Skip to content
2000
image of Synthesis, Characterization, and Docking Studies of 1,4-dien as a Potential Impurity in Bimatoprost Drug

Abstract

Introduction

The origin, synthesis, characterization and docking studies of ()-7-((1R,2R,3R,5S)-3,5-dihydroxy-2-((,1E,4E)-3-hydroxy-5-phenylpenta-1,4-dien-1-yl)cyclopentyl)-N-ethylhept-5-enamide, an impurity generated in the preparation of an anti-glaucoma agent-Bimatoprost has been described.

Methods

This impurity was controlled by employing 30% Pd/C, and the impurity level was brought to the permissible level, ., 0.03% (ICH guidelines) in the final drug preparation of Bimatoprost.

Results

Finally, induced-fit docking calculations were performed to theoretically evaluate the binding efficiencies of these inhibitors in the crystal structure of Prostaglandin F synthase (PGFS).

Conclusion

There are negligible differences in RMSD and docking scores between the two ligands, which amount to only 0.18 Å and 0.313 kcal/mol, respectively. These findings strongly indicate that both ligands are likely to exhibit similar biological functions and efficiencies.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794327619240924100026
2025-01-09
2025-05-01
Loading full text...

Full text loading...

References

  1. Lee D. Mantravadi A.V. Myers J.S. Patient considerations in ocular hypertension: Role of bimatoprost ophthalmic solution. Clin. Ophthalmol. 2017 11 1273 1280 10.2147/OPTH.S118689 28744094
    [Google Scholar]
  2. Guven Yilmaz S. Degirmenci C. Karakoyun Y.E. Yusifov E. Ates H. The efficacy and safety of bimatoprost/timolol maleate, latanoprost/timolol maleate, and travoprost/timolol maleate fixed combinations on 24-h IOP. Int. Ophthalmol. 2018 38 4 1425 1431 10.1007/s10792‑017‑0601‑8 28616797
    [Google Scholar]
  3. Batra R. Tailor R. Mohamed S. Ocular surface disease exacerbated glaucoma: Optimizing the ocular surface improves intraocular pressure control. J. Glaucoma 2014 23 1 56 60 10.1097/IJG.0b013e318264cd68 22828007
    [Google Scholar]
  4. Digiuni M. Fogagnolo P. Rossetti L. A review of the use of latanoprost for glaucoma since its launch. Expert Opin. Pharmacother. 2012 13 5 723 745 10.1517/14656566.2012.662219 22348427
    [Google Scholar]
  5. Matsou A. Anastasopoulos E. Investigational drugs targeting prostaglandin receptors for the treatment of glaucoma. Expert Opin. Investig. Drugs 2018 27 10 777 785 10.1080/13543784.2018.1526279 30227753
    [Google Scholar]
  6. Higginbotham E.J. Schuman J.S. Goldberg I. Gross R.L. VanDenburgh A.M. Chen K. Whitcup S.M. One-year, randomized study comparing bimatoprost and timolol in glaucoma and ocular hypertension. Arch. Ophthalmol. 2002 120 10 1286 1293 10.1001/archopht.120.10.1286 12365906
    [Google Scholar]
  7. Cantor L.B. Hoop J. Morgan L. WuDunn D. Catoira Y. Intraocular pressure-lowering efficacy of bimatoprost 0.03% and travoprost 0.004% in patients with glaucoma or ocular hypertension. Br. J. Ophthalmol. 2006 90 11 1370 1373 10.1136/bjo.2006.094326 16825272
    [Google Scholar]
  8. Heijl A. Leske M.C. Bengtsson B. Hyman L. Bengtsson B. Hussein M. Reduction of intraocular pressure and glaucoma progression: Results from the Early Manifest Glaucoma Trial. Arch. Ophthalmol. 2002 120 10 1268 1279 10.1001/archopht.120.10.1268 12365904
    [Google Scholar]
