Skip to content
2000
image of Identification of a Ubiquitination-Related Signature for Ovarian Cancer Based on 101 Combinations of Machine Learning Methods

Abstract

Background

Ovarian cancer is the third most common gynecological cancer worldwide. The majority of ovarian cancer instances are identified at later stages of progression, resulting in a significantly elevated mortality rate. Additionally, the absence of reliable prognostic biomarkers significantly limits the effectiveness of prediction and personalized treatment approaches. Ubiquitination, a protein modification process intricately associated with diverse tumor-related biological pathways, occupies a central position within the tumor microenvironment (TME). However, its specific mechanisms in ovarian cancer remain inadequately understood.

Methods

In this study, we explored ubiquitination-related genes at both single-cell and bulk transcriptome levels utilizing algorithms, such as AddModuleScore, single-sample Gene Set Enrichment Analysis (ssGSEA), and Weighted Gene Co-Expression Network Analysis (WGCNA). We then designed a novel machine learning framework featuring 10 algorithms and 101 combinations to establish a Ubiquitination-Related Signature (URS), which was validated in both training and external datasets. Additionally, we developed a comprehensive nomogram for clinical prognosis based on the URS. To thoroughly investigate prognostic characteristics, we applied multi-omics data. This analysis provided a deep understanding of the prognostic signature. Furthermore, we assessed the response of different risk subgroups to immunotherapy and identified suitable drugs for specific risk profiles, thereby advancing personalized medicine.

Results

In this research, we discovered 35 ubiquitination-related genes significantly linked to the prognosis of ovarian cancer. Our univariate and multivariate assessments indicated that the low-risk cohort exhibited a better survival rate than the high-risk cohort, suggesting the potential of the model as an independent prognostic marker. The nomogram based on the URS offers a quantitative tool for clinical applications and can be effectively utilized in healthcare settings. Moreover, we observed significant differences in biological functions, mutation patterns, and immune cell infiltration within the tumor microenvironment between the high-risk and low-risk groups. Additionally, we highlighted potential drugs tailored for specific risk categories.

Conclusion

We developed and validated a signature related to ubiquitination for ovarian cancer, which shows potential as a reliable predictor of prognosis. Investigating ubiquitination paves the way for innovative clinical strategies and novel anti-tumor therapies.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646359714241209075043
2024-12-13
2025-01-18
Loading full text...

Full text loading...

References

  1. Tossetta G. Marzioni D. Natural and synthetic compounds in ovarian cancer: A focus on NRF2/KEAP1 pathway. Pharmacol. Res. 2022 183 106365 10.1016/j.phrs.2022.106365 35901941
    [Google Scholar]
  2. Morand S. Devanaboyina M. Staats H. Stanbery L. Nemunaitis J. Ovarian cancer immunotherapy and personalized medicine. Int. J. Mol. Sci. 2021 22 12 6532 10.3390/ijms22126532 34207103
