R. ZhaoH. SakharovI.Y. LiQ.X. Amino acid sequence of anionic peroxidase from the windmill palm tree Trachycarpus fortunei.J. Agric. Food Chem.20146249119411194810.1021/jf504511h 25383699
    [Google Scholar]
  33. SaikiaS. GogoiR.D. YadavM. YadavH.S. Isolation, purification and characterization of peroxidase from Raphanus sativus and its applications in biotransformation of cresols.Biocatal. Agric. Biotechnol.20224610254010.1016/j.bcab.2022.102540
    [Google Scholar]
  34. TasneemM. GuptaS.D. MominM.B. HossainK.M. OsmanT.B. RabbiM.F. In silico annotation of a hypothetical protein from Listeria monocytogenes EGD-e unfolds a toxin protein of the type II secretion system.Genomics Inform.2023211e710.5808/gi.22071 37037465
    [Google Scholar]
  35. MoryaV.K. YadavS. KimE.K. YadavD. In silico characterization of alkaline proteases from different species of Aspergillus.Appl. Biochem. Biotechnol.2012166124325710.1007/s12010‑011‑9420‑y 22072140
    [Google Scholar]
  36. ArtimoP. JonnalageddaM. ArnoldK. BaratinD. CsardiG. Castrod.E. DuvaudS. FlegelV. FortierA. GasteigerE. GrosdidierA. HernandezC. IoannidisV. KuznetsovD. LiechtiR. MorettiS. MostaguirK. RedaschiN. RossierG. XenariosI. StockingerH. ExPASy: SIB bioinformatics resource portal.Nucleic Acids Res.201240Web Server issueW597603 22661580
    [Google Scholar]
  37. KyteJ. DoolittleR.F. A simple method for displaying the hydropathic character of a protein.J. Mol. Biol.1982157110513210.1016/0022‑2836(82)90515‑0 7108955
    [Google Scholar]
  38. IkaiA. Thermostability and aliphatic index of globular proteins.J. Biochem.198088618951898 7462208
    [Google Scholar]
  39. CombetC. BlanchetC. GeourjonC. DeléageG. NPS@: Network protein sequence analysis.Trends Biochem. Sci.200025314715010.1016/S0968‑0004(99)01540‑6 10694887
    [Google Scholar]
  40. BienertS. WaterhouseA. Beerd.T.A.P. TaurielloG. StuderG. BordoliL. SchwedeT. The SWISS-MODEL Repository—new features and functionality.Nucleic Acids Res.201745D1D313D31910.1093/nar/gkw1132 27899672
    [Google Scholar]
  41. StuderG. RempferC. WaterhouseA.M. GumiennyR. HaasJ. SchwedeT. QMEANDisCo—distance constraints applied on model quality estimation.Bioinformatics20203661765177110.1093/bioinformatics/btz828 31697312
    [Google Scholar]
  42. GuexN. PeitschM.C. SchwedeT. Automated comparative protein structure modeling with SWISS‐MODEL and Swiss‐PdbViewer: A historical perspective.Electrophoresis200930S1Suppl. 1S162S17310.1002/elps.200900140 19517507
    [Google Scholar]
  43. WaterhouseA. BertoniM. BienertS. StuderG. TaurielloG. GumiennyR. HeerF.T. Beerd.T.A.P. RempferC. BordoliL. LeporeR. SchwedeT. SWISS-MODEL: Homology modelling of protein structures and complexes.Nucleic Acids Res.201846W1W296W30310.1093/nar/gky427 29788355
    [Google Scholar]
  44. BertoniM. KieferF. BiasiniM. BordoliL. SchwedeT. Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology.Sci. Rep.2017711048010.1038/s41598‑017‑09654‑8 28874689
    [Google Scholar]
  45. SahayA. ShakyaM. In silico analysis and homology modelling of antioxidant proteins of spinach.J. Proteomics Bioinform.20103514815410.4172/jpb.1000134
    [Google Scholar]
  46. RamachandranG.N. RamakrishnanC. SasisekharanV. Stereochemistry of polypeptide chain configurations.J. Mol. Biol.196371959910.1016/S0022‑2836(63)80023‑6 13990617
    [Google Scholar]
