Skip to content
2000
Volume 6, Issue 2
  • ISSN: 2666-7967
  • E-ISSN: 2666-7975

Abstract

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) unleashed a global pneumonia pandemic, causing significant harm to both physical and mental health. It emphasized the urgency for specialized therapies and protective measures. Approaches, including immunotherapy, antiviral drugs, and lifestyle improvements, like diet and exercise, have shown promise in controlling viral spread before widespread vaccination. However, COVID-19 vaccinations, while critical for reducing disease severity, have been associated with potential side effects, including transient cognitive impairment, rare renal disorders, physiologic anomalies, and dermatological reactions. The scientific community continues to rigorously study these issues to ensure the safety and efficacy of vaccination programs and to address the multifaceted impact of the pandemic.

Loading

Article metrics loading...

/content/journals/covid/10.2174/0126667975285693240427073251
2024-05-06
2025-07-15
Loading full text...

Full text loading...

References

  1. ZhouP. YangX.L. WangX.G. A pneumonia outbreak associated with a new coronavirus of probable bat origin.Nature2020579779827027310.1038/s41586‑020‑2012‑7 32015507
    [Google Scholar]
  2. WuF. ZhaoS. YuB. A new coronavirus associated with human respiratory disease in China.Nature2020579779826526910.1038/s41586‑020‑2008‑3 32015508
    [Google Scholar]
  3. WHO COVID dashboardAvailable from: https://COVID-19.who.int/ (visited 18 March, 2024).
  4. WangC. HorbyP.W. HaydenF.G. GaoG.F. A novel coronavirus outbreak of global health concern.Lancet20203951022347047310.1016/S0140‑6736(20)30185‑9 31986257
    [Google Scholar]
  5. LangeK.W. The prevention of COVID-19 and the need for reliable data.Mov Nutr Health Dis202045363
    [Google Scholar]
  6. LangeK.W. Mental health problems in COVID-19 and the need for reliable data.Movement Nutrit Health Dis202046469
    [Google Scholar]
  7. LangeK.W. NakamuraY. Lifestyle factors in the prevention of COVID-19.Global Health J20204414615210.1016/j.glohj.2020.11.002 33520339
    [Google Scholar]
  8. LangeK.W. NakamuraY. Nakamura movement and nutrition in COVID-19.Mov Nutr Health Dis2020489
    [Google Scholar]
  9. LiuT.B. ChenX.Y. MiaoG.D. Recommendations on diagnostic criteria and prevention of SARS-related mental disorders.J. Clin. Psychiatry2003133188191
    [Google Scholar]
  10. KaurR.J. DuttaS. BhardwajP. Adverse events reported from COVID-19 vaccine trials: A systematic review.Indian J. Clin. Biochem.202136442743910.1007/s12291‑021‑00968‑z 33814753
    [Google Scholar]
  11. MushtaqH.A. KhedrA. KoritalaT. BartlettB.N. JainN.K. KhanS.A. A review of adverse effects of COVID-19 vaccines.Infez. Med.2022301110 35350266
    [Google Scholar]
  12. MaunderR. HunterJ. VincentL. The immediate psychological and occupational impact of the 2003 SARS outbreak in a teaching hospital.CMAJ20031681012451251 12743065
    [Google Scholar]
  13. RogersJ.P. ChesneyE. OliverD. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: A systematic review and meta-analysis with comparison to the COVID-19 pandemic.Lancet Psychiatry20207761162710.1016/S2215‑0366(20)30203‑0 32437679
    [Google Scholar]
  14. JinY.H. CaiL. ChengZ.S. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version).Mil. Med. Res.202071410.1186/s40779‑020‑0233‑6 32029004
    [Google Scholar]
  15. LangeK.W. NakamuraY. Food bioactives, micronutrients, immune function and COVID-19.J. Food Bioact.2020101810.31665/JFB.2020.10222
    [Google Scholar]
  16. NiemanD.C. WentzL.M. The compelling link between physical activity and the body’s defense system.J. Sport Health Sci.20198320121710.1016/j.jshs.2018.09.009 31193280
