Skip to content
2000
Volume 22, Issue 3
  • ISSN: 1570-1794
  • E-ISSN: 1875-6271

Abstract

Introduction

Hybrid inorganic/organic nanoparticles are used to make nanocomposites. These nanocomposites combine the different properties of the organic polymer and the inorganic nanoparticles, which improves the overall system properties.

Methods

In this research work, Mesoporous Silica Nanoparticle (MSN), amino-functionalized MSNs, and Covalent Organic Frameworks (COFs) were synthesized using a special approach. In this work, in order to take advantage of the properties and characteristics of both porous nanomaterials and porous nanocomposites of COF-grown MSN were synthesized by a special method and with two approaches, and the porosity of the nanocomposites and synthesized nanomaterials was analyzed by BET analysis.

Results

The synthesis of the products was confirmed by XRD, TGA, EDS, FT-IR, FE-SEM, TEM, and Zeta potential analyses. The heavy metals zinc and cadmium were removed using these nanomaterials as an inorganic/organic hybrid adsorbent in the following, and various absorption properties were examined in these nanoabsorbents.

Conclusion

The removal of heavy metals from these hybrid nanoabsorbents is particularly effective.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794314387240604112621
2024-06-28
2025-05-07
Loading full text...

Full text loading...

References

  1. KitagawaS. Future porous materials.Acc. Chem. Res.201750351451610.1021/acs.accounts.6b0050028945427
    [Google Scholar]
  2. WuL. LiY. FuZ. SuB.L. Hierarchically structured porous materials: synthesis strategies and applications in energy storage.Natl. Sci. Rev.20207111667170110.1093/nsr/nwaa18334691502
    [Google Scholar]
  3. BennettT.D. CoudertF.X. JamesS.L. CooperA.I. The changing state of porous materials.Nat. Mater.20212091179118710.1038/s41563‑021‑00957‑w33859380
    [Google Scholar]
  4. KangD.W. KangM. HongC.S. Post-synthetic modification of porous materials: superprotonic conductivities and membrane applications in fuel cells.J. Mater. Chem. A Mater. Energy Sustain.20208167474749410.1039/D0TA01733G
    [Google Scholar]
  5. SunY. ChuY. WuW. XiaoH. Nanocellulose-based lightweight porous materials: A review.Carbohydr. Polym.202125511748910.1016/j.carbpol.2020.11748933436249
    [Google Scholar]
  6. MehmoodA. GhafarH. YaqoobS. GoharU.F. AhmadB. Mesoporous silica nanoparticles: A review.J. Dev. Drugs20176210.4172/2329‑6631.1000174
    [Google Scholar]
  7. DumontelB. Conejo-RodríguezV. Vallet-RegíM. ManzanoM. Natural biopolymers as smart coating materials of mesoporous silica nanoparticles for drug delivery.Pharmaceutics202315244710.3390/pharmaceutics1502044736839771
    [Google Scholar]
  8. HemantK PramodK VishalS ShashiPS BalaramP Synthesis and surface modification of biocompatible mesoporous silica nanoparticles (MSNs) and its biomedical applications: A review.Res. J. Chem. Environ.2023272
    [Google Scholar]
  9. MaM. YangY. HuangZ. HuangF. LiQ. LiuH. Recent progress in the synthesis and applications of covalent organic framework-based composites.Nanoscale20241641600163210.1039/D3NR05797F
    [Google Scholar]
  10. ZhangT. YuY. HanS. CongH. KangC. ShenY. YuB. Preparation and application of UPLC silica microsphere stationary phase:A review.Adv. Colloid Interface Sci.202432310307010.1016/j.cis.2023.10307038128378
    [Google Scholar]
  11. GuanX. MaY. LiH. YusranY. XueM. FangQ. YanY. ValtchevV. QiuS. Fast, ambient temperature and pressure ionothermal synthesis of three-dimensional covalent organic frameworks.J. Am. Chem. Soc.2018140134494449810.1021/jacs.8b0132029553727
    [Google Scholar]
  12. HasijaV. PatialS. RaizadaP. Aslam Parwaz KhanA. AsiriA.M. Van LeQ. NguyenV-H. SinghP. Covalent organic frameworks promoted single metal atom catalysis: Strategies and applications.Coord. Chem. Rev.202245221429810.1016/j.ccr.2021.214298
    [Google Scholar]
  13. MuZ. ZhuY. LiB. DongA. WangB. FengX. Covalent organic frameworks with record pore apertures.J. Am. Chem. Soc.2022144115145515410.1021/jacs.2c0058435258975
    [Google Scholar]
  14. GuanQ. ZhouL.L. DongY.B. Metalated covalent organic frameworks: from synthetic strategies to diverse applications.Chem. Soc. Rev.202251156307641610.1039/D1CS00983D35766373
    [Google Scholar]
  15. WangH. YangY. YuanX. Liang TeoW. WuY. TangL. ZhaoY. Structure–performance correlation guided applications of covalent organic frameworks.Mater. Today20225310613310.1016/j.mattod.2022.02.001
    [Google Scholar]
  16. MuX. BertronT. DunnC. QiaoH. WuJ. ZhaoZ. SaldanaC. QiH.J. Porous polymeric materials by 3D printing of photocurable resin.Mater. Horiz.20174344244910.1039/C7MH00084G
    [Google Scholar]
  17. AhmedD.S. El-HitiG.A. YousifE. AliA.A. HameedA.S. Design and synthesis of porous polymeric materials and their applications in gas capture and storage: A review.J. Polym. Res.20182537510.1007/s10965‑018‑1474‑x