    [Google Scholar]
  3. Chun K.C. Kim J.J. Kim D.Y. Kim J.H. Kim Y.M. Nam J.H. Kim Y.T. Optimal debulking surgery followed by paclitaxel/platinum chemotherapy is very effective in treating ovarian carcinosarcomas: a single center experience. Gynecol. Obstet. Invest. 2011 72 3 208 214 10.1159/000323775 21968161
    [Google Scholar]
  4. Gonzalez-Ochoa E. Veneziani A.C. Oza A.M. Mirvetuximab soravtansine in platinum-resistant ovarian cancer. Clin. Med. Insights Oncol. 2023 17 11795549231187264 10.1177/11795549231187264 37528890
    [Google Scholar]
  5. Swatek K.N. Komander D. Ubiquitin modifications. Cell Res. 2016 26 4 399 422 10.1038/cr.2016.39 27012465
    [Google Scholar]
  6. Popovic D. Vucic D. Dikic I. Ubiquitination in disease pathogenesis and treatment. Nat. Med. 2014 20 11 1242 1253 10.1038/nm.3739 25375928
    [Google Scholar]
  7. Wang X. Liu Z. Zhang L. Yang Z. Chen X. Luo J. Zhou Z. Mei X. Yu X. Shao Z. Feng Y. Fu S. Zhang Z. Wei D. Jia L. Ma J. Guo X. Targeting deubiquitinase USP28 for cancer therapy. Cell Death Dis. 2018 9 2 186 10.1038/s41419‑017‑0208‑z 29415985
    [Google Scholar]
  8. Hosseini S.M. Okoye I. Chaleshtari M.G. Hazhirkarzar B. Mohamadnejad J. Azizi G. Hojjat-Farsangi M. Mohammadi H. Shotorbani S.S. Jadidi-Niaragh F. E2 ubiquitin-conjugating enzymes in cancer: Implications for immunotherapeutic interventions. Clin. Chim. Acta 2019 498 126 134 10.1016/j.cca.2019.08.020 31445029
    [Google Scholar]
  9. Clague M.J. Urbé S. Komander D. Breaking the chains: deubiquitylating enzyme specificity begets function. Nat. Rev. Mol. Cell Biol. 2019 20 6 338 352 10.1038/s41580‑019‑0099‑1 30733604
    [Google Scholar]
  10. Makaros Y. Raiff A. Timms R.T. Wagh A.R. Gueta M.I. Bekturova A. Guez-Haddad J. Brodsky S. Opatowsky Y. Glickman M.H. Elledge S.J. Koren I. Ubiquitin-independent proteasomal degradation driven by C-degron pathways. Mol. Cell 2023 83 11 1921 1935.e7 10.1016/j.molcel.2023.04.023 37201526
    [Google Scholar]
  11. Sun T. Liu Z. Yang Q. The role of ubiquitination and deubiquitination in cancer metabolism. Mol. Cancer 2020 19 1 146 10.1186/s12943‑020‑01262‑x 33004065
    [Google Scholar]
  12. Ali M. Aittokallio T. Machine learning and feature selection for drug response prediction in precision oncology applications. Biophys. Rev. 2019 11 1 31 39 10.1007/s12551‑018‑0446‑z 30097794
    [Google Scholar]
  13. Arjmand B. Hamidpour S.K. Tayanloo-Beik A. Goodarzi P. Aghayan H.R. Adibi H. Larijani B. Machine learning: a new prospect in multi-omics data analysis of cancer. Front. Genet. 2022 13 824451 10.3389/fgene.2022.824451 35154283
    [Google Scholar]
  14. Reel P.S. Reel S. Pearson E. Trucco E. Jefferson E. Using machine learning approaches for multi-omics data analysis: A review. Biotechnol. Adv. 2021 49 107739 10.1016/j.biotechadv.2021.107739 33794304
    [Google Scholar]
  15. Mäbert K. Cojoc M. Peitzsch C. Kurth I. Souchelnytskyi S. Dubrovska A. Cancer biomarker discovery: Current status and future perspectives. Int. J. Radiat. Biol. 2014 90 8 659 677 10.3109/09553002.2014.892229 24524284
    [Google Scholar]
  16. Menyhárt O. Győrffy B. Multi-omics approaches in cancer research with applications in tumor subtyping, prognosis, and diagnosis. Comput. Struct. Biotechnol. J. 2021 19 949 960 10.1016/j.csbj.2021.01.009 33613862
