Skip to content
2000
Volume 22, Issue 2
  • ISSN: 1570-1794
  • E-ISSN: 1875-6271

Abstract

Introduction

The objective of this study is to compute the Kirchhoff index and resistance distance for two classes of windmill graphs, namely the French windmill graph and the Dutch windmill graph.

Methods

In this study, considered a simple connected graph with vertex set and edge set . is supposed to represent a network derived from by substituting a 1-ohm resistor for each edge of . In that case, the resistance between ϵ is considered analogous to the resistance between two equivalent nodes in network . We employed techniques from electrical network theory to compute the resistance distance and Kirchhoff index.

Results

The Kirchhoff index of is the sum of the resistance distances between all pairs of vertices in . Our computations revealed specific patterns and relationships in the resistance distances and Kirchhoff indices across different classes of windmill graphs.

Conclusion

In addition, the Kirchhoff index and resistance distance are computed in this study for specific generalizations of these graphs. The derived equations can inspire further investigation into the resistance distance and Kirchhoff index in real-world windmill networks. Additionally, they offer a chemical framework for future research, aiding in the determination of molecular structures and characteristics.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794299562240606054510
2024-07-04
2025-04-20
Loading full text...

Full text loading...

References

  1. KleinD.J. RandićM. Resistance distance.J. Math. Chem.1993121819510.1007/BF01164627
    [Google Scholar]
  2. KleinD.J. Resistance-distance sum rules.Croat. Chem. Acta200275633649
    [Google Scholar]
  3. BonchevD. BalabanA.T. LiuX. KleinD.J. Molecular cyclicity and centricity of polycyclic graphs. I. Cyclicity based on resistance distances or reciprocal distances.Int. J. Quantum Chem.199450112010.1002/qua.560500102
    [Google Scholar]
  4. XiaoW. GutmanI. Resistance distance and Laplacian spectrum.Theor. Chem. Acc.2003110428428910.1007/s00214‑003‑0460‑4
    [Google Scholar]
  5. McRaeB.H. DicksonB.G. KeittT.H. ShahV.B. Using circuit theory to model connectivity in ecology, evolution, and conservation.Ecology200889102712272410.1890/07‑1861.1 18959309
    [Google Scholar]
  6. ZhouB. TrinajstićN. On resistance-distance and Kirchhoff index.J. Math. Chem.200946128328910.1007/s10910‑008‑9459‑3
    [Google Scholar]
  7. GutmanI. MoharB. The quasi-Wiener and the Kirchhoff indices coincide.J. Chem. Inf. Comput. Sci.199636598298510.1021/ci960007t
    [Google Scholar]
  8. Lib En-NowellD. KleinbergJ. The link prediction problem for social networks. Proceedings of the Twelfth Annual ACM International Conference on Information and Knowledge Management (CIKM’03)November2003556559
    [Google Scholar]
  9. LuB.C.Y. Liu, Y. H. Wang, Discovery of community structure in complex networks based on resistance distance and center nodes.J. Comput. Inf. Syst.201282398079814
    [Google Scholar]
  10. QiuH. HancockE.R. Image segmentation using commute times. Proceedings of the 16th British Machine Vision Conference (BMVC)Oxford, UK, September2005929938
    [Google Scholar]
  11. QiuH. HancookE.R. Robust multi-body motion tracking using commute time clustering.Computer Vision - ECCV 2006, 9th European Conference on Computer VisionGraz, AustriaMay 7-13, 2006116
    [Google Scholar]
  12. KennellyA.E. Equivalence of triangles and stars in conducting networks.Electr. World Engineer189934413414