    [Google Scholar]
  18. TanL. TanB. Hypercrosslinked porous polymer materials: design, synthesis, and applications.Chem. Soc. Rev.201746113322335610.1039/C6CS00851H28224148
    [Google Scholar]
  19. PoupartR. GrandeD. CarbonnierB. Le DroumaguetB. Porous polymers and metallic nanoparticles: A hybrid wedding as a robust method toward efficient supported catalytic systems.Prog. Polym. Sci.201996214210.1016/j.progpolymsci.2019.05.003
    [Google Scholar]
  20. Flores-JiménezM.S. Garcia-GonzalezA. Fuentes-AguilarR.Q. Review on porous scaffolds generation process: A tissue engineering approach.ACS Appl. Bio Mater.20236112310.1021/acsabm.2c0074036599046
    [Google Scholar]
  21. SunX. SharmaP. ParishG. KeatingA. Enabling high-porosity porous silicon as an electronic material.Microp. Mesop. Mater.202131211080810.1016/j.micromeso.2020.110808
    [Google Scholar]
  22. LiJ. WangX. LinZ. XuN. LiX. LiangJ. ZhaoW. LinR. ZhuB. LiuG. ZhouL. ZhuS. ZhuJ. Over 10 kg m−2 h−1 evaporation rate enabled by a 3D interconnected porous carbon foam.Joule20204492893710.1016/j.joule.2020.02.014
    [Google Scholar]
  23. MushtaqM.A. KumarA. YasinG. ArifM. TabishM. IbraheemS. CaiX. YeW. FangX. SaadA. ZhaoJ. JiS. YanD. 3D interconnected porous Mo-doped WO3@CdS hierarchical hollow heterostructures for efficient photoelectrochemical nitrogen reduction to ammonia.Appl. Catal. B202231712171110.1016/j.apcatb.2022.121711
    [Google Scholar]
  24. KhaterH.M. El NaggarA. Combination between organic polymer and geopolymer for production of eco-friendly metakaolin composite.J. Aus. Ceramic Soc.202056259960810.1007/s41779‑019‑00371‑1
    [Google Scholar]
  25. BinD. HuoW. YuanY. HuangJ. LiuY. ZhangY. DongF. WangY. XiaY. Organic-inorganic-induced polymer intercalation into layered composites for aqueous zinc-ion battery.Chem20206496898410.1016/j.chempr.2020.02.001
    [Google Scholar]
  26. Mendes-FelipeC. Veloso-FernándezA. Vilas-VilelaJ.L. Ruiz-RubioL. Hybrid organic–inorganic membranes for photocatalytic water remediation.Catalysts202212218010.3390/catal12020180
    [Google Scholar]
  27. MetiP. MahadikD.B. LeeK.Y. WangQ. KanamoriK. GongY.D. ParkH-H. Overview of organic–inorganic hybrid silica aerogels: Progress and perspectives.Mater. Des.202222211109110.1016/j.matdes.2022.111091
    [Google Scholar]
  28. SinghS. ChenH. ShahrokhiS. WangL.P. LinC.H. HuL. GuanX. TricoliA. XuZ.J. WuT. Hybrid organic–inorganic materials and composites for photoelectrochemical water splitting.ACS Energy Lett.2020551487149710.1021/acsenergylett.0c00327
    [Google Scholar]
  29. GonçalvesG.C. GimenoF. DicharryC. AlloucheJ. Charrier-El BouhtouryF. DupinJ.C. Design of sol–gel hybrid bio-sourced lignin/silica hydrophobic nanocomposites through a dip-coated evaporation-induced self-assembly method.ACS Sustain. Chem. Eng.20221038127831279510.1021/acssuschemeng.2c03770
    [Google Scholar]
  30. Omanović-MikličaninE. BadnjevićA. KazlagićA. HajlovacM. Nanocomposites: A brief review.Health Technol.2020101515910.1007/s12553‑019‑00380‑x
    [Google Scholar]
  31. DadeboD. IbrahimM.G. FujiiM. NasrM. Transition towards sustainable carwash wastewater management: trends and enabling technologies at global scale.Sustainability2022149565210.3390/su14095652
    [Google Scholar]
  32. SakrM. MohamedM.M. MaraqaM.A. HamoudaM.A. Aly HassanA. AliJ. JungJ. A critical review of the recent developments in micro–nano bubbles applications for domestic and industrial wastewater treatment.Alex. Eng. J.20226186591661210.1016/j.aej.2021.11.041
    [Google Scholar]
  33. AnY.C. GaoX.X. JiangW.L. HanJ.L. YeY. ChenT.M. RenR.Y. ZhangJ.H. LiangB. LiZ.L. WangA.J. RenN.Q. A critical review on graphene oxide membrane for industrial wastewater treatment.Environ. Res.202322311540910.1016/j.envres.2023.11540936746203
    [Google Scholar]
  34. YuliasniR. KurniawanS. MarlenaB. HidayatM.R. KadierA. MaP.C. ImronM. Recent progress of phytoremediation-based technologies for industrial wastewater treatment.J. Ecol. Eng.202324220822010.12911/22998993/156621
    [Google Scholar]
  35. ParkJ.W. ParkY.J. JunC.H. Post-grafting of silica surfaces with pre-functionalized organosilanes: New synthetic equivalents of conventional trialkoxysilanes.Chem. Commun.201147174860487110.1039/c1cc00038a21390383
    [Google Scholar]
  36. PutzA.M. AlmásyL. LenA. IanăşiC. Functionalized silica materials synthesized via co-condensation and post-grafting methods.Fuller. Nanotub. Carbon Nanostruct.201927432333210.1080/1536383X.2019.1593154
    [Google Scholar]
/content/journals/cos/10.2174/0115701794314387240604112621
Loading
/content/journals/cos/10.2174/0115701794314387240604112621
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): COF; heavy metals; hybrid materials; MSN; nanocomposite; porous material
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test