    [Google Scholar]
  17. Weirick T. Militello G. Müller R. John D. Dimmeler S. Uchida S. The identification and characterization of novel transcripts from RNA-seq data. Brief. Bioinform. 2016 17 4 678 685 10.1093/bib/bbv067 26283677
    [Google Scholar]
  18. Stuart T. Butler A. Hoffman P. Hafemeister C. Papalexi E. Mauck W.M. III Hao Y. Stoeckius M. Smibert P. Satija R. Comprehensive integration of single-cell data. Cell 2019 177 7 1888 1902.e21 10.1016/j.cell.2019.05.031 31178118
    [Google Scholar]
  19. Korsunsky I. Millard N. Fan J. Slowikowski K. Zhang F. Wei K. Baglaenko Y. Brenner M. Loh P. Raychaudhuri S. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 2019 16 12 1289 1296 10.1038/s41592‑019‑0619‑0 31740819
    [Google Scholar]
  20. Vandenbon A. Diez D. A clustering-independent method for finding differentially expressed genes in single-cell transcriptome data. Nat. Commun. 2020 11 1 4318 10.1038/s41467‑020‑17900‑3 32859930
    [Google Scholar]
  21. Stolarek I. Samelak-Czajka A. Figlerowicz M. Jackowiak P. Dimensionality reduction by UMAP for visualizing and aiding in classification of imaging flow cytometry data. iScience 2022 25 10 105142 10.1016/j.isci.2022.105142 36193047
    [Google Scholar]
  22. Deng C. Deng G. Chu H. Chen S. Chen X. Li X. He Y. Sun C. Zhang C. Construction of a hypoxia-immune-related prognostic panel based on integrated single-cell and bulk RNA sequencing analyses in gastric cancer. Front. Immunol. 2023 14 1140328 10.3389/fimmu.2023.1140328 37180146
    [Google Scholar]
  23. Shi J. Tang J. Liu L. Zhang C. Chen W. Qi M. Han Z. Chen X. Integrative analyses of bulk and single-cell rna seq identified the shared genes in acute respiratory distress syndrome and rheumatoid arthritis. Mol. Biotechnol. 2024 6 01141 10.1007/s12033‑024‑01141‑6 38656728
    [Google Scholar]
  24. Hänzelmann S. Castelo R. Guinney J. GSVA: gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics 2013 14 1 7 10.1186/1471‑2105‑14‑7 23323831
    [Google Scholar]
  25. Liu S. Three differential expression analysis methods for RNA sequencing: limma, edgeR, DESeq2. J. Vis. Exp. 2021 2021 175 10.3791/62528 34605806
    [Google Scholar]
  26. Yu G. Wang L.G. Han Y. He Q.Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 2012 16 5 284 287 10.1089/omi.2011.0118 22455463
    [Google Scholar]
  27. Langfelder P. Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 2008 9 1 559 10.1186/1471‑2105‑9‑559 19114008
    [Google Scholar]
  28. Ritchie M.E. Phipson B. Wu D. Hu Y. Law C.W. Shi W. Smyth G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015 43 7 e47 10.1093/nar/gkv007 25605792
    [Google Scholar]
  29. Giulietti M. Occhipinti G. Principato G. Piva F. Weighted gene co-expression network analysis reveals key genes involved in pancreatic ductal adenocarcinoma development. Cell Oncol. (Dordr.) 2016 39 4 379 388 10.1007/s13402‑016‑0283‑7 27240826
    [Google Scholar]
  30. Liu Z. Liu L. Weng S. Guo C. Dang Q. Xu H. Wang L. Lu T. Zhang Y. Sun Z. Han X. Machine learning-based integration develops an immune-derived lncRNA signature for improving outcomes in colorectal cancer. Nat. Commun. 2022 13 1 816 10.1038/s41467‑022‑28421‑6 35145098
    [Google Scholar]
