Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1570-1646
  • E-ISSN: 1875-6247

Abstract

Background

Diabetic kidney disease (DKD) is a common microvascular complication of diabetic mellitus (DM). At present, the early diagnosis of DKD mainly depends on microalbuminuria, which is prone to be affected by confounding factors such as urinary tract infections.

Methods

To identify the more stable early diagnosis markers, the whole proteome in the circulating exosomes from controls, DM patients, and DKD patients was quantified by label-free proteomics analysis and then validated with parallel reaction monitoring.

Results

Three hundred ninety-one quantitative proteins were detected, and the expression trends of 7 proteins in the validation phase were consistent with that in the discovery phase. The expression level assessment results revealed that the expression of EFEMP1 and ApoA4 in the DKD group was significantly higher than those in DM and controls. Correlation analysis showed that EFEMP1 and APOA4 were positively correlated with urinary microalbumin and urinary albumin creatinine ratio and had excellent diagnostic values for distinguishing DKD from DM and controls.

Conclusion

ApoA4 and EFEMP1 could serve as the early diagnosis markers of DKD. These findings provide a possibility for the development of a clinical diagnostic index that can efficiently distinguish DKD from DM in the near future.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646309538240805093732
2024-09-01
2025-06-23
Loading full text...

Full text loading...

References

  1. Chinese Medical Association. Expert consensus on clinical diagnosis of diabetic nephropathy in Chinese adults.Zhonghua Neifenmi Daixie Zazhi201531379385
    [Google Scholar]
  2. ChiarelliF. TrottaD. VerrottiA. MohnA. Kidney involvement and disease in patients with diabetes.Panminerva Med.2003451234112682618
    [Google Scholar]
  3. VlassovA.V. MagdalenoS. SetterquistR. ConradR. Exosomes: Current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials.Biochim. Biophys. Acta, Gen. Subj.20121820794094810.1016/j.bbagen.2012.03.01722503788
    [Google Scholar]
  4. HoornE.J. PisitkunT. ZietseR. GrossP. FrokiaerJ. WangN.S. GonzalesP.A. StarR.A. KnepperM.A. Prospects for urinary proteomics: Exosomes as a source of urinary biomarkers (Review Article).Nephrology (Carlton)200510328329010.1111/j.1440‑1797.2005.00387.x15958043
    [Google Scholar]
  5. LobbR.J. BeckerM. Wen WenS. WongC.S.F. WiegmansA.P. LeimgruberA. MöllerA. Optimized exosome isolation protocol for cell culture supernatant and human plasma.J. Extracell. Vesicles2015412703110.3402/jev.v4.2703126194179
    [Google Scholar]
  6. ZoccoD. FerruzziP. CappelloF. KuoW.P. FaisS. Extracellular vesicles as shuttles of tumor biomarkers and anti-tumor drugs.Front. Oncol.2014426710.3389/fonc.2014.0026725340037
    [Google Scholar]
  7. WangL.P. FengS.Y. YuG. SongB. ChenH. ZhangZ.W. Research progress of exosomes in diabetes mellitus.Chin Med Biotech.201914366368
    [Google Scholar]
  8. ZubiriI. Posada-AyalaM. Sanz-MarotoA. CalvoE. Martin-LorenzoM. Gonzalez-CaleroL. de la CuestaF. LopezJ.A. Fernandez-FernandezB. OrtizA. VivancoF. Alvarez-LlamasG. Diabetic nephropathy induces changes in the proteome of human urinary exosomes as revealed by label-free comparative analysis.J. Proteomics2014969210210.1016/j.jprot.2013.10.03724211404
    [Google Scholar]