    [Google Scholar]
  17. GuanH. OkelyA.D. Aguilar-FariasN. Promoting healthy movement behaviours among children during the COVID-19 pandemic.Lancet Child Adolesc. Health20204641641810.1016/S2352‑4642(20)30131‑0 32458805
    [Google Scholar]
  18. ChenP. MaoL. NassisG.P. HarmerP. AinsworthB.E. LiF. Coronavirus disease (COVID-19): The need to maintain regular physical activity while taking precautions.J. Sport Health Sci.20209210310410.1016/j.jshs.2020.02.001 32099716
    [Google Scholar]
  19. QinF. SongY. NassisG.P. Physical activity, screen time, and emotional well-being during the 2019 novel coronavirus outbreak in China.Int. J. Environ. Res. Public Health20201714517010.3390/ijerph17145170 32709003
    [Google Scholar]
  20. YangF. ZhangY. TariqA. Food as medicine: A possible preventive measure against coronavirus disease (COVID‐19).Phytother. Res.202034123124313610.1002/ptr.6770 32468635
    [Google Scholar]
  21. HaoQ. DongB.R. WuT. Probiotics for preventing acute upper respiratory tract infection Cochrane Datab.Syst. Rev.20152CD006895
    [Google Scholar]
  22. Abdool KarimS.S. de OliveiraT. New SARS-CoV-2 variants—clinical, public health, and vaccine implications.N. Engl. J. Med.2021384191866186810.1056/NEJMc2100362 33761203
    [Google Scholar]
  23. MascellinoM.T. Di TimoteoF. De AngelisM. OlivaA. Overview of the main anti-SARS-CoV-2 vaccines: Mechanism of action, efficacy and safety.Infect. Drug Resist.2021143459347610.2147/IDR.S315727 34511939
    [Google Scholar]
  24. GhiasiN. ValizadehR. ArabsorkhiM. Efficacy and side effects of Sputnik V, Sinopharm and AstraZeneca vaccines to stop COVID-19; A review and discussion.Immunopathologia Persa202172e3110.34172/ipp.2021.31
    [Google Scholar]
  25. GrandeA.J. KeoghJ. HoffmannT.C. BellerE.M. C.B. Del mar exercise versus no exercise for the occurrence, severity and duration of acute respiratory infections cochrane datab.Syst. Rev.20156
    [Google Scholar]
  26. WongC.M. LaiH.K. OuC.Q. Is exercise protective against influenza-associated mortality?PLoS One200835e210810.1371/journal.pone.0002108 18461130
    [Google Scholar]
  27. LeandroC.G. Ferreira e SilvaW.T. Lima-SilvaA.E. COVID-19 and exercise-induced immunomodulation.Neuroimmunomodulation2020271757810.1159/000508951 32506067
    [Google Scholar]
  28. ColleyR.C. BushnikT. LangloisK. Exercise and screen time during the COVID-19 pandemic.Health Rep.2020316311 32672923
    [Google Scholar]
  29. MacIntyreC.R. WangQ. Physical distancing, face masks, and eye protection for prevention of COVID-19.Lancet2020395102421950195110.1016/S0140‑6736(20)31183‑1 32497511
    [Google Scholar]
  30. RehmJ. RoomR. GrahamK. MonteiroM. GmelG. SemposC.T. The relationship of average volume of alcohol consumption and patterns of drinking to burden of disease: An overview.Addiction200398912091228
    [Google Scholar]
  31. SzaboG. Alcohol’s contribution to compromised immunity.Alcohol Health Res. World19972113041 15706761
    [Google Scholar]
  32. LiW.H. MooreM.J. VasilievaN. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus.Nature20034266965450454
    [Google Scholar]
  33. CaiG.S. Bulk and single-cell transcriptomics identify tobacco-use disparity in lung gene expression of ACE2, the receptor of 2019-nCov.2019Available from: https://www.medrxiv.org/content/10.1101/2020.02.05.20020107v3 Accessed August 8, 2020.
  34. MacDonaldN.E. Vaccine hesitancy: Definition, scope and determinants.Vaccine201533344161416410.1016/j.vaccine.2015.04.036 25896383
    [Google Scholar]
  35. Report of the SAGE Working Group on Vaccine Hesitancy. Available from: https://www.who.int/immunization/sage/meetings/2014/october/1_Report_WORKING_GROUP_vaccine_hesitancy_final.pdf (accessed on 26 December 2020).