  31. Liu J. Shi Y. Zhang Y. Multi-omics identification of an immunogenic cell death-related signature for clear cell renal cell carcinoma in the context of 3P medicine and based on a 101-combination machine learning computational framework. EPMA J. 2023 14 2 275 305 10.1007/s13167‑023‑00327‑3 37275552
    [Google Scholar]
  32. Ma Y. Li J. Xiong C. Sun X. Shen T. Development of a prognostic model for NSCLC based on differential genes in tumour stem cells. Sci. Rep. 2024 14 1 20938 10.1038/s41598‑024‑71317‑2 39251710
    [Google Scholar]
  33. Xiao J. Mo M. Wang Z. Zhou C. Shen J. Yuan J. He Y. Zheng Y. The application and comparison of machine learning models for the prediction of breast cancer prognosis: retrospective cohort study. JMIR Med. Inform. 2022 10 2 e33440 10.2196/33440 35179504
    [Google Scholar]
  34. Blot S.I. Taccone F.S. Van den Abeele A.M. Bulpa P. Meersseman W. Brusselaers N. Dimopoulos G. Paiva J.A. Misset B. Rello J. Vandewoude K. Vogelaers D. A clinical algorithm to diagnose invasive pulmonary aspergillosis in critically ill patients. Am. J. Respir. Crit. Care Med. 2012 186 1 56 64 10.1164/rccm.201111‑1978OC 22517788
    [Google Scholar]
  35. Balachandran V.P. Gonen M. Smith J.J. DeMatteo R.P. Nomograms in oncology: more than meets the eye. Lancet Oncol. 2015 16 4 e173 e180 10.1016/S1470‑2045(14)71116‑7 25846097
    [Google Scholar]
  36. Wu J. Zhang H. Li L. Hu M. Chen L. Xu B. Song Q. A nomogram for predicting overall survival in patients with low‐grade endometrial stromal sarcoma: A population‐based analysis. Cancer Commun. 2020 40 7 301 312 10.1002/cac2.12067 32558385
    [Google Scholar]
  37. Wang Q. Qiao W. Zhang H. Liu B. Li J. Zang C. Mei T. Zheng J. Zhang Y. Nomogram established on account of Lasso-Cox regression for predicting recurrence in patients with early-stage hepatocellular carcinoma. Front. Immunol. 2022 13 1019638 10.3389/fimmu.2022.1019638 36505501
    [Google Scholar]
  38. Ma D. Jiang Y.Z. Liu X.Y. Liu Y.R. Shao Z.M. Clinical and molecular relevance of mutant-allele tumor heterogeneity in breast cancer. Breast Cancer Res. Treat. 2017 162 1 39 48 10.1007/s10549‑017‑4113‑z 28093659
    [Google Scholar]
  39. Mroz E.A. Rocco J.W. MATH, a novel measure of intratumor genetic heterogeneity, is high in poor-outcome classes of head and neck squamous cell carcinoma. Oral Oncol. 2013 49 3 211 215 10.1016/j.oraloncology.2012.09.007 23079694
    [Google Scholar]
  40. Mayakonda A. Lin D.C. Assenov Y. Plass C. Koeffler H.P. Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 2018 28 11 1747 1756 10.1101/gr.239244.118 30341162
    [Google Scholar]
  41. Geeleher P. Cox N. Huang R.S. pRRophetic: an R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PLoS One 2014 9 9 e107468 10.1371/journal.pone.0107468 25229481
    [Google Scholar]
  42. Tepsiri N. Chaturat L. Sripa B. Namwat W. Wongkham S. Bhudhisawasdi V. Tassaneeyakul W. Drug sensitivity and drug resistance profiles of human intrahepatic cholangiocarcinoma cell lines. World J. Gastroenterol. 2005 11 18 2748 2753 10.3748/wjg.v11.i18.2748 15884115
    [Google Scholar]
  43. Dexter F. Wilcoxon-Mann-Whitney test used for data that are not normally distributed. Anesth. Analg. 2013 117 3 537 538 10.1213/ANE.0b013e31829ed28f 23966647
    [Google Scholar]
