Skip to content
2000
Volume 6, Issue 1
  • ISSN: 2666-7967
  • E-ISSN: 2666-7975

Abstract

Hypocrellin A and Pheophorbide a are well-known organic chemicals that may be contained in herbal products. They can act as photosensitizers and have a strong photodynamic effect on bacteria. In any case, are these photosensitizers appropriate for photodynamic treatment against the SARS-CoV-2 infection? The principles of photodynamic therapy are the same regardless of the target. It causes selective cytotoxicity at the site of infection through activation of photosensitizer under light irradiation to generate cytotoxic reactive oxygen species (ROS), leading to the death of infected cells. Is antimicrobial photodynamic therapy a good choice against the SARS-CoV-2 virus?

Methods

Nine electronic databases were searched, including WanFang Data, PubMed, Science Direct, Scopus, Web of Science, Springer Link, SciFinder, and China National Knowledge Infrastructure (CNKI), regardless of term, and language restrictions. All eligible studies were analyzed and summarized in this review.

Results

“Hypocrellin A” and “Pheophorbide a” were effective for bacterial and SARS-CoV-2 in photodynamic therapy. 99.98% of was killed when incubated with the 10-3 M Hypocrellin A and illuminated a 490 nm in 30 mW/cm2 for 120 min. The difference was Pheophorbide a could also inhibit gram-negative bacteria, such as with a concentration of 1 μg/ml for 2 hr irradiated of a 671 nm laser in 0.3 W of 1 J, and a nearly 100% suppression rate. “Hypocrellin A” and “Pheophorbide a” with antiviral activity, and virucidal effects for preventing and treating the infection.

Conclusion

Based on previous studies, “Hypocrellin A” and “Pheophorbide a” are photosensitizers used for photodynamic therapy against bacteria or SARS-CoV-2, however, much more works need to be done in the future including the development of a better way for systematic infectious disease, and its correlated infections for the application of photodynamic therapy.

Loading

Article metrics loading...

/content/journals/covid/10.2174/0126667975281056240131043212
2024-02-12
2025-01-06
Loading full text...

Full text loading...