  47. WiedersteinM. SipplM.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins.Nucleic Acids Res.200735Web ServerW407W41010.1093/nar/gkm290 17517781
    [Google Scholar]
  48. LaskowskiR.A. MacArthurM.W. ThorntonJ.M. PROCHECK: Validation of protein-structure coordinatesCrystallography of biological macromolecules: Hoboken, New Jersey2006684687
    [Google Scholar]
  49. LaskowskiR.A. MacArthurM.W. MossD.S. ThorntonJ.M. PROCHECK: A program to check the stereochemical quality of protein structures.J. Appl. Cryst.199326228329110.1107/S0021889892009944
    [Google Scholar]
  50. RoseP.W. BiC. BluhmW.F. ChristieC.H. DimitropoulosD. DuttaS. GreenR.K. GoodsellD.S. Prlić A.; Quesada, M.; Quinn, G.B.; Ramos, A.G.; Westbrook, J.D.; Young, J.; Zardecki, C.; Berman, H.M.; Bourne, P.E. The RCSB protein data bank: New resources for research and education.Nucleic Acids Res.201341Database issueD475D482 23193259
    [Google Scholar]
  51. BurleyS.K. BermanH.M. BhikadiyaC. BiC. ChenL. CostanzoD.L. ChristieC. DalenbergK. DuarteJ.M. DuttaS. FengZ. GhoshS. GoodsellD.S. GreenR.K. Guranović, V.; Guzenko, D.; Hudson, B.P.; Kalro, T.; Liang, Y.; Lowe, R.; Namkoong, H.; Peisach, E.; Periskova, I.; Prlić, A.; Randle, C.; Rose, A.; Rose, P.; Sala, R.; Sekharan, M.; Shao, C.; Tan, L.; Tao, Y.P.; Valasatava, Y.; Voigt, M.; Westbrook, J.; Woo, J.; Yang, H.; Young, J.; Zhuravleva, M.; Zardecki, C. RCSB protein data bank: Biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy.Nucleic Acids Res.201947D1D464D47410.1093/nar/gky1004 30357411
    [Google Scholar]
  52. SaitouN. NeiM. The neighbor-joining method: A new method for reconstructing phylogenetic trees.Mol. Biol. Evol.198744406425 3447015
    [Google Scholar]
  53. LipmanD.J. AltschulS.F. KececiogluJ.D. A tool for multiple sequence alignment.Proc. Natl. Acad. Sci. USA198986124412441510.1073/pnas.86.12.4412 2734293
    [Google Scholar]
  54. ThompsonJ.D. GibsonT.J. HigginsD.G. Multiple sequence alignment using ClustalW and ClustalX, Curr; Protoc.Bioinforma200323
    [Google Scholar]
  55. AshokanK.V. MundaganurD.S. MundaganurY.D. Catalase: Phylogenetic characterization to explore protein cluster.J Res Bioinfo.2010118
    [Google Scholar]
  56. KhareN. MaheshwariS.K. RizviS.M.D. AlbadraniH.M. AlsagabyS.A. AlturaikiW. IqbalD. ZiaQ. VillaC. JhaS.K. JhaN.K. JhaA.K. Homology modelling, molecular docking and molecular dynamics simulation studies of CALMH1 against secondary metabolites of Bauhinia variegata to treat alzheimer’s disease.Brain Sci.202212677010.3390/brainsci12060770 35741655
    [Google Scholar]
  57. AnwarS. NaseemS. AliZ. Biochemical analysis, photosynthetic gene (psbA) down–regulation, and in silico receptor prediction in weeds in response to exogenous application of phenolic acids and their analogs.PLoS One2023183e027714610.1371/journal.pone.0277146 36952510
    [Google Scholar]
  58. HaddoumiE.G. MansouriM. BendaniH. BourichaE.M. KandoussiI. BelyamaniL. IbrahimiA. Facing antitubercular resistance: Identification of potential direct inhibitors targeting InhA enzyme and generation of 3D-pharmacophore model by in silico approach.Adv. Appl. Bioinform. Chem.2023164959
    [Google Scholar]
  59. HachemE.N. KainsH.B. KhalilA. KobeissyF.H. NemerG. AutoDock and autodocktools for protein-ligand docking: Beta-site amyloid precursor protein cleaving enzyme 1 (bace1) as a case study.Methods Mol. Biol.20171598391403
    [Google Scholar]
