Skip to content
2000
image of Synthesis of Novel 3-spirocephalosporins and Evaluation of their Antibacterial Activity

Abstract

Background and Objective

Despite the well-known antibacterial activity of cephalosporins, their analogous spirocyclic derivatives have not been adequately evaluated. Thus, this work aimed to prepare a series of novel 3-spirocephalosporins and evaluate their antibacterial activity.

Materials and Methods

Novel 3-spirocephalosporins were prepared through a one-pot thioalkylation of chloromethyl cephalosporin GCLE with a range of 1,2,4-triazolidine-3-thiones, followed by intramolecular Michael addition to the generated dihydrothiazine ring. The reaction was performed at room temperature under basic conditions (K2CO3, acetone, H2O). The antibacterial activities of the synthesized compounds were evaluated against a panel of Gram-positive and Gram-negative bacteria.

Results

Most targets were obtained in moderate yield, and their structures were confirmed by 1H and 13C NMR spectral techniques. All the tested compounds exhibited antibacterial activity against methicillin-resistant .

Conclusion

Seven novel thiazolidine-bearing 3-spirocephalosporins were prepared, and most of them were potent against Gram-positive bacteria. Likely, the replacement of 1,2,4-triazolidine-3-thiones with other heterocycles containing bidentate nucleophiles in advantageous positions could lead to different biologically active spirocephalosporins.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794287416241119111826
2025-01-30
2025-06-21
Loading full text...

Full text loading...