  9. KalaniA. MohanA. GodboleM.M. BhatiaE. GuptaA. SharmaR.K. TiwariS. Wilm’s tumor-1 protein levels in urinary exosomes from diabetic patients with or without proteinuria.PLoS One201383e6017710.1371/journal.pone.006017723544132
    [Google Scholar]
  10. AlbertiK.G.M.M. ZimmetP.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO Consultation.Diabet. Med.199815753955310.1002/(SICI)1096‑9136(199807)15:7<539::AID‑DIA668>3.0.CO;2‑S9686693
    [Google Scholar]
  11. Expert consensus on diagnosis and treatment of diabetic nephropathy.Zhonghua Yi Xue Za Zhi2020100247260
    [Google Scholar]
  12. ChenI.H. XueL. HsuC.C. PaezJ.S.P. PanL. AndaluzH. WendtM.K. IliukA.B. ZhuJ.K. TaoW.A. Phosphoproteins in extracellular vesicles as candidate markers for breast cancer.Proc. Natl. Acad. Sci. USA2017114123175318010.1073/pnas.161808811428270605
    [Google Scholar]
  13. KanehisaM. GotoS. KEGG: kyoto encyclopedia of genes and genomes.Nucleic Acids Res.2000281273010.1093/nar/28.1.2710592173
    [Google Scholar]
  14. KanehisaM. Toward understanding the origin and evolution of cellular organisms.Protein Sci.201928111947195110.1002/pro.371531441146
    [Google Scholar]
  15. KanehisaM. FurumichiM. SatoY. Ishiguro-WatanabeM. TanabeM. KEGG: integrating viruses and cellular organisms.Nucleic Acids Res.202149D1D545D55110.1093/nar/gkaa97033125081
    [Google Scholar]
  16. ZhengR. DuM. WangX. XuW. LiangJ. WangW. LvQ. QinC. ChuH. WangM. YuanL. QianJ. ZhangZ. Exosome–transmitted long non-coding RNA PTENP1 suppresses bladder cancer progression.Mol. Cancer201817114310.1186/s12943‑018‑0880‑330285771
    [Google Scholar]
  17. JinZ. Study on relationship between biomarkers of lectin pathway of complement and type 2 diabetic kidney disease.PhD thesis, China Medical University, 2018.
    [Google Scholar]
  18. YunzhiW. LijueR. WenjuanN. Correlation of the combined detection of Lp-PLA2, hs-CRP and early kidney disease in type 2 diabetes.Chin J Practicle Med.2017442729
    [Google Scholar]
  19. SchaeferE.J. McNamaraJ.R. AsztalosB.F. TaylerT. DalyJ.A. GleasonJ.L. SemanL.J. FerrariA. RubensteinJ.J. Effects of atorvastatin versus other statins on fasting and postprandial C-reactive protein and lipoprotein-associated phospholipase A2 in patients with coronary heart disease versus control subjects.Am. J. Cardiol.20059591025103210.1016/j.amjcard.2005.01.02315842965
    [Google Scholar]
  20. Munthe-FogL. HummelshøjT. MaY.J. HansenB.E. KochC. MadsenH.O. SkjødtK. GarredP. Characterization of a polymorphism in the coding sequence of FCN3 resulting in a Ficolin-3 (Hakata antigen) deficiency state.Mol. Immunol.20084592660266610.1016/j.molimm.2007.12.01218261799
    [Google Scholar]
  21. GiltayR. TimplR. KostkaG. Sequence, recombinant expression and tissue localization of two novel extracellular matrix proteins, fibulin-3 and fibulin-4.Matrix Biol.199918546948010.1016/S0945‑053X(99)00038‑410601734
    [Google Scholar]
  22. KobayashiN. KostkaG. GarbeJ.H.O. KeeneD.R. BächingerH.P. HanischF.G. MarkovaD. TsudaT. TimplR. ChuM.L. SasakiT. A comparative analysis of the fibulin protein family. Biochemical characterization, binding interactions, and tissue localization.J. Biol. Chem.200728216118051181610.1074/jbc.M61102920017324935
    [Google Scholar]
  23. DjokicJ. Fagotto-KaufmannC. BartelsR. NeleaV. ReinhardtD.P. Fibulin-3, -4, and -5 are highly susceptible to proteolysis, interact with cells and heparin, and form multimers.J. Biol. Chem.201328831228212283510.1074/jbc.M112.43915823782690