  36. SmithT. BushekJ. ProsserT. COVID-19 drug therapy – Potential options.Clinical Drug Information.Amsterdam, The Netherlands: Elsevier2020
    [Google Scholar]
  37. van Zyl-SmitR.N. BrunetL. PaiM. The convergence of the global smoking, COPD, tuberculosis, HIV, and respiratory infection epidemics.In: Infect. Dis. Clin. North Am.2010243693703
    [Google Scholar]
  38. (a GuanW.J. NiZ.Y. HuY. Clinical characteristics of coronavirus disease 2019 in China.Engl J Med20203821817081720
    [Google Scholar]
  39. (b LippiG. HenryB.M. Active smoking is not associated with severity of coronavirus disease 2019 (COVID-19).Eur. J. Intern. Med.202075107108
    [Google Scholar]
  40. VardavasC.I. COVID-19 and smoking: A systematic review of the evidence.Tob. Induc. Dis.20201820
    [Google Scholar]
  41. WangY. DengZ. ShiD. How effective is a mask in preventing COVID‐19 infection?Med. Devices Sens.202141e1016310.1002/mds3.10163 33615150
    [Google Scholar]
  42. TabatabaeizadehS.A. Airborne transmission of COVID-19 and the role of face mask to prevent it: A systematic review and meta-analysis.Eur. J. Med. Res.2021261110.1186/s40001‑020‑00475‑6 33388089
    [Google Scholar]
  43. RomanelliF. Chloroquine and hydroxychloroquine as inhibitors of human immunodeficiency virus (HIV-1) activity.Curr. Pharm. Des.20041026432648
    [Google Scholar]
  44. WangM. CaoR. ZhangL. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro.Cell Res.202030326927110.1038/s41422‑020‑0282‑0 32020029
    [Google Scholar]
  45. BiotC. DaherW. ChavainN. Design and synthesis of hydroxyferroquine derivatives with antimalarial and antiviral activities.J. Med. Chem.20064992845284910.1021/jm0601856 16640347
    [Google Scholar]
  46. YounisN.K. ZareefR.O. Al HassanS.N. BitarF. EidA.H. ArabiM. Hydroxychloroquine in COVID-19 patients: Pros and cons.Front. Pharmacol.20201159798510.3389/fphar.2020.597985 33364965
    [Google Scholar]
  47. FoxR.I. Mechanism of action of hydroxychloroquine as an antirheumatic drug.Semin. Arthritis Rheum.1993232Suppl. 1829110.1016/S0049‑0172(10)80012‑5 8278823
    [Google Scholar]
  48. CvetkovicR.S. GoaK.L. Lopinavir/ritonavir.Drugs200363876980210.2165/00003495‑200363080‑00004 12662125
    [Google Scholar]
  49. ChuC.M. ChengV.C. HungI.F. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings.Thorax200459325225610.1136/thorax.2003.012658 14985565
    [Google Scholar]
  50. WuA. PengY. HuangB. Genome composition and divergence of the novel coronavirus (2019-NCoV) originating in China.Cell Host Microbe2020273325328 32035028
    [Google Scholar]
  51. RatiaK. PeganS. TakayamaJ. A noncovalent class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication.Proc. Natl. Acad. Sci. USA200810542161191612410.1073/pnas.0805240105 18852458
    [Google Scholar]
  52. Kaletra (lopinavir and ritonavir) tablet.2019Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/021251s058
  53. CaoB. WangY. WenD. A trial of lopinavir-ritonavir in adults hospitalized with severe COVID-19.N. Engl. J. Med.2020382191787179910.1056/NEJMoa2001282 32187464
    [Google Scholar]
  54. PetersD.H. FriedelH.A. McTavishD. Azithromycin.Drugs199244575079910.2165/00003495‑199244050‑00007 1280567
    [Google Scholar]
  55. KournoutouG.G. DinosG. Azithromycin through the lens of the COVID-19 treatment.Antibiotics20221181063
    [Google Scholar]
  56. GautretP. LagierJ.C. ParolaP. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial.Int. J. Antimicrob. Agents202056110594910.1016/j.ijantimicag.2020.105949 32205204
    [Google Scholar]
  57. CarrA. MagginiS. Vitamin C and immune function.Nutrients2017911121110.3390/nu9111211 29099763
    [Google Scholar]
  58. KimY. KimH. BaeS. Vitamin C is an essential factor on the anti-viral immune responses through the production of interferon-alpha/beta at the initial stage of influenza A virus (H3N2) infection.Immune Netw.2013132707410.4110/in.2013.13.2.70 23700397
    [Google Scholar]
  59. Al SulaimanK. AljuhaniO. SalehK.B. Ascorbic acid as an adjunctive therapy in critically ill patients with COVID-19: A propensity score matched study.Sci. Rep.202111117648
    [Google Scholar]
  60. RussellC.D. MillarJ.E. BaillieJ.K. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury.Lancet20203951022347347510.1016/S0140‑6736(20)30317‑2 32043983
    [Google Scholar]
  61. LamontagneF. RochwergB. LytvynL. Corticosteroid therapy for sepsis: A clinical practice guideline.BMJ2018362k328410.1136/bmj.k3284 30097460
    [Google Scholar]
  62. US Food and Drug Administration.Pfizer-BioNTech COVID-19 vaccine emergency use authorization.Available from: https://www.fda.gov/media/144412/download Accessed May 21, 2021.