  60. HoqueR.A. YadavM. YadavaU. RaiN. NegiS. YadavH.S. Active site determination of novel plant versatile peroxidase extracted from Citrus sinensis and bioconversion of β-naphthol.3 Biotech.20231310345
    [Google Scholar]
  61. SinghA.K. KatariS.K. UmamaheswariA. RajA. In silico exploration of lignin peroxidase for unraveling the degradation mechanism employing lignin model compounds.RSC Advances20211124146321465310.1039/D0RA10840E 35423962
    [Google Scholar]
  62. CamachoC. CoulourisG. AvagyanV. MaN. PapadopoulosJ. BealerK. MaddenT.L. BLAST+: Architecture and applications.BMC Bioinformatics200910142110.1186/1471‑2105‑10‑421 20003500
    [Google Scholar]
  63. GuptaR. DeyA. VijanA. GartiaB. In Silico structure modeling and characterization of hypothetical protein YP_004590319. 1 present in enterobacter aerogens.J. Proteomics Bioinform.201710615217010.4172/jpb.1000436
    [Google Scholar]
  64. DavidsonR. Martín del CampoA. Combinatorial and computational investigations of neighbor-joining bias.Front. Genet.20201158478510.3389/fgene.2020.584785 33193719
    [Google Scholar]
  65. KeklikG. Understanding evolutionary relationships and analysis methods through mega software, Int; J.New Horizons Science20238390
    [Google Scholar]
  66. PrjibelskiA.D. KorobeynikovA.I. LapidusA.L. Sequence analysis.Encycl. Bioinforma. Comput. Biol. ABC Bioinforma2018292322
    [Google Scholar]
  67. RepaskyM.P. ShelleyM. FriesnerR.A. Chapter 8 - Flexible ligand docking with Glide.Curr. Protoc. Bioinformatics200712 18428795
    [Google Scholar]
  68. KumarS. KumarS. Molecular docking: A structure-based approach for drug repurposing.Silico Drug Des.Elsevier201916118910.1016/B978‑0‑12‑816125‑8.00006‑7
    [Google Scholar]
  69. GuptaM. SharmaR. KumarA. Docking techniques in pharmacology: How much promising?Comput. Biol. Chem.20187621021710.1016/j.compbiolchem.2018.06.005 30067954
    [Google Scholar]
  70. SrinivasanS. SadasivamS.K. GunalanS. ShanmugamG. KothandanG. Application of docking and active site analysis for enzyme linked biodegradation of textile dyes.Environ. Pollut.201924859960810.1016/j.envpol.2019.02.080 30836241
    [Google Scholar]
  71. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.21334 19499576
    [Google Scholar]
  72. DuX. LiY. XiaY.L. AiS.M. LiangJ. SangP. JiX.L. LiuS.Q. Insights into protein–ligand interactions: Mechanisms, models, and methods.Int. J. Mol. Sci.201617214410.3390/ijms17020144 26821017
    [Google Scholar]
  73. VeitchN.C. Horseradish peroxidase: A modern view of a classic enzyme.Phytochemistry200465324925910.1016/j.phytochem.2003.10.022 14751298
    [Google Scholar]
  74. NokthaiP. LeeV.S. ShankL. Molecular modeling of peroxidase and polyphenol oxidase: Substrate specificity and active site comparison.Int. J. Mol. Sci.20101193266327610.3390/ijms11093266 20957092
    [Google Scholar]
  75. SinghA.K. BilalM. IqbalH.M.N. RajA. In silico analytical toolset for predictive degradation and toxicity of hazardous pollutants in water sources.Chemosphere202229213325010.1016/j.chemosphere.2021.133250 34922975
    [Google Scholar]
  76. SandraA. MarioT. VeronicaS-J. MartaP-B. FátimaL.M. VictorG. Mapping the long-range electron transfer route in ligninolytic peroxidases.J. Phys. Chem. B20171211639463954
    [Google Scholar]
/content/journals/cp/10.2174/0115701646358965241221185918
Loading
/content/journals/cp/10.2174/0115701646358965241221185918
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test