  9. Noecker R.S. Dirks M.S. Choplin N.T. Bernstein P. Batoosingh A.L. Whitcup S.M. A six-month randomized clinical trial comparing the intraocular pressure-lowering efficacy of bimatoprost and latanoprost in patients with ocular hypertension or glaucoma. Am. J. Ophthalmol. 2003 135 1 55 63 10.1016/S0002‑9394(02)01827‑5 12504698
    [Google Scholar]
  10. Gandolfi S. Simmons S.T. Sturm R. Chen K. VanDenburgh A.M. Three-month comparison of bimatoprost and latanoprost in patients with glaucoma and ocular hypertension. Adv. Ther. 2001 18 3 110 121 10.1007/BF02850299 11571823
    [Google Scholar]
  11. Simmons S.T. Dirks M.S. Noecker R.J. Bimatoprost versus latanoprost in lowering intraocular pressure in glaucoma and ocular hypertension: Results from parallel-group comparison trials. Adv. Ther. 2004 21 4 247 262 10.1007/BF02850157 15605619
    [Google Scholar]
  12. Aptel F. Cucherat M. Denis P. Efficacy and tolerability of prostaglandin analogs: A meta-analysis of randomized controlled clinical trials. J. Glaucoma 2008 17 8 667 673 10.1097/IJG.0b013e3181666557 19092464
    [Google Scholar]
  13. Parrish R.K. Palmberg P. Sheu W.P. A comparison of latanoprost, bimatoprost, and travoprost in patients with elevated intraocular pressure. Am. J. Ophthalmol. 2003 135 5 688 703 10.1016/S0002‑9394(03)00098‑9 12719078
    [Google Scholar]
  14. Kymes S. Burk C. Feinman T. Williams J.M. Hollander D. Demonstration of an online tool to assist managed care formulary evidence-based decision making: Meta-analysis of topical prostaglandin analog efficacy. Ther. Clin. Risk Manag. 2011 7 283 290 10.2147/TCRM.S20495 21845051
    [Google Scholar]
  15. Craven E.R. Liu C.C. Batoosingh A. Schiffman R.M. Whitcup S.M. A randomized, controlled comparison of macroscopic conjunctival hyperemia in patients treated with bimatoprost 0.01% or vehicle who were previously controlled on latanoprost. Clin. Ophthalmol. 2010 4 1433 1440 10.2147/OPTH.S14915 21188155
    [Google Scholar]
  16. Recchia F.M. Scott I.U. Brown G.C. Brown M.M. Ho A.C. Ip M.S. Small-gauge pars plana vitrectomy: A report by the American Academy of Ophthalmology. Ophthalmology 2010 117 9 1851 1857 10.1016/j.ophtha.2010.06.014 20816248
    [Google Scholar]
  17. Koda N. Watanabe K. Tsutsui Y. Niwa H. Ito S. Woodward D.F. Synthesis of prostaglandin f ethanolamide by PGF syn-thase and identification of bimatoprost as a potent PGFS inhibitor. Invest. Ophthalmol. Vis. Sci. 2004 45 3 3663
    [Google Scholar]
  18. Komoto J. Yamada T. Watanabe K. Woodward D.F. Takusagawa F. Prostaglandin F2α formation from prostaglandin H2 by prostaglandin F synthase (PGFS): Crystal structure of PGFS containing bimatoprost. Biochemistry 2006 45 7 1987 1996 10.1021/bi051861t 16475787
    [Google Scholar]
  19. Lu C. Wu C. Ghoreishi D. Chen W. Wang L. Damm W. Ross G.A. Dahlgren M.K. Russell E. Lu C. Wu C. Ghoreishi D. Chen W. Wang L. Damm W. Ross G.A. Dahlgren M.K. Russell E. Von Bargen C.D. Abel R. Friesner R.A. Harder E.D. OPLS4: Improving Force Field Accuracy on Challenging Regimes of Chemical Space. J. Chem. Theory Comput. 2021 17 7 4291 4300 10.1021/acs.jctc.1c00302 34096718
    [Google Scholar]