    [Google Scholar]
  63. HolderJ. Tracking coronavirus vaccinations around the world.The New York Times Available from: https://www.nytimes.com/interactive/2021/world/covid-vaccinations-tracker.html Accessed June 3, 2021.
  64. KirzingerA. KearneyA. HamelL. BrodieM. KFF/The washington post frontline health care workers survey.2021Available from: https://www.kff.org/mental-health/poll-finding/kff-washington-post-health-care-workers/
  65. AttiaG.H. MoemenY.S. YounsM. IbrahimA.M. AbdouR. El RaeyM.A. Antiviral zinc oxide nanoparticles mediated by hesperidin and in silico comparison study between antiviral phenolics as anti-SARS-CoV-2.Colloids Surf. B Biointerfaces202120311172410.1016/j.colsurfb.2021.111724 33838582
    [Google Scholar]
  66. RaiP.K. UsmaniZ. ThakurV.K. GuptaV.K. MishraY.K. Tackling COVID-19 pandemic through nanocoatings: Confront and exactitude.Curr Res Green Sustain Chem2020310001110.1016/j.crgsc.2020.100011
    [Google Scholar]
  67. RazzaqueM.S. COVID-19 pandemic: Can maintaining optimal zinc balance enhance host resistance?Tohoku J. Exp. Med.2020251317518110.1620/tjem.251.175 32641644
    [Google Scholar]
  68. Centers for disease control and prevention. In: Information for Clinicians on Therapeutic Options for COVID-19.AtlantaGeorgia, USA2020
    [Google Scholar]
  69. World Health Organization; Geneva, Switzerland: 2020. Clinical management of severe acute respiratory infection when novel coronavirus (nCoV) infection is suspected.2020Available from: https://www.who.int/publications-detail/clinical-management-of-severe-acute-respiratory-infection-when-novel-coronavirus-(ncov)-infection-is-suspected
  70. WHO issues its first emergency use validation for a COVID-19 vaccine and emphasizes need for equitable global access.Available from: https://www.who.int/news/item/31-12-2020-who-issues-its-first-emergency-use-validation-for-a-covid-19-vaccine-and-emphasizes-need-for-equitable-global-access#:~:text=The%20World%20Health%20Organization%20(WHO,outbreak%20began %20a%20year%20ago [Accessed 2021 Nov 15].
  71. FoodUS COVID-19 Vaccines. The FDA has regulatory processes in place to facilitate the development of COVID-19 vaccines that meet the FDA's rigorous scientific standards.Available from: https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/covid-19-vaccines
  72. BadenL.R. El SahlyH.M. EssinkB. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine.N. Engl. J. Med.2021384540341610.1056/NEJMoa2035389 33378609
    [Google Scholar]
  73. PolackF.P. ThomasS.J. KitchinN. C4591001 clinical trial group. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine.N. Engl. J. Med.2020383272603261510.1056/NEJMoa2034577 33301246
    [Google Scholar]
  74. KoritalaT. HussainA. PleshkovaY. A narrative review of emergency use authorization versus full FDA approval and its effect on COVID-19 vaccination hesitancy.Infez. Med.202129333934410.53854/liim‑2903‑4 35146338
    [Google Scholar]
  75. KimmelS.R. Vaccine adverse events: Separating myth from reality.Am. Fam. Physician2002661121132120 12484693
    [Google Scholar]
  76. CirilloN. Reported orofacial adverse effects of COVID‐19 vaccines: The knowns and the unknowns.J. Oral Pathol. Med.202150442442710.1111/jop.13165 33527524
    [Google Scholar]
  77. VoyseyM. ClemensS.A.C. MadhiS.A. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK.Lancet2021397102699911110.1016/S0140‑6736(20)32661‑1 33306989
    [Google Scholar]
  78. GreinacherA. ThieleT. WarkentinT.E. WeisserK. KyrleP.A. EichingerS. Thrombotic thrombocytopenia after ChAdOx1 nCov-19 vaccination.N. Engl. J. Med.2021384222092210110.1056/NEJMoa2104840 33835769
    [Google Scholar]
