Skip to content
2000
Volume 22, Issue 3
  • ISSN: 1570-1794
  • E-ISSN: 1875-6271

Abstract

Introduction

This study includes synthesis, characterizations, antimicrobial, antioxidant, and docking molecular study of novel Bis-Azetidinone compounds that combined two units of β-lactam rings. In the present investigation, the aromatic aldehydes with primary amine were condensed to create Schiff's base, which was then reacted with chloroacetylchloride to produce bis-Azetidinone compounds.

Methods

Melting points, FTIR, and NMR spectrum analyses were used to examine the morphological and topological characteristics of the Bis-Azetidinone compounds. The results indicate that the prepared Compounds synthesis has excellent antimicrobial activity against both Gram-negative (,), Gram-positive bacteria () and fungal () and also indicated that the Compounds synthesis (A2) gave a higher antimicrobial effect than the B2, C2. The synergistic activity was examined against the pathogenic microbial strains. It was observed that employing compound synthesis combined with antibiotics enhanced the synergistic efficacy compared to using compound synthesis alone or antibiotic alone on Gram-positive bacteria and fungi.

Results

The antioxidant efficiency was assessed by DPPH, the results show that the compound synthesis has antioxidant activity, and also indicated that the synthesized compound (A2) gave a higher antioxidant effect than the B2, C2. Docking study confirmed redocking of crystalized substrate or inhibitor within target binding pocket. The docking results reveal that the synthesized compounds, with a total binding affinity of less than -48 kcal/mol, could be clinically used for future therapeutic purposes.

Conclusion

The present research demonstrates the advantageous effectiveness of a simpler production procedure, novel Bis-Azetidinone compounds, for producing high-purity with low hazard that may be utilized as future possible medical therapies.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794318870240923073910
2024-10-24
2025-05-07
Loading full text...

Full text loading...

