Skip to content
2000
Volume 22, Issue 2
  • ISSN: 1570-1794
  • E-ISSN: 1875-6271

Abstract

Background

The degree sequence of a graph is the list of its vertex degrees arranged in usually increasing order. Many properties of the graphs realized from a degree sequence can be deduced by means of a recently introduced graph invariant called omega invariant.

Methods

We used the definitions of the considered graph products together with the list of degree sequences of these graph products for some well-know graph classes. Naturally, the vertex degree and edge degree partitions are used. As the main theme of the paper is the omega invariant, we frequently used the definition and fundamental properties of this very new invariant for our calculations. Also, some algebraic properties of these products are deduced in line with some recent publications following the same fashion.

Results

In this paper, we determine the degree sequences of strong and lexicographic products of two graphs and obtain the general form of the degree sequences of both products. We obtain a general formula for the omega invariant of strong and lexicographic products of two graphs. The algebraic structures of strong and lexicographic products are obtained. Moreover, we prove that strong and lexicographic products are not distributive over each other.

Conclusion

We have obtained the general expression for degree sequences of two important products of graphs and a general expression for omega invariants of strong and lexicographic products. Furthermore, we have obtained algebraic structures of strong and lexicographic products in terms of their degree sequences. Also, it has been found that the disruptive property does not hold for strong and lexicographic products.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794281945240327053046
2024-04-19
2025-01-31
Loading full text...

Full text loading...

References

  1. WestD.B. Introduction to Graph Theory.2nd edLondon, United KingdomPearson Education, Inc.2001
    [Google Scholar]
  2. BiswasP. PaulA. BhattacharyaP. Analyzing the realization of degree sequence by constructing orthogonally diagonalizable adjacency matrix.Procedia Comput. Sci.20155788588910.1016/j.procs.2015.07.501
    [Google Scholar]
  3. HavelV. A remark on the existence of finite graph (Hungarian).Casopis Pest. Mat.195580477480
    [Google Scholar]
  4. HakimiS.L. On the realizability of a set of integers as degrees of the vertices of a graph.J. Soc. Ind. Appl. Math.196210349650610.1137/0110037
    [Google Scholar]
  5. ArikatiS. MaheshwariA. Realizing degree sequences in parallel.1994Available From https://pure.mpg.de/rest/items/item_1857947/component/file_1857946/content
  6. SeemaVarghese Brinta Babu, An overview on graph products.International Journal of Science and Research Archive202310196697110.30574/ijsra.2023.10.1.0848
    [Google Scholar]
  7. FederT. Product graph representations.J. Graph Theory199216546748810.1002/jgt.3190160508
    [Google Scholar]
  8. ImrichW. IzbickiH. Associative products of graphs.Monatsh Math.197580427728110.1007/BF01472575
    [Google Scholar]
  9. KavehA. RahamiH. A unified method for eigendecomposition of graph products.Commun. Numer. Methods Eng.200521737738810.1002/cnm.753
    [Google Scholar]
  10. LammpreyR.H. BarnesB.H. Product of graphs and applications.Model. Simul. (Anaheim)1974511191123
    [Google Scholar]
  11. PušV. A remark on distances in products of graphs.Comment. Math. Uni. Carolinae198728233239
    [Google Scholar]
  12. SabidussiG. Graph multiplication.Math. Z.195972144645710.1007/BF01162967
    [Google Scholar]
  13. FederT. Stable networks and product graphs. Mem. Am. Math. Soc1995116555010.1090/memo/0555
    [Google Scholar]
  14. HuilgolM.I. D’SouzaG.D. Codes from k-resolving sets for some product graphs.Preprint2024
    [Google Scholar]
  15. HuilgolM.I. D’SouzaG.D. Codes from k-resolving sets for stacked prism graphs.Preprint2024
    [Google Scholar]
  16. HuilgolM. I. D'SouzaG. D. Codes from k-resolving sets for some Rook's graphs.Preprint2024
    [Google Scholar]
  17. GhozatiS.A. A finite automata approach to modeling the cross product of interconnection networks.Math. Comput. Model.1999307-818520010.1016/S0895‑7177(99)00173‑9
    [Google Scholar]
  18. KavehA. KoohestaniK. Graph products for configuration processing of space structures.Comput. Struc.20088611-121219123110.1016/j.compstruc.2007.11.005
    [Google Scholar]
  19. KavehA. NikbakhtM. RahamiH. Improved group theoretic method using graph products for the analysis of symmetric-regular structures.Acta Mech.20102103-426528910.1007/s00707‑009‑0204‑1
    [Google Scholar]
  20. KavehA. RahamiH. An efficient method for decomposition of regular structures using graph products.Int. J. Numer. Methods Eng.200461111797180810.1002/nme.1126
    [Google Scholar]
  21. NouriM. TalatahariS. ShamlooA.S. Graph products and its applications in mathematical formulation of structures.J. Appl. Math.201220121610.1155/2012/510180
    [Google Scholar]
  22. BalasubramanianK. A generalized wreath product method for the enumeration of stereo and position isomers of polysubstituted organic compounds.Theor. Chim. Acta1979511375410.1007/PL00020748
    [Google Scholar]
  23. BalasubramanianK. Symmetry groups of chemical graphs.Int. J. Quantum Chem.198221241141810.1002/qua.560210206
    [Google Scholar]
  24. DeN. Application of corona product of graphs in computing topological indices of some special chemical graphs.Handbook of Research on Applied Cybernetics and Systems Science.Hershey, PennsylvaniaIGI Global200782101
    [Google Scholar]
  25. HuilgolM.I. DivyaB. BalasubramanianK. Distance degree vector and scalar sequences of corona and lexicographic products of graphs with applications to dynamic NMR and dynamics of nonrigid molecules and proteins.Theor. Chem. Acc.202114032510.1007/s00214‑021‑02719‑y
    [Google Scholar]
  26. HuilgolM.I. SriramV. BalasubramanianK. Tensor and Cartesian products for nanotori, nanotubes and zig–zag polyhex nanotubes and their applications to 13 C NMR spectroscopy.Mol. Phys.20211194e181759410.1080/00268976.2020.1817594
    [Google Scholar]
  27. PattabiramanK. NagarajanS. ChendrasekharanM. Zagreb indices and coindices of product graphs.Journal of Prime Research in Mathematics2015108091
    [Google Scholar]
  28. WangX. LinZ. MiaoL. Degree-based topological indices of product graphs.Open Journal of Discrete Applied Mathematics202143607110.30538/psrp‑odam2021.0064
    [Google Scholar]
  29. BehzadM. MahmoodianS.E