  44. Wang B. Shi Z. Weber G.F. Kennedy M.A. Introduction of a new critical p value correction method for statistical significance analysis of metabonomics data. Anal. Bioanal. Chem. 2013 405 26 8419 8429 10.1007/s00216‑013‑7284‑4 24026514
    [Google Scholar]
  45. Liu G.M. Zeng H.D. Zhang C.Y. Xu J.W. Identification of a six-gene signature predicting overall survival for hepatocellular carcinoma. Cancer Cell Int. 2019 19 1 138 10.1186/s12935‑019‑0858‑2 31139015
    [Google Scholar]
  46. Zou J. Li Y. Liao N. Liu J. Zhang Q. Luo M. Xiao J. Chen Y. Wang M. Chen K. Zeng J. Mo Z. Identification of key genes associated with polycystic ovary syndrome (PCOS) and ovarian cancer using an integrated bioinformatics analysis. J. Ovarian Res. 2022 15 1 30 10.1186/s13048‑022‑00962‑w 35227296
    [Google Scholar]
  47. Chu P.Y. Tzeng Y.D.T. Chiu Y.H. Lin H.Y. Kuo C.H. Hou M.F. Li C.J. Multi-omics reveals the immunological role and prognostic potential of mitochondrial ubiquitin ligase MARCH5 in human breast cancer. Biomedicines 2021 9 10 1329 10.3390/biomedicines9101329 34680446
    [Google Scholar]
  48. Tran H.T.N. Ang K.S. Chevrier M. Zhang X. Lee N.Y.S. Goh M. Chen J. A benchmark of batch-effect correction methods for single-cell RNA sequencing data. Genome Biol. 2020 21 1 12 10.1186/s13059‑019‑1850‑9 31948481
    [Google Scholar]
  49. Li B. Wang S. Duan H. Wang Y. Guo Z. Discovery of gene module acting on ubiquitin-mediated proteolysis pathway by co-expression network analysis for endometriosis. Reprod. Biomed. Online 2021 42 2 429 441 10.1016/j.rbmo.2020.10.005 33189575
    [Google Scholar]
  50. Wang L. Chen W. Jin H. Tan Y. Guo C. Fu W. Wu Z. Cui K. Wang Y. Qiu Z. Zhang G. Liu W. Zhou Z. CXCL1/IGHG1 signaling enhances crosstalk between tumor cells and tumor-associated macrophages to promote MC-LR-induced colorectal cancer progression. Environ. Pollut. 2024 351 124081 10.1016/j.envpol.2024.124081 38697251
    [Google Scholar]
  51. Lin Y. Dong Y. Liu W. Fan X. Sun Y. Pan-cancer analyses confirmed the ferroptosis-related gene SLC7A11 as a prognostic biomarker for cancer. Int. J. Gen. Med. 2022 15 2501 2513 10.2147/IJGM.S341502 35282646
    [Google Scholar]
  52. Pan X. Chen Y. Gao S. Four genes relevant to pathological grade and prognosis in ovarian cancer. Cancer Biomark. 2020 29 2 169 178 10.3233/CBM‑191162 32444534
    [Google Scholar]
  53. Ling B. Huang Z. Huang S. Qian L. Li G. Tang Q. Microenvironment analysis of prognosis and molecular signature of immune-related genes in lung adenocarcinoma. Oncol. Res. 2020 28 6 561 578 10.3727/096504020X15907428281601 32471520
    [Google Scholar]
  54. Chen Z. Qin C. Wang G. Shang D. Tian Y. Yuan L. Cao R. A tumor microenvironment preoperative nomogram for prediction of lymph node metastasis in bladder cancer. Front. Oncol. 2022 12 1099965 10.3389/fonc.2022.1099965 36591526
    [Google Scholar]
  55. Burugu S. Asleh-Aburaya K. Nielsen T.O. Immune infiltrates in the breast cancer microenvironment: detection, characterization and clinical implication. Breast Cancer 2017 24 1 3 15 10.1007/s12282‑016‑0698‑z 27138387
    [Google Scholar]
  56. Johansson M. DeNardo D.G. Coussens L.M. Polarized immune responses differentially regulate cancer development. Immunol. Rev. 2008 222 1 145 154 10.1111/j.1600‑065X.2008.00600.x 18363999
    [Google Scholar]