References

  1. HudsonJ.B. ZhouJ. ChenJ. HarrisL. YipL. TowersG.H.N. Hypocrellin, from Hypocrella bambuase, is phototoxic to human immunodeficiency virus.Photochem. Photobiol.199460325325510.1111/j.1751‑1097.1994.tb05100.x 7972377
    [Google Scholar]
  2. ChanJ. TangP. HonP.M. Pheophorbide a, a major antitumor component purified from Scutellaria barbata, induces apoptosis in human hepatocellular carcinoma cells.Planta Med.2006721283310.1055/s‑2005‑873149 16450292
    [Google Scholar]
  3. EsteyE.P. BrownK. DiwuZ. Hypocrellins as photosensitizers for photodynamic therapy: A screening evaluation and pharmacokinetic study.Cancer Chemother. Pharmacol.199637434335010.1007/s002800050395 8548880
    [Google Scholar]
  4. LiW.T. TsaoH.W. ChenY.Y. ChengS.W. HsuY.C. A study on the photodynamic properties of chlorophyll derivatives using human hepatocellular carcinoma cells.Photochem. Photobiol. Sci.20076121341134810.1039/b704539e 18046491
    [Google Scholar]
  5. LeeW.Y. LimD.S. KoS.H. Photoactivation of pheophorbide a induces a mitochondrial-mediated apoptosis in Jurkat leukaemia cells.J. Photochem. Photobiol. B200475311912610.1016/j.jphotobiol.2004.05.005 15341925
    [Google Scholar]
  6. KumarA. PrasoonP. KumariC. SARS‐CoV‐2‐specific virulence factors in COVID‐19.J. Med. Virol.20219331343135010.1002/jmv.26615 33085084
    [Google Scholar]
  7. RapozziV. JuarranzA. HabibA. IhanA. StrgarR. Is haem the real target of COVID-19?Photodiagn. Photodyn. Ther.20213510238110.1016/j.pdpdt.2021.102381 34119708
    [Google Scholar]
  8. CourrolL.C. de Oliveira SilvaF.R. MasilamaniV. SARS-CoV-2, hemoglobin and protoporphyrin IX: Interactions and perspectives.Photodiagn. Photodyn. Ther.20213410232410.1016/j.pdpdt.2021.102324 33965601
    [Google Scholar]
  9. SuY. SunJ. RaoS. CaiY. YangY. Photodynamic antimicrobial activity of hypocrellin A.J. Photochem. Photobiol. B20111031293410.1016/j.jphotobiol.2011.01.008 21300554
    [Google Scholar]
  10. UsachevaM.N. TeichertM.C. BielM.A. The role of the methylene blue and toluidine blue monomers and dimers in the photoinactivation of bacteria.J. Photochem. Photobiol. B2003711-3879810.1016/j.jphotobiol.2003.06.002 14705643
    [Google Scholar]
  11. YiG. SonJ. YooJ. ParkC. KooH. Rhamnolipid nanoparticles for in vivo drug delivery and photodynamic therapy.Nanomedicine 201919122110.1016/j.nano.2019.03.015 30981820
    [Google Scholar]
  12. ChanB.C.L. DharmaratneP. WangB. Hypericin and pheophorbide a mediated photodynamic therapy fighting MRSA wound infections: A translational study from in vitro to in vivo.Pharmaceutics2021139139910.3390/pharmaceutics13091399 34575478
    [Google Scholar]
  13. SzeimiesR.M. Photodynamic therapy for human papilloma virus-related diseases in dermatology.Med. Laser Appl.200318210711610.1078/1615‑1615‑00096
    [Google Scholar]
  14. FrischS. GuoA.M. Diagnostic methods and management strategies of herpes simplex and herpes zoster infections.Clin. Geriatr. Med.201329250152610.1016/j.cger.2013.01.003 23571042
    [Google Scholar]
  15. DangL. SealeJ.P. QuX. Effects of hypocrellin A on expression of vascular endothelial growth factor and endothelin-1 in human umbilical endothelial cells.Am. J. Chin. Med.200735471372310.1142/S0192415X0700520X 17708637
    [Google Scholar]
  16. HuangC. FengF. ShiY. Protein kinase C inhibitors reduce SARS-CoV-2 replication in cultured cells.Microbiol. Spectr.2022105e01056e2210.1128/spectrum.01056‑22 36000889
    [Google Scholar]
  17. Jimenez-AlemanG.H. CastroV. LondaitsbehereA. SARS-CoV-2 fears green: The chlorophyll catabolite pheophorbide a is a potent antiviral.Pharmaceuticals20211410104810.3390/ph14101048 34681272
    [Google Scholar]
  18. BouslamaL. HayashiK. LeeJ.B. GhorbelA. HayashiT. Potent virucidal effect of pheophorbide a and pyropheophorbide a on enveloped viruses.J. Nat. Med.201165122923310.1007/s11418‑010‑0468‑8 20835849
    [Google Scholar]
  19. DiasL.D. BlancoK.C. BagnatoV.S. COVID-19: Beyond the virus. The use of photodynamic therapy for the treatment of infections in the respiratory tract.Photodiagn. Photodyn. Ther.20203110180410.1016/j.pdpdt.2020.101804 32437972
    [Google Scholar]
  20. IrwinK.K. RenzetteN. KowalikT.F. JensenJ.D. Antiviral drug resistance as an adaptive process.Virus Evol.201621vew01410.1093/ve/vew014 28694997
    [Google Scholar]
  21. KimberlinD.W. WhitleyR.J. Antiviral resistance: Mechanisms, clinical significance, and future implications.J. Antimicrob. Chemother.199637340342110.1093/jac/37.3.403 9182098
    [Google Scholar]