    [Google Scholar]
  24. TianH. LiuJ. ChenJ. GatzaM.L. BlobeG.C. Fibulin-3 is a novel TGF-β pathway inhibitor in the breast cancer microenvironment.Oncogene201534455635564710.1038/onc.2015.1325823021
    [Google Scholar]
  25. MengX. Nikolic-PatersonD.J. LanH.Y. TGF-β: the master regulator of fibrosis.Nat. Rev. Nephrol.201612632533810.1038/nrneph.2016.4827108839
    [Google Scholar]
  26. ElshourbagyN.A. WalkerD.W. PaikY.K. BoguskiM.S. FreemanM. GordonJ.I. TaylorJ.M. Structure and expression of the human apolipoprotein A-IV gene.J. Biol. Chem.1987262177973798110.1016/S0021‑9258(18)47513‑83036793
    [Google Scholar]
  27. Van TolA. VerhoevenG. VerhoevenG. AuwerxJ. Apolipoprotein A-IV messenger ribonucleic acid abundance is regulated in a tissue-specific manner.Endocrinology199012642153216310.1210/endo‑126‑4‑21532318160
    [Google Scholar]
  28. WangF. KohanA.B. LoC.M. LiuM. HowlesP. TsoP. Apolipoprotein A-IV: a protein intimately involved in metabolism.J. Lipid Res.20155681403141810.1194/jlr.R05275325640749
    [Google Scholar]
  29. VowinkelT. MoriM. KrieglsteinC.F. RussellJ. SaijoF. BharwaniS. TurnageR.H. DavidsonW.S. TsoP. GrangerD.N. KalogerisT.J. Apolipoprotein A-IV inhibits experimental colitis.J. Clin. Invest.2004114226026910.1172/JCI20042123315254593
    [Google Scholar]
  30. QinX. SwertfegerD.K. ZhengS. HuiD.Y. TsoP. ApolipoproteinA. Apolipoprotein AIV: a potent endogenous inhibitor of lipid oxidation.Am. J. Physiol. Heart Circ. Physiol.19982745H1836H184010.1152/ajpheart.1998.274.5.H18369612397
    [Google Scholar]
  31. PetersK.E. DavisW.A. ItoJ. BringansS.D. LipscombeR.J. DavisT.M.E. Validation of a protein biomarker test for predicting renal decline in type 2 diabetes: The Fremantle Diabetes Study Phase II.J. Diabetes Complications2019331210740610.1016/j.jdiacomp.2019.07.00331669066
    [Google Scholar]
  32. ChengC.W. ChangC.C. ChenH.W. LinC.Y. ChenJ.S. Serum ApoA4 levels predicted the progression of renal impairment in T2 DM.Eur. J. Clin. Invest.2018486e1293710.1111/eci.1293729675916
    [Google Scholar]
  33. BoesE. FliserD. RitzE. KönigP. LhottaK. MannJ.F.E. MüllerG.A. NeyerU. RiegelW. RieglerP. KronenbergF. Apolipoprotein A-IV predicts progression of chronic kidney disease: the mild to moderate kidney disease study.J. Am. Soc. Nephrol.200617252853610.1681/ASN.200507073316382017
    [Google Scholar]
  34. ShaoH. ImH. CastroC.M. BreakefieldX. WeisslederR. LeeH. New Technologies for Analysis of Extracellular Vesicles.Chem. Rev.201811841917195010.1021/acs.chemrev.7b0053429384376
    [Google Scholar]
  35. ChenC.Y. RaoS.S. RenL. HuX.K. TanY.J. HuY. LuoJ. LiuY.W. YinH. HuangJ. CaoJ. WangZ.X. LiuZ.Z. LiuH.M. TangS.Y. XuR. XieH. Exosomal DMBT1 from human urine-derived stem cells facilitates diabetic wound repair by promoting angiogenesis.Theranostics2018861607162310.7150/thno.2295829556344
    [Google Scholar]
  36. ZhouQ. XieF. ZhouB. WangJ. WuB. LiL. KangY. DaiR. JiangY. Differentially expressed proteins identified by TMT proteomics analysis in bone marrow microenvironment of osteoporotic patients.Osteoporos. Int.20193051089109810.1007/s00198‑019‑04884‑030739146
    [Google Scholar]
/content/journals/cp/10.2174/0115701646309538240805093732
Loading
/content/journals/cp/10.2174/0115701646309538240805093732
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test