    [Google Scholar]
  13. van LierM. OttenR. Planarization by transformation.IEEE Trans. Circuit Theory197320216917110.1109/TCT.1973.1083633
    [Google Scholar]
  14. SardarM.S. LiuJ.B. SiddiqueI. JaradatM.M.M. A novel and efficient method for computing the resistance distance.IEEE Access2021910710410711010.1109/ACCESS.2021.3099570
    [Google Scholar]
  15. KleinD.J. Graph geometry, graph metrics and Wiener, MATCH COmmun.Math. Comput. Chem.199725727
    [Google Scholar]
  16. ChenH. ZhangF. Resistance distance and the normalized Laplacian spectrum.Discrete Appl. Math.2007155565466110.1016/j.dam.2006.09.008
    [Google Scholar]
  17. ShapiroL.W. An electrical lemma.Math. Mag.1987601363810.1080/0025570X.1987.11977274
    [Google Scholar]
  18. FotulerP.W. Resistance distances in fullerene graphs.Croat. Chem. Acta2002752401408
    [Google Scholar]
  19. ZhangH. YangY. Resistance distance and Kirchhoff index in circulant graphs.Int. J. Quantum Chem.2007107233033910.1002/qua.21068
    [Google Scholar]
  20. BapatR.B. GuptaS. Resistance distance in wheels and fans.Indian J. Pure Appl. Math.201041111310.1007/s13226‑010‑0004‑2
    [Google Scholar]
  21. JafarizadehS. SufianiR. JafarizadehM.A. Evaluation of effective resistances in pseudo-distanceregular resistor networks.J. Stat. Phys.2010139117719910.1007/s10955‑009‑9909‑8
    [Google Scholar]
  22. TuJ. DuJ. SuG. The unicyclic graphs with maximum degree resistance distance.Appl. Math. Comput.201526885986410.1016/j.amc.2015.06.063
    [Google Scholar]
  23. GervacioS.V. Resistance distance in complete n -partite graphs.Discrete Appl. Math.2016203536110.1016/j.dam.2015.09.017
    [Google Scholar]
  24. YangY. KleinD.J. Resistance distance-based graph invariants of subdivisions and triangulations of graphs.Discrete Appl. Math.201518126027410.1016/j.dam.2014.08.039
    [Google Scholar]
  25. LiuJ.B. PanX.F. Minimizing Kirchhoff index among graphs with a given vertex bipartiteness.Appl. Math. Comput.2016291848810.1016/j.amc.2016.06.017
    [Google Scholar]
  26. FeiJ. TuJ. Complete characterization of bicyclic graphs with the maximum and second-maximum degree Kirchhoff index.Appl. Math. Comput.201833011812410.1016/j.amc.2018.02.025
    [Google Scholar]
  27. JiangZ. YanW. Some two-point resistances of the Sierpinski gasket network.J. Stat. Phys.2018172382483210.1007/s10955‑018‑2067‑0
    [Google Scholar]
  28. YangY. CaoY. YaoH. LiJ. Solution to a conjecture on a Nordhaus-Gaddum type result for the Kirchhoff index.Appl. Math. Comput.201833224124910.1016/j.amc.2018.03.070
    [Google Scholar]
  29. YangY. RosenfeldV.R. Some spectral invariants of the neighborhood corona of graphs.Discrete Appl. Math.201824730030810.1016/j.dam.2018.03.052
    [Google Scholar]
  30. LiuQ. The resistance distance and Kirchhoff index on quadrilateral graph and pentagonal graph.IEEE Access20197366173662210.1109/ACCESS.2019.2902012
    [Google Scholar]
  31. HuangG. HeW. TanY. Theoretical and computational methods to minimize Kirchhoff index of graphs with a given edge k-partiteness.Appl. Math. Comput.201934134835710.1016/j.amc.2018.09.002
    [Google Scholar]
  32. ZhuZ. LiuJ.B. The normalized Laplacian, degree-Kirchhoff index and the spanning tree numbers of generalized phenylenes.Discrete Appl. Math.201925425626710.1016/j.dam.2018.06.026
    [Google Scholar]
  33. SardarM.S. HuaH. PanX.F. RazaH. On the resistance diameter of hypercubes.Physica A202054012307610.1016/j.physa.2019.123076
    [Google Scholar]
  34. FanJ. ZhuJ. TianL. WangQ. Resistance distance in potting networks.Physica A202054012305310.1016/j.physa.2019.123053