  20. Banks J.L. Beard H.S. Cao Y. Cho A.E. Damm W. Farid R. Felts A.K. Halgren T.A. Mainz D.T. Maple J.R. Murphy R. Philipp D.M. Repasky M.P. Zhang L.Y. Berne B.J. Friesner R.A. Gallicchio E. Banks J.L. Beard H.S. Cao Y. Cho A.E. Damm W. Farid R. Felts A.K. Halgren T.A. Mainz D.T. Maple J.R. Murphy R. Philipp D.M. Repasky M.P. Zhang L.Y. Berne B.J. Friesner R.A. Gallicchio E. Levy R.M. Integrated Modeling Program, Applied Chemical Theory (IMPACT). J. Comput. Chem. 2005 26 16 1752 1780 10.1002/jcc.20292 16211539
    [Google Scholar]
  21. Halgren T.A. Murphy R.B. Friesner R.A. Beard H.S. Frye L.L. Pollard W.T. Banks J.L. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem. 2004 47 7 1750 1759 10.1021/jm030644s 15027866
    [Google Scholar]
  22. Olsson M.H.M. Søndergaard C.R. Rostkowski M. Jensen J.H. PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical p K a Predictions. J. Chem. Theory Comput. 2011 7 2 525 537 10.1021/ct100578z 26596171
    [Google Scholar]
  23. Rama Mohana Reddy J. Venkata Narayana M. Venkata Reddy G. Krishna Kanthi G. An efficient and laboratory friendly synthesis of anti-glaucoma agent of bimatoprost. Int. J. Pharma Sci. 2021 12 5 2716 2725
    [Google Scholar]
  24. Harikrishna M. Mohan H.R. Dubey P.K. Shankar M. Subbaraju G.V. Synthesis of (±)-Bimatoprost. Synth. Commun. 2012 42 9 1288 1305 10.1080/00397911.2010.539754
    [Google Scholar]
  25. Reddy R.E. Maguire C.J. Relvas J.D. Alley S.R. O’Doherty M. Dineen B.A. Grady H.L. Roarty T.J. Review of the Synthesis of Bimatoprost Drug Substance Used for the Treatment of Open-Angle Glaucoma. Org. Process Res. Dev. 2023 27 7 1220 1234 10.1021/acs.oprd.3c00102
    [Google Scholar]
  26. Woodward D.F. Andrews S.W. Burk R. M. Non-acidic cyclopentane heptanoic, 2-cycloalkyl or ar-ylalkyl derivatives as therapeutic agents. US Patent 5688819 1997
  27. Garst M.E. Oudenes J. Antczak C.G. Mortimer R.D. Lu Y.F. Preparation of prostamides. WO Patent 03074481A2 2003
  28. Gutman A. Nisnevich G. A new process for the preparation of 1-phenyl-18,19,20-trinor-PGF2a and its derivatives. WO Patent 02096868A2 2002
  29. DeSouza D. Albert M. Sturm H. Process for the production of bimatoprost. WO Patent 153206A2 2009
  30. Zanoni G. D’Alfonso A. Porta A. Feliciani L. Nolan S.P. Vidari G. The Meyer–Schuster rearrangement: A new synthetic strategy leading to prostaglandins and their drug analogs, Bimatoprost and Latanoprost. Tetrahedron 2010 66 38 7472 7478 10.1016/j.tet.2010.07.069
    [Google Scholar]
  31. Dams I. Chodyński M. Krupa M. Pietraszek A. Zezula M. Cmoch P. Kosińska M. Kutner A. A novel convergent synthesis of the antiglaucoma PGF2α analogue bimatoprost. Chirality 2013 25 3 170 179 10.1002/chir.22123 23381781
    [Google Scholar]
  32. Angeli A. Supuran C.T. Prostaglandin receptor agonists as antiglaucoma agents (a patent review 2013 – 2018). Expert Opin. Ther. Pat. 2019 29 10 793 803 10.1080/13543776.2019.1661992 31462124
    [Google Scholar]
  33. Rama Mohana Reddy J. Venkata Narayana M. Venkata Reddy G. Ravi Kumar C. Isolation, Characterization, and Docking Studies of (Z)-Isopropyl 7-((1R, 2R, 3R, 5S)-2-((1E, 3Z)-3-Fluoro-4-Phenoxybuta-1, 3-Dienyl)-3,5-Dihydroxycyclopentyl) Hept-5-Enoate, an Impurity of Tafluprost. Curr. Org. Synth. 2021 18 1 6
    [Google Scholar]
  34. Gordon M.O. Kass M.A. The Ocular Hypertension Treatment Study: Design and baseline description of the participants. Arch. Ophthalmol. 1999 117 5 573 583 10.1001/archopht.117.5.573 10326953
    [Google Scholar]