References

  1. ButlerM.S. HendersonI.R. CaponR.J. BlaskovichM.A.T. Antibiotics in the clinical pipeline as of December 2022.J. Antibiot. (Tokyo)202376843147310.1038/s41429‑023‑00629‑837291465
    [Google Scholar]
  2. TerreniM. TaccaniM. PregnolatoM. New antibiotics for multidrug-resistant bacterial strains: Latest research developments and future perspectives.Molecules2021269267110.3390/molecules2609267134063264
    [Google Scholar]
  3. SayedD.S.E. AbdelrehimE.S.M. Spectroscopic details on the molecular structure of pyrimidine‑2‑thiones heterocyclic compounds: Computational and antiviral activity against the main protease enzyme of SARS-CoV-2.BMC Chem.20221618210.1186/s13065‑022‑00881‑336324115
    [Google Scholar]
  4. AbdelrehimE.S.M. El-SayedD.S. Synthesis, screening as potential antitumor of new poly heterocyclic compounds based on pyrimidine-2-thiones.BMC Chem.20221611610.1186/s13065‑022‑00810‑435313953
    [Google Scholar]
  5. HoangT.P.N. GhoriM.U. ConwayB.R. Topical antiseptic formulations for skin and soft tissue infections.Pharmaceutics202113455810.3390/pharmaceutics1304055833921124
    [Google Scholar]
  6. Al-azawiK.F. AhmedZ.W. AliE.H. KhadomA.A. AbrahimH.H. RashidK.H. Synthesis and characterization of (E)-4-(((4-(5-mercapto-1, 3, 4-oxadiazol-2-yl) phenyl) amino) methyl)-2-methoxyphenol as a novel corrosion inhibitor for mild-steel in acidic medium.Results Chem.2023510097510097510.1016/j.rechem.2023.100975
    [Google Scholar]
  7. MartinJ.F. Alvarez-AlvarezR. LirasP. Penicillin-Binding Proteins, β-Lactamases, and β-Lactamase Inhibitors in β-Lactam-Producing Actinobacteria: Self-Resistance Mechanisms.Int. J. Mol. Sci.20222310566210.3390/ijms2310566235628478
    [Google Scholar]
  8. TurnerJ. MuraokaA. BedenbaughM. ChildressB. PernotL. WiencekM. PetersonY.K. The chemical relationship among beta-lactam antibiotics and potential impacts on reactivity and decomposition.Front. Microbiol.20221380795510.3389/fmicb.2022.80795535401470
    [Google Scholar]
  9. El-SayedD.S. ElbadawyH.A. KhalilT.E. Rational modulation of N and O binding in Fe(III) complex formation derived from hydroxychloroquine: Synthesis, spectroscopic, computational, and docking simulation with human thrombin plasma.J. Mol. Struct.2022125413226813226810.1016/j.molstruc.2021.132268
    [Google Scholar]
  10. SauvageE. TerrakM. Glycosyltransferases and transpeptidases/penicillin-binding proteins: Valuable targets for new antibacterials.Antibiotics (Basel)2016511210.3390/antibiotics501001227025527
    [Google Scholar]
  11. ParchetaM. ŚwisłockaR. OrzechowskaS. AkimowiczM. ChoińskaR. LewandowskiW. Recent developments in effective antioxidants: The structure and antioxidant properties.Materials (Basel)2021148198410.3390/ma1408198433921014
    [Google Scholar]
  12. FormanH.J. ZhangH. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy.Nat. Rev. Drug Discov.202120968970910.1038/s41573‑021‑00233‑134194012
    [Google Scholar]
  13. ElhusseinyA.F. El-DissoukyA. MautnerF. TawfikE.M. El-SayedD.S. An insight into non-covalent interactions in binary, ternary and quaternary copper (II) complexes: Synthesis, X-ray structure, DFT calculations, antimicrobial activity and molecular docking studies.Inorg. Chim. Acta202253212074810.1016/j.ica.2021.120748
    [Google Scholar]
  14. MunteanuI.G. ApetreiC. Analytical Methods Used in Determining Antioxidant Activity: A Review.Int. J. Mol. Sci.2021227338010.3390/ijms2207338033806141
    [Google Scholar]
  15. DingY. LiZ. XuC. QinW. WuQ. WangX. ChengX. LiL. HuangW. Fluorogenic Probes/Inhibitors of β‐Lactamase and their Applications in Drug‐Resistant Bacteria.Angew. Chem. Int. Ed.2021601244010.1002/anie.20200663532592283
    [Google Scholar]
  16. FirthA. PrathapanP. Broad-spectrum therapeutics: A new antimicrobial class.Curr. Res. Pharmacol. Drug Discov.2021210001110.1016/j.crphar.2020.10001134870144
    [Google Scholar]
  17. HancockR.E.W. NijnikA. PhilpottD.J. Modulating immunity as a therapy for bacterial infections.Nat. Rev. Microbiol.201210424325410.1038/nrmicro274522421877