  22. HidegÉ. JansenM.A.K. StridÅ. UV-B exposure, ROS, and stress: Inseparable companions or loosely linked associates?Trends Plant Sci.201318210711510.1016/j.tplants.2012.09.003 23084465
    [Google Scholar]
  23. WangJ. WuH. YangY. Bacterial species-identifiable magnetic nanosystems for early sepsis diagnosis and extracorporeal photodynamic blood disinfection.Nanoscale201810113214110.1039/C7NR06373C 29135009
    [Google Scholar]
  24. WainwrightM. Local treatment of viral disease using photodynamic therapy.Int. J. Antimicrob. Agents200321651052010.1016/S0924‑8579(03)00035‑9 12791463
    [Google Scholar]
  25. OgilbyP.R. Singlet oxygen: There is indeed something new under the sun.Chem. Soc. Rev.20103983181320910.1039/b926014p 20571680
    [Google Scholar]
  26. LenardJ. RabsonA. VanderoefR. Photodynamic inactivation of infectivity of human immunodeficiency virus and other enveloped viruses using hypericin and rose bengal: Inhibition of fusion and syncytia formation.Proc. Natl. Acad. Sci.199390115816210.1073/pnas.90.1.158 7678335
    [Google Scholar]
  27. MeunierT. DesmaretsL. BordageS. A photoactivable natural product with broad antiviral activity against enveloped viruses, including highly pathogenic coronaviruses.Antimicrob. Agents Chemother.2022662e01581e2110.1128/AAC.01581‑21 34807755
    [Google Scholar]
  28. de VriesR.D. SchmitzK.S. BovierF.T. Intranasal fusion inhibitory lipopeptide prevents direct-contact SARS-CoV-2 transmission in ferrets.Science202137165361379138210.1126/science.abf4896 33597220
    [Google Scholar]
  29. KipshidzeN. YeoN. KipshidzeN. Photodynamic therapy for COVID-19.Nat. Photonics2020141165165210.1038/s41566‑020‑00703‑9 32818638
    [Google Scholar]
  30. KipshidzeN. YeoN. KipshidzeN. Photodynamic and sonodynamic therapy of acute hypoxemic respiratory failure in patients with COVID-19.Photodiagn. Photodyn. Ther.20203110196110.1016/j.pdpdt.2020.101961 32818638
    [Google Scholar]
  31. ZhangB. ZhengL. HuangY. MoQ. WangX. QianK. Detection of nucleic acid lesions during photochemical inactivation of RNA viruses by treatment with methylene blue and light using real-time PCR.Photochem. Photobiol.201187236536910.1111/j.1751‑1097.2010.00870.x 21138441
    [Google Scholar]
  32. PachecoJ.A. MolenaK.F. MartinsC.R.O.G. CoronaS.A.M. BorsattoM.C. Photobiomodulation (PBMT) and Antimicrobial Photodynamic Therapy (aPDT) in oral manifestations of patients infected by Sars-CoV-2: Systematic review and meta-analysis.Bull. Natl. Res. Cent.202246114010.1186/s42269‑022‑00830‑z 35601476
    [Google Scholar]
  33. KassabG. GeraldeM.C. InadaN.M. AchilesA.E. GuerraV.G. BagnatoV.S. Nebulization as a tool for photosensitizer delivery to the respiratory tract.J. Biophotonics2019124e20180018910.1002/jbio.201800189 30191670
    [Google Scholar]
  34. MaG. KhanS.I. JacobM.R. Antimicrobial and antileishmanial activities of hypocrellins A and B.Antimicrob. Agents Chemother.200448114450445210.1128/AAC.48.11.4450‑4452.2004 15504880
    [Google Scholar]
  35. HashimotoM.C.E. PratesR.A. KatoI.T. NúñezS.C. CourrolL.C. RibeiroM.S. Antimicrobial photodynamic therapy on drug-resistant Pseudomonas aeruginosa-induced infection. An in vivo study.Photochem. Photobiol.201288359059510.1111/j.1751‑1097.2012.01137.x 22404212
    [Google Scholar]
  36. QuJ. CaiZ. LiuY. Persistent bacterial coinfection of a COVID-19 patient caused by a genetically adapted Pseudomonas aeruginosa chronic colonizer.Front. Cell. Infect. Microbiol.20211164192010.3389/fcimb.2021.641920 33816347
    [Google Scholar]
  37. RhoadesN.S. PinskiA.N. MonsibaisA.N. Acute SARS-CoV-2 infection is associated with an increased abundance of bacterial pathogens, including Pseudomonas aeruginosa in the nose.Cell Rep.202136910963710.1016/j.celrep.2021.109637 34433082
    [Google Scholar]
  38. HamblinM.R. HasanT. Photodynamic therapy: A new antimicrobial approach to infectious disease?Photochem. Photobiol. Sci.20043543645010.1039/b311900a 15122361
    [Google Scholar]
  39. QiM. ChiM. SunX. Novel nanomaterial-based antibacterial photodynamic therapies to combat oral bacterial biofilms and infectious diseases.Int. J. Nanomedicine2019146937695610.2147/IJN.S212807 31695368
    [Google Scholar]
  40. ZhouJ.H. XiaS.Q. ChenJ.R. WangX.S. ZhangB.W. The photodynamic property improvement of hypocrellin A by chelation with lanthanum ions.Chem. Commun.200312121372137310.1039/b302125d 12841247
    [Google Scholar]
/content/journals/covid/10.2174/0126667975281056240131043212
Loading
/content/journals/covid/10.2174/0126667975281056240131043212
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test