  79. LogunovD.Y. DolzhikovaI.V. ShcheblyakovD.V. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: An interim analysis of a randomised controlled phase 3 trial in Russia.Lancet20213971027567168110.1016/S0140‑6736(21)00234‑8 33545094
    [Google Scholar]
  80. BombackA.S. KudoseS. D’AgatiV.D. De novo and relapsing glomerular diseases after COVID-19 vaccination: What do we know so far?Am. J. Kidney Dis.202178447748010.1053/j.ajkd.2021.06.004 34182049
    [Google Scholar]
  81. GutiérrezS. DottoB. PetitiJ.P. Minimal change disease following influenza vaccination and acute renal failure: Just a coincidence?Nefrologia2012323414415 22592437
    [Google Scholar]
  82. TschöpeC. AmmiratiE. BozkurtB. Myocarditis and inflammatory cardiomyopathy: Current evidence and future directions.Nat. Rev. Cardiol.202118316919310.1038/s41569‑020‑00435‑x 33046850
    [Google Scholar]
  83. KimH.W. JenistaE.R. WendellD.C. Patients with acute myocarditis following mRNA COVID-19 vaccination.JAMA Cardiol.20216101196120110.1001/jamacardio.2021.2828 34185046
    [Google Scholar]
  84. DiazG.A. ParsonsG.T. GeringS.K. MeierA.R. HutchinsonI.V. RobicsekA. Myocarditis and pericarditis after vaccination for COVID-19.JAMA2021326121210121210.1001/jama.2021.13443 34347001
    [Google Scholar]
  85. European medicines agency. Dashboards. Available from: https://www.ema.europa.eu/en/homepage
  86. MerchantH. Might post-injection distribution of CoViD vaccines to the brain explain the rare fatal events of cerebral venous sinus thrombosis (CVST).2021Available from: https://pure.hud.ac.uk/en/publications/might-post-injection-distribution-of-covid-vaccines-to-the-brain-
  87. COVID-19 coronavirus pandemic.2021 Available from: https://www.medbox.org/document/covid-19-coronavirus-pandemic-worldometer
  88. NoelK. Masihi fighting infection using immunomodulatory agents.Expert Opin. Biol. Ther.2001641653
    [Google Scholar]
  89. DhamaK. SharunK. TiwariR. COVID-19, an emerging coronavirus infection: advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics.Hum. Vaccin. Immunother.20201661232123810.1080/21645515.2020.1735227 32186952
    [Google Scholar]
  90. COVID-19 treatment guidelines.2024Avaiable from: https://www.covid19treatmentguidelines.nih.gov/management/clinical-management-of-adults/clinical-management-of-adults-summary/ (Visited 02 Feb 2024.
  91. GillenwaterS. RahaghiF. HadehA. Remdesivir for the treatment of COVID-19-preliminary report.N. Engl. J. Med.20203831099299410.1056/NEJMc2022236 32649074
    [Google Scholar]
  92. ChatterjeeR. GhoshM. SahooS. Next-generation bioinformatics approaches and resources for coronavirus vaccine discovery and development-A perspective review.Vaccines20219881210.3390/vaccines9080812 34451937
    [Google Scholar]
  93. MunozF.M. CramerJ.P. DekkerC.L. Vaccine-associated enhanced disease: Case definition and guidelines for data collection, analysis, and presentation of immunization safety data.Vaccine202139223053306610.1016/j.vaccine.2021.01.055 33637387
    [Google Scholar]
  94. Regev-YochayG. GonenT. GilboaM. Efficacy of a fourth dose of COVID-19 mRNA vaccine against omicron.N. Engl. J. Med.2022386141377138010.1056/NEJMc2202542 35297591
    [Google Scholar]
  95. Solís ArceJ.S. WarrenS.S. MeriggiN.F. COVID-19 vaccine acceptance and hesitancy in low- and middle-income countries.Nat. Med.20212781385139410.1038/s41591‑021‑01454‑y 34272499
    [Google Scholar]
/content/journals/covid/10.2174/0126667975285693240427073251
Loading
/content/journals/covid/10.2174/0126667975285693240427073251
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): antiviral drugs; COVID-19; immunotherapy; mental health; SARS-CoV-2; vaccination
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test