    [Google Scholar]
  18. DeshayesS. CoquerelA. VerdonR. Neurological Adverse Effects Attributable to β-Lactam Antibiotics: A Literature Review.Drug Saf.201740121171119810.1007/s40264‑017‑0578‑228755095
    [Google Scholar]
  19. VardakasK.Z. KalimerisG.D. TriaridesN.A. FalagasM.E. An update on adverse drug reactions related to β-lactam antibiotics.Expert Opin. Drug Saf.201817549950810.1080/14740338.2018.146233429633867
    [Google Scholar]
  20. ArmstrongT. FennS.J. HardieK.R. JMM Profile: Carbapenems: A broad-spectrum antibiotic.J. Med. Microbiol.2021701200146210.1099/jmm.0.00146234889726
    [Google Scholar]
  21. Al-AzawiK. Synthesis, characterization and antioxidant studies of quinazolin derivatives.Orient. J. Chem.201632158559010.13005/ojc/320166
    [Google Scholar]
  22. BorazjaniNassim JarrahpourAliasghar RadJavad Sharifi Design, synthesis and biological evaluation of some novel diastereoselective β-lactams bearing 2-mercaptobenzothiazole and benzoquinoline.Med. Chem. Res20192932939310.1007/s00044‑018‑02287‑0
    [Google Scholar]
  23. DhawanS. AwoladeP. KistenP. CeleN. PillayA-S. SahaS. KaurM. JonnalagaddaS.B. SinghP. Synthesis, Cytotoxicity and Antimicrobial Evaluation of New Coumarin-Tagged β-Lactam Triazole Hybrid.Chem. Biodivers.2019171e190046210.1002/cbdv.20190046231788939
    [Google Scholar]
  24. HrichiH. ElkanziN.A.A. BakrR.B. Novel Β-lactams and Thiazolidinone Derivatives from 1,4-dihydroquinoxaline Schiff’s Base: Synthesis, Antimicrobial Activity and Molecular Docking Studies.Chem. J. Moldova2020151869410.19261/cjm.2019.647
    [Google Scholar]
  25. FarhanM.M. GumaM.A. RabeeaM.A. AhmadI. PatelH. Synthesizes, characterization, molecular docking and in vitro bioactivity study of new compounds containing triple beta lactam rings.J. Mol. Struct.2022126913378113378110.1016/j.molstruc.2022.133781
    [Google Scholar]
  26. AlborzM. Synthesis and biological evaluation of some novel diastereoselective benzothiazole β-lactam conjugates.Eur. J. Med. Chem.201814328329110.1016/j.ejmech.2017.11.053
    [Google Scholar]
  27. MishraM.K. SinghV.N. AhmadK. SharmaS. Synthesis and antimicrobial activities of some novel diastereoselective monocyclic cis-β-lactams using 2-ethoxy carbonyl DCPN as a carboxylic acid activator.Mol. Divers.20212542073208710.1007/s11030‑020‑10099‑x32405920
    [Google Scholar]
  28. El-KanziN.A.A. KhalafallahA.K. YounisM. Effect of Iodine on the Antimicrobial Activity of New Spiro and Isolated β-Lactam Thiazolidinone Derivatives.Phosphorus Sulfur Silicon Relat. Elem.200718251163118110.1080/10426500601149929
    [Google Scholar]
  29. JasimZ.I. RashidK.H. AL-AzawiK.F. KhadomA.A. Synthesis of Schiff-Based Derivative as a Novel Corrosion Inhibitor for Mild Steel in 1 M HCl Solution: Optimization, Experimental, and Theoretical Investigations.J. Bio Tribocorros.2023935410.1007/s40735‑023‑00774‑5
    [Google Scholar]
  30. MalebariA.M. FayneD. NathwaniS.M. O’ConnellF. NooraniS. TwamleyB. O’BoyleN.M. O’SullivanJ. ZistererD.M. MeeganM.J. β-Lactams with antiproliferative and antiapoptotic activity in breast and chemoresistant colon cancer cells.Eur. J. Med. Chem.202018911205011205010.1016/j.ejmech.2020.11205031954879
    [Google Scholar]
  31. AlvesA.J.S. AlvesN.G. CaratãoC.C. EstevesM.I.M. FontinhaD. BártoloI. SoaresM.I.L. LopesS.M.M. PrudêncioM. TaveiraN. Pinho e MeloT.M.V.D. Spiro-lactams as novel antimicrobial agents.Curr. Top. Med. Chem.202020214015210.2174/156802661966619110511004931702503
    [Google Scholar]
  32. BushK. BradfordP.A. β-Lactams and β-Lactamase Inhibitors: An Overview.Cold Spring Harb. Perspect. Med.201668a02524710.1101/cshperspect.a02524727329032
    [Google Scholar]
  33. González-BelloC. RodríguezD. PernasM. RodríguezÁ. ColchónE. β-Lactamase inhibitors to restore the efficacy of antibiotics against superbugs.J. Med. Chem.20206351859188110.1021/acs.jmedchem.9b0127931663735
    [Google Scholar]
  34. ObayesH. Theoretical studies on electrophilic aromatic substitution reaction for 8-hydroxyquinoline.Orient. J. Chem.201632125326010.13005/ojc/320127