  57. Xu-Monette Z.Y. Zhou J. Young K.H. PD-1 expression and clinical PD-1 blockade in B-cell lymphomas. Blood 2018 131 1 68 83 10.1182/blood‑2017‑07‑740993 29118007
    [Google Scholar]
  58. Rose M. Burgess J.T. O’Byrne K. Richard D.J. Bolderson E. PARP inhibitors: clinical relevance, mechanisms of action and tumor resistance. Front. Cell Dev. Biol. 2020 8 564601 10.3389/fcell.2020.564601 33015058
    [Google Scholar]
  59. Kossaï M. Leary A. Scoazec J.Y. Genestie C. Ovarian Cancer: A Heterogeneous Disease. Pathobiology 2018 85 1-2 41 49 10.1159/000479006 29020678
    [Google Scholar]
  60. Lheureux S. Braunstein M. Oza A.M. Epithelial ovarian cancer: Evolution of management in the era of precision medicine. CA Cancer J. Clin. 2019 69 4 280 304 10.3322/caac.21559 31099893
    [Google Scholar]
  61. Shepherd J.E. Current strategies for prevention, detection, and treatment of ovarian cancer. J. Am. Pharm. Assoc. 2000 40 3 392 401 10.1016/S1086‑5802(16)31088‑9 10853541
    [Google Scholar]
  62. O’Shea A.S. Clinical staging of ovarian cancer. Methods Mol. Biol. 2022 2424 3 10 10.1007/978‑1‑0716‑1956‑8_1 34918284
    [Google Scholar]
  63. Zugazagoitia J. Guedes C. Ponce S. Ferrer I. Molina-Pinelo S. Paz-Ares L. Current challenges in cancer treatment. Clin. Ther. 2016 38 7 1551 1566 10.1016/j.clinthera.2016.03.026 27158009
    [Google Scholar]
  64. Gong G. Lin T. Yuan Y. Integrated analysis of gene expression and DNA methylation profiles in ovarian cancer. J. Ovarian Res. 2020 13 1 30 10.1186/s13048‑020‑00632‑9 32192517
    [Google Scholar]
  65. Subbannayya Y. Di Fiore R. Urru S.A.M. Calleja-Agius J. The role of omics approaches to characterize molecular mechanisms of rare ovarian cancers: recent advances and future perspectives. Biomedicines 2021 9 10 1481 10.3390/biomedicines9101481 34680597
    [Google Scholar]
  66. Cockram P.E. Kist M. Prakash S. Chen S.H. Wertz I.E. Vucic D. Ubiquitination in the regulation of inflammatory cell death and cancer. Cell Death Differ. 2021 28 2 591 605 10.1038/s41418‑020‑00708‑5 33432113
    [Google Scholar]
  67. Spano D. Catara G. Targeting the ubiquitin–proteasome system and recent advances in cancer therapy. Cells 2023 13 1 29 10.3390/cells13010029 38201233
    [Google Scholar]
  68. Ji J. Shen J. Xu Y. Xie M. Qian Q. Qiu T. Shi W. Ren D. Ma J. Liu W. Liu B. FBXO2 targets glycosylated SUN2 for ubiquitination and degradation to promote ovarian cancer development. Cell Death Dis. 2022 13 5 442 10.1038/s41419‑022‑04892‑9 35525855
    [Google Scholar]
  69. Ji J. Lv J. Lv M. Jing A. Xu M. Yuan Q. Ma X. Qian Q. Wang W. Geng T. Ding Y. Qin J. Liu Y. Yang J. Zhou J. Ma L. Wang Y. Zuo L. Wang X. Ma S. Liu B. USP14 regulates heme metabolism and ovarian cancer invasion through BACH1 deubiquitination and stabilization. Biochem. Biophys. Res. Commun. 2023 667 186 193 10.1016/j.bbrc.2023.04.082 37229827
    [Google Scholar]
  70. Shen J. Xie M. Xu Y. Qian Q. Qiu T. Shi W. Ren D. Ji J. Huang J. Identification of the deubiquitinase USP28 as a novel molecular therapeutic target of ovarian cancer. Biochem. Biophys. Res. Commun. 2023 638 184 191 10.1016/j.bbrc.2022.11.055 36462492
    [Google Scholar]
  71. Trojan A. Huber U. Brauchbar M. Petrausch U. Consilium smartphone app for real-world electronically captured patient-reported outcome monitoring in cancer patients undergoing anti-pd-l1-directed treatment. Case Rep. Oncol. 2020 13 2 491 496 10.1159/000507345 32518544