  35. Bean G.W. Camras C.B. Commercially available prostaglandin analogs for the reduction of intraocular pressure: Similarities and differences. Surv. Ophthalmol. 2008 53 6 Suppl. 1 S69 S84 10.1016/j.survophthal.2008.08.012 19038626
    [Google Scholar]
  36. Alagöz G. Gürel K. Bayer A. Serin D. Çelebi S. Kükner Ş. A comparative study of bimatoprost and travoprost: Effect on intraocular pressure and ocular circulation in newly diagnosed glaucoma patients. Ophthalmologica 2008 222 2 88 95 10.1159/000112624 18303228
    [Google Scholar]
  37. Camras C.B. Travoprost compared with latanoprost and timolol in patients with open-angle glaucoma or ocular hypertension. Am. J. Ophthalmol. 2002 133 5 732 733 10.1016/S0002‑9394(02)01396‑X 11992888
    [Google Scholar]
  38. Cantor L.B. Bimatoprost: A member of a new class of agents, the prostamides, for glaucoma management. Expert Opin. Investig. Drugs 2001 10 4 721 731 10.1517/13543784.10.4.721 11281821
    [Google Scholar]
  39. Farid R. Day T. Friesner R.A. Pearlstein R.A. New insights about HERG blockade obtained from protein modeling, potential energy mapping, and docking studies. Bioorg. Med. Chem. 2006 14 9 3160 3173 10.1016/j.bmc.2005.12.032 16413785
    [Google Scholar]
  40. Sherman W. Beard H.S. Farid R. Use of an induced fit receptor structure in virtual screening. Chem. Biol. Drug Des. 2006 67 1 83 84 10.1111/j.1747‑0285.2005.00327.x 16492153
    [Google Scholar]
  41. Sherman W. Day T. Jacobson M.P. Friesner R.A. Farid R. Novel procedure for modeling ligand/receptor induced fit effects. J. Med. Chem. 2006 49 2 534 553 10.1021/jm050540c 16420040
    [Google Scholar]
  42. Friesner R.A. Murphy R.B. Repasky M.P. Frye L.L. Greenwood J.R. Halgren T.A. Sanschagrin P.C. Mainz D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 2006 49 21 6177 6196 10.1021/jm051256o 17034125
    [Google Scholar]
  43. Corey E.J. Helal C.J. Reduction of Carbonyl Compounds with Chiral Oxazaborolidine Catalysts: A New Paradigm for Enantioselective Catalysis and a Powerful New Synthetic Method. Angew. Chem. Int. Ed. 1998 37 15 1986 2012 10.1002/(SICI)1521‑3773(19980817)37:15<1986::AID‑ANIE1986>3.0.CO;2‑Z 29711061
    [Google Scholar]
  44. Venkatanarayana M. Ramamohana Reddy J. Venkat Reddy G. Sharath Babu H. Identification and Efficient Synthetic Method for Preparation of Cyclopentane-1,3-diol Impurity in Tafluprost Drug. Asian J. Chem. 2020 33 1 210 214 10.14233/ajchem.2021.22934
    [Google Scholar]
  45. Nakamura C. Kawasaki N. Miyataka H. Jayachandran E. Kim I.H. Kirk K.L. Taguchi T. Takeuchi Y. Hori H. Satoh T. Synthesis and biological activities of fluorinated chalcone derivatives. Bioorg. Med. Chem. 2002 10 3 699 706 10.1016/S0968‑0896(01)00319‑4 11814858
    [Google Scholar]
  46. Lal G.S. Lobach E. Evans A. Fluorination of thiocarbonyl compounds with Bis(2-methoxyethyl)aminosulfur trifluoride (Deoxo-fluor reagent): A facile synthesis of gem-difluorides. J. Org. Chem. 2000 65 16 4830 4832 10.1021/jo000020j 10956459
    [Google Scholar]
  47. Yang J.M. Chen C.C. GEMDOCK: A generic evolutionary method for molecular docking. Proteins 2004 55 2 288 304 10.1002/prot.20035 15048822
    [Google Scholar]
/content/journals/cos/10.2174/0115701794327619240924100026
Loading
/content/journals/cos/10.2174/0115701794327619240924100026
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test