    [Google Scholar]
  35. BerberN. ArslanM. VuralF. ErgunA. GençerN. ArslanO. Synthesis of new series of thiazol‐(2(3 H )‐ylideneamino)benzenesulfonamide derivatives as carbonic anhydrase inhibitors.J. Biochem. Mol. Toxicol.20203412e2259610.1002/jbt.2259632762006
    [Google Scholar]
  36. HusseinN.N. Al-AzawiK. SulaimanG.M. AlbukhatyS. Al-MajeedR.M.A. JabirM. Al-DulimiA.G. MohammedH.A. AkhtarN. AlawajiR. A AlshammariA.A. KhanR.A. Silver-cored Ziziphus spina-christi extract-loaded antimicrobial nanosuspension: Overcoming multidrug resistance.Nanomedicine (Lond.)202318251839185410.2217/nnm‑2023‑018537982771
    [Google Scholar]
  37. JawadK. H. JamaghF. K. SulaimanG. M. HasoonB. A. Antibacterial and antibiofilm activities of amikacin-conjugated gold nanoparticles: A promising formulation for contact lens preservation.Inorg. Chem. Commun.202416211228611228610.1016/j.inoche.2024.112286
    [Google Scholar]
  38. HasoonB.A. JawadK.H. MohammedI.S. HusseinN.N. Al-azawiK.F. JabirM.S. Silver nanoparticles conjugated amoxicillin: A promising nano-suspension for overcoming multidrug resistance bacteria and preservation of endotracheal tube.Inorg. Chem. Commun.202416511245611245610.1016/j.inoche.2024.112456
    [Google Scholar]
  39. FarjA.S. Synthesis, characterization and antimicrobial activity of novel Mannich bases.AIP Conf. Proc.20222437102009010.1063/5.0092314
    [Google Scholar]
  40. RadkaC.D. GraceC.R. HasdemirH.S. LiY. RodriguezC.C. RodriguesP. OldhamM.L. QayyumM.Z. PitreA. MacCainW.J. KalathurR.C. TajkhorshidE. RockC.O. The carboxy terminus causes interfacial assembly of oleate hydratase on a membrane bilayer.J. Biol. Chem.2024300210562710562710.1016/j.jbc.2024.10562738211817
    [Google Scholar]
  41. KhelfaouiH. HarkatiD. SalehB.A. Molecular Docking, Molecular Dynamics Simulations and Reactivity, Studies on Approved Drugs Library Targeting ACE2 and SARS-CoV-2 Binding with ACE2.J. Biomol. Struct. Dyn.2020202011710.1080/07391102.2020.180396732752951
    [Google Scholar]
  42. KitchenD.B. DecornezH. FurrJ.R. BajorathJ. Docking and scoring in virtual screening for drug discovery: Methods and applications.Nat. Rev. Drug Discov.200431193594910.1038/nrd154915520816
    [Google Scholar]
  43. KhalilT.E. El-DissoukyA. Al-WahaibD. AbrarN.M. El-SayedD.S. Synthesis, characterization, antimicrobial activity, 3D‐QSAR, DFT, and molecular docking of some ciprofloxacin derivatives and their copper(II) complexes.Appl. Organomet. Chem.20203412e599810.1002/aoc.5998
    [Google Scholar]
  44. IssaA.A. KamelM.D. El-SayedD.S. Depicted simulation model for removal of second-generation antipsychotic drugs adsorbed on Zn-MOF: Adsorption locator assessment.J. Mol. Model.202430410610.1007/s00894‑024‑05896‑238491151
    [Google Scholar]
  45. IbraheemH.H. IssaA.A. El-SayedD.S. Structural behavior and surface layer modification of (E)-N′-((1H-indol-3-yl) methylene)-4-chlorobenzohydrazide: Spectroscopic, DFT, biomedical activity and molecular dynamic simulation against Candida Albicans receptor.J. Mol. Struct.2024131213848413848410.1016/j.molstruc.2024.138484
    [Google Scholar]
  46. IssaA.A. IbraheemH.H. El-SayedD.S. Computational innovation of in situ metallic elements with zirconia as a novel possible carrier for chemotherapeutic medication.J. Mol. Model.20243011410.1007/s00894‑023‑05815‑x
    [Google Scholar]
  47. MettaiM. DaoudI. MesliF. KenoucheS. MelkemiN. KherachiR. BelkadiA. Molecular docking/dynamics simulations, MEP analysis, bioisosteric replacement and ADME/T prediction for identification of dual targets inhibitors of Parkinson’s disease with novel scaffold.In silico Pharmacol.2023111310.1007/s40203‑023‑00139‑336687301
    [Google Scholar]
/content/journals/cos/10.2174/0115701794318870240923073910
Loading
/content/journals/cos/10.2174/0115701794318870240923073910
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): antimicrobial; antioxidant; Bis-azetidinone; docking study; schiff base; spectroscopy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test