    [Google Scholar]
  35. SardarM.S. PanX.F. XuS.A. Computation of resistance distance and Kirchhoff index of the two classes of silicate networks.Appl. Math. Comput.202038112528310.1016/j.amc.2020.125283
    [Google Scholar]
  36. HuangJ. Resistance distance and Kirchhoff index in dihedral Cayley graphs.Discrete Appl. Math.202230712513410.1016/j.dam.2021.10.009
    [Google Scholar]
  37. SunW. YangY. Extremal pentagonal chains with respect to the Kirchhoff index.Appl. Math. Comput.202343712753410.1016/j.amc.2022.127534
    [Google Scholar]
  38. ZamanS. KambohA. UllahA. LiuJ.B. Development of some novel resistance distance based topological indices for certain special types of graph networks.Phys. Scr.2023981212525010.1088/1402‑4896/ad0d95
    [Google Scholar]
  39. DoyleP.G. SnellJ.L. Random walks and electrical networks.arXiv:math/0001057198410.5948/UPO9781614440222
    [Google Scholar]
  40. LiS. TianT. Resistance between two nodes of a ring clique network.Circuits Syst. Signal Process.20224131287129810.1007/s00034‑021‑01859‑7
    [Google Scholar]
  41. SajjadW. SardarM.S. PanX.F. Computation of resistance distance and Kirchhoff index of chain of triangular bipyramid hexahedron.Appl. Math. Comput.202446112831310.1016/j.amc.2023.128313
    [Google Scholar]
  42. SardarM.S. PanX.F. XuS.J. Computation of the resistance distance and the Kirchhoff index for the two types of claw-free cubic graphs.Appl. Math. Comput.202447312867010.1016/j.amc.2024.128670
    [Google Scholar]
  43. HayatS. KhanA. AliK. LiuJ.B. Structure-property modeling for thermodynamic properties of benzenoid hydrocarbons by tempera-ture-based topological indices.Ain Shams Eng. J.202415310258610.1016/j.asej.2023.102586
    [Google Scholar]
  44. LiuH. YouL. Extremal Kirchhoff index in polycyclic chains.Discrete Appl. Math.202434829230010.1016/j.dam.2024.01.046
    [Google Scholar]
  45. HayatS. SuhailiN. JamilH. Statistical significance of valency-based topological descriptors for correlating thermodynamic properties of benzenoid hydrocarbons with applications.Comput. Theor. Chem.2023122711425910.1016/j.comptc.2023.114259
    [Google Scholar]
  46. MalikM.Y.H. HayatS. KhanS. BinyaminM.A. Predictive potential of spectrum‐based topological descriptors for measuring the π ‐electronic energy of benzenoid hydrocarbons with applications to boron triangular and boron α ‐nanotubes. Math. Methods Appl. Sci.2021mma.716110.1002/mma.7161
    [Google Scholar]
  47. LiuJ.B. WangK. The multiplicative degree-Kirchhoff index and complexity of a class of linear networks.AIMS Math.2024937111713010.3934/math.2024347
    [Google Scholar]
  48. HayatS. MahadiH. AlanaziS.J.F. WangS. Predictive potential of eigenvalues-based graphical indices for determining thermodynamic properties of polycyclic aromatic hydrocarbons with applications to polyacenes.Comput. Mater. Sci.202423811294410.1016/j.commatsci.2024.112944
    [Google Scholar]
  49. ShiZ.Y. LiuJ.B. Topological indices of linear crossed phenylenes with respect to their Laplacian and normalized Laplacian spectrum.AIMS Math.2024935431545010.3934/math.2024262
    [Google Scholar]
  50. SajjadW. PanX.F. tul Ain, Q. Computation of resistance distance with Kirchhoff index of body centered cubic structure.J. Math. Chem.202462490292110.1007/s10910‑023‑01573‑6
    [Google Scholar]
/content/journals/cos/10.2174/0115701794299562240606054510
Loading
/content/journals/cos/10.2174/0115701794299562240606054510
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test