    [Google Scholar]
  72. Wu Y. Li K. Liang S. Lou X. Li Y. Xu D. Wu Y. Wang Y. Cui W. An ICD-Associated DAMP Gene signature predicts survival and immunotherapy response of patients with lung adenocarcinoma. Respir. Res. 2023 24 1 142 10.1186/s12931‑023‑02443‑0 37259066
    [Google Scholar]
  73. Yang Z. Yang X. Xu S. Jin P. Li X. Wei X. Liu D. Huang K. Long S. Wang Y. Sun C. Chen G. Hu J. Meng L. Ma D. Gao Q. Reprogramming of stromal fibroblasts by SNAI2 contributes to tumor desmoplasia and ovarian cancer progression. Mol. Cancer 2017 16 1 163 10.1186/s12943‑017‑0732‑6 29041931
    [Google Scholar]
  74. He C. Zhang Y. Cai Z. Duan F. Lin X. Li S. Nomogram to predict cancer-specific survival in patients with pancreatic acinar cell carcinoma: a competing risk analysis. J. Cancer 2018 9 22 4117 4127 10.7150/jca.26936 30519311
    [Google Scholar]
  75. Jiao S. Guo L. Da F. Gao Q. Ren Z. Wang J. Fu Q. Liu J. Competitive risk model nomogram to predict prognosis in patients aged over 65 years with nonmetastatic cervical cancer: a seer population-based study. Technol. Cancer Res. Treat. 2023 22 15330338231164191 10.1177/15330338231164191 37078156
    [Google Scholar]
  76. Xiao Y. Bi M. Guo H. Li M. Multi-omics approaches for biomarker discovery in early ovarian cancer diagnosis. EBioMedicine 2022 79 104001 10.1016/j.ebiom.2022.104001 35439677
    [Google Scholar]
  77. Rizvi N.A. Hellmann M.D. Snyder A. Kvistborg P. Makarov V. Havel J.J. Lee W. Yuan J. Wong P. Ho T.S. Miller M.L. Rekhtman N. Moreira A.L. Ibrahim F. Bruggeman C. Gasmi B. Zappasodi R. Maeda Y. Sander C. Garon E.B. Merghoub T. Wolchok J.D. Schumacher T.N. Chan T.A. Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer. Science 2015 348 6230 124 128 10.1126/science.aaa1348 25765070
    [Google Scholar]
  78. Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. Nature 2012 490 7418 61 70 10.1038/nature11412 23000897
    [Google Scholar]
  79. Loi S. Settleman J. Joyce J.A. Pramesh C.S. Bernards R. Fan J. Merchant J.L. Moslehi J. Sellers W.R. The next big questions in cancer research. Cell 2023 186 8 1523 1527 10.1016/j.cell.2023.01.037 37059060
    [Google Scholar]
  80. Dagar G. Kumar R. Yadav K.K. Singh M. Pandita T.K. Ubiquitination and deubiquitination: Implications on cancer therapy. Biochim. Biophys. Acta. Gene Regul. Mech. 2023 1866 4 194979 10.1016/j.bbagrm.2023.194979 37633647
    [Google Scholar]
  81. Liu R. Hu Y. Liu T. Wang Y. Profiles of immune cell infiltration and immune-related genes in the tumor microenvironment of osteosarcoma cancer. BMC Cancer 2021 21 1 1345 10.1186/s12885‑021‑09042‑6 34922489
    [Google Scholar]
  82. Blankstein U. Lantz A.G. Honey R.J.D.A. Pace K.T. Ordon M. Lee J.Y. Simulation-based flexible ureteroscopy training using a novel ureteroscopy part-task trainer. Can. Urol. Assoc. J. 2015 9 9-10 331 335 10.5489/cuaj.2811 26644806
    [Google Scholar]
/content/journals/cp/10.2174/0115701646359714241209075043
Loading
/content/journals/cp/10.2174/0115701646359714241209075043
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: tumor microenvironment ; Ovarian cancer ; prognosis ; machine learning ; multi-omics ; ubiquitination
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test