References

  1. Alcaide B. Aragoncillo C. Almendros P. Katritzky A.R. Ramsden C.A. Scriven E. Taylor R. Comprehensive Heterocyclic Chemistry-III. Elsevier 2008 111 10.1016/B978‑008044992‑0.00202‑9
    [Google Scholar]
  2. Lee H.W. Kang T.W. Cha K.H. Kim E.N. Choi N.H. Kim J.W. Hong C.I.I. Il. 2-chloro-4,6-dimethoxy-1,3,5-triazine: A new effective and convenient coupling reagent for cephalosporin derivatives. Synth. Commun. 1998 28 8 1339 1349 10.1080/00397919808006831
    [Google Scholar]
  3. Glinka T. Huie K. Cho A. Ludwikow M. Blais J. Griffith D. Hecker S. Dudley M. Relationships between structure, antibacterial activity, serum stability, pharmacokinetics and efficacy in 3-(heteroarylthio)cephems. Discovery of RWJ-333441 (MC-04,546). Bioorg. Med. Chem. 2003 11 4 591 600 10.1016/S0968‑0896(02)00431‑5 12538024
    [Google Scholar]
  4. Buynak J.D. Vogeti L. Doppalapudi V.R. Solomon G.M. Chen H. Cephalosporin-derived inhibitors of β-Lactamase. Part 4: The C3 substituent. Bioorg. Med. Chem. Lett. 2002 12 12 1663 1666 10.1016/S0960‑894X(02)00205‑6 12039585
    [Google Scholar]
  5. Tehrani K.H.M.E. Wade N. Mashayekhi V. Brüchle N.C. Jespers W. Voskuil K. Pesce D. van Haren M.J. van Westen G.J.P. Martin N.I. Novel Cephalosporin conjugates display potent and Selective inhibition of Imipenemase-Type Metallo-β-Lactamases. J. Med. Chem. 2021 64 13 9141 9151 10.1021/acs.jmedchem.1c00362 34182755
    [Google Scholar]
  6. Jústiz O.H. Fernández-Lafuente R. Guisán J.M. Negri P. Pagani G. Pregnolato M. Terreni M. One-Pot Chemoenzymatic synthesis of 3‘-Functionalized Cephalosporines (Cefazolin) by three consecutive Biotransformations in fully aqueous medium. J. Org. Chem. 1997 62 26 9099 9106 10.1021/jo971166u
    [Google Scholar]
  7. Pitlik J. Cycloaddition and related reactions of cephalosporin antibiotics. Bioorg. Med. Chem. 1995 3 9 1157 1181 10.1016/0968‑0896(95)00088‑X 8564409
    [Google Scholar]
  8. Fazakerley H. Gilbert D.A. Gregory G.I. Lazenby J.K. Long A.G. Cephalosporanic acids. Part V. The action of bidentate nucleophiles on cephalosporanic acids. J. Chem. Soc. C Org. Chem 1967 1959 1963
    [Google Scholar]
  9. Bruneau P. Hennequin L.F. Quéré L. Scherrmann M.C. Siret P.J. Synthesis and structure elucidation of new spirocephams. Tetrahedron Lett. 1990 31 49 7141 7144 10.1016/S0040‑4039(00)97262‑9
    [Google Scholar]
  10. Kogler H. Lattrell R. Schubert W. Weber M. Formation of a novel 3-spiro cephalosporin by a base catalysed rearrangement. Tetrahedron Lett. 1989 30 15 1931 1934 10.1016/S0040‑4039(00)99617‑5
    [Google Scholar]
  11. Miyauchi M. Haruyama H. Yoda K. Kawamoto I. Transformation of 3-thiazoliomethylcephalosporin into 3-spirocephalosporin by intramolecular Michael addition. Bioorg. Med. Chem. Lett. 1993 3 11 2447 2450 10.1016/S0960‑894X(01)80975‑6
    [Google Scholar]
  12. Zhao A. Horsfall L. Hulme A. New methods for the synthesis of spirocyclic cephalosporin analogues. Molecules 2021 26 19 6035 10.3390/molecules26196035 34641579
    [Google Scholar]
  13. Suresh Kumar G.V. Rajendra Prasad Y. Mallikarjuna B.P. Chandrashekar S.M. Synthesis and pharmacological evaluation of clubbed isopropylthiazole derived triazolothiadiazoles, triazolothiadiazines and mannich bases as potential antimicrobial and antitubercular agents. Eur. J. Med. Chem. 2010 45 11 5120 5129 10.1016/j.ejmech.2010.08.023 20797808
    [Google Scholar]
  14. Huggins W.M. Minrovic B.M. Corey B.W. Jacobs A.C. Melander R.J. Sommer R.D. Zurawski D.V. Melander C. 1,2,4-Triazolidine-3-thiones as narrow spectrum antibiotics against multidrug-resistant acinetobacter baumannii. ACS Med. Chem. Lett. 2017 8 1 27 31 10.1021/acsmedchemlett.6b00296 28105270
    [Google Scholar]
  15. Demirbas N. Karaoglu S.A. Demirbas A. Sancak K. Synthesis and antimicrobial activities of some new 1-(5-phenylamino-[1,3,4]thiadiazol-2-yl)methyl-5-oxo-[1,2,4]triazole and 1-(4-phenyl-5-thioxo-[1,2,4]triazol-3-yl)methyl-5-oxo- [1,2,4]triazole derivatives. Eur. J. Med. Chem. 2004 39 9 793 804 10.1016/j.ejmech.2004.06.007 15337292
    [Google Scholar]
  16. Palaska E. Şahin G. Kelicen P. Durlu N.T. Altinok G. Synthesis and anti-inflammatory activity of 1-acylthiosemicarbazides, 1,3,4-oxadiazoles, 1,3,4-thiadiazoles and 1,2,4-triazole-3-thiones. Farmaco 2002 57 2 101 107 10.1016/S0014‑827X(01)01176‑4 11902651
    [Google Scholar]
  17. Li Z. Gu Z. Yin K. Zhang R. Deng Q. Xiang J. Synthesis of substituted-phenyl-1,2,4-triazol-3-thione analogues with modified d-glucopyranosyl residues and their antiproliferative activities. Eur. J. Med. Chem. 2009 44 11 4716 4720 10.1016/j.ejmech.2009.05.030 19560842
    [Google Scholar]
  18. Chandrashekhar M. Nayak V.L. Ramakrishna S. Mallavadhani U.V. Novel triazole hybrids of myrrhanone C, a natural polypodane triterpene: Synthesis, cytotoxic activity and cell based studies. Eur. J. Med. Chem. 2016 114 293 307 10.1016/j.ejmech.2016.03.013 27015609
    [Google Scholar]
  19. Shaker R.M. The chemistry of mercapto- and thione- substituted 1,2,4-triazoles and their utility in heterocyclic synthesis. ARKIVOC 2006 2006 9 59 112 10.3998/ark.5550190.0007.904
    [Google Scholar]
  20. Ramesh R. Lalitha A. Facile and green chemistry access to 5‐aryl‐1,2,4‐Triazolidine‐3‐thiones in aqueous medium. ChemistrySelect 2016 1 9 2085 2089 10.1002/slct.201600348
    [Google Scholar]
  21. Mane M.M. Pore D.M. A novel one pot multi-component strategy for facile synthesis of 5-aryl-[1,2,4]triazolidine-3-thiones. Tetrahedron Lett. 2014 55 48 6601 6604 10.1016/j.tetlet.2014.10.052
    [Google Scholar]
  22. Patil P.J. Salunke G.D. Deshmukh M.B. Hangirgekar S.P. Chandam D.R. Sankpal S.A. Thiamine hydrochloride catalyzed Synthesis of 1,2,4‐Triazolidine‐3‐thiones in Aqueous Medium. ChemistrySelect 2019 4 45 13071 13078 10.1002/slct.201903646
    [Google Scholar]
  23. Khatavi S.Y. Kantharaju K. Waste to wealth: Agro-waste catalyzed green method synthesis of 5-aryl-1,2,4-triazolidine-3-thiones and 1,2,4-triazospiro-3-thiones. Org. Commun. 2021 14 240 254
    [Google Scholar]
  24. Ramesh R. Lalitha A. PEG-assisted two-component approach for the facile synthesis of 5-aryl-1,2,4-triazolidine-3-thiones under catalyst-free conditions. RSC Advances 2015 5 63 51188 51192 10.1039/C5RA07726E
    [Google Scholar]
  25. Bauer A.W. Kirby W.M.M. Sherris J.C. Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966 45 4_ts 493 496 10.1093/ajcp/45.4_ts.493 5325707
    [Google Scholar]
  26. Wise E.M. Jr Park J.T. Penicillin: Its basic site of action as an inhibitor of a peptide cross-linking reaction in cell wall mucopeptide synthesis. Proc. Natl. Acad. Sci. USA 1965 54 1 75 81 10.1073/pnas.54.1.75 5216369
    [Google Scholar]
  27. Zwayyer N.H. Synthesis, Characterization, and Antibacterial Activity Study of Novel Spiro-Cephalosporins Master's Thesis, University of Misan 2023
    [Google Scholar]
/content/journals/cos/10.2174/0115701794287416241119111826
Loading
/content/journals/cos/10.2174/0115701794287416241119111826
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test