Skip to content
2000
Volume 12, Issue 6
  • ISSN: 1570-1794
  • E-ISSN: 1875-6271

Abstract

Liquid crystals are fascinating materials in many areas of applied science. They are widely known for their application in display technology and uses in other fields have also recently been identified, such as anisotropic networks, organic light-emitting diodes and photo- and semiconducting materials. Further applications in new areas continue to be developed, as well as effective solutions to problems associated with the limitations of liquid crystals. Designing novel thermotropic liquid crystals for applications in advanced functional materials involves the selection of a suitable central core, linking group and terminal functionality. Over the years, a very large number of heterocyclic compounds containing liquid crystal units have been synthesized. Interest in this field of research has increased considerably in recent years due to improvements in synthetic methodologies. This critical mini-review describes some basic design principles and synthetic approaches to prepare the most commonly found liquid crystals, especially fivemembered nitrogen heterocycles, such as 1,2,4- and 1,3,4-oxadiazols, isoxazole, 1,2,3-triazole, 1,3,4-thiadiazole, 1,3-thiazole and 2,1,3- benzothiadiazole.

Loading

Article metrics loading...

/content/journals/cos/10.2174/157017941206150828113416
2015-12-01
2025-01-24
Loading full text...

Full text loading...

/content/journals/cos/10.2174/157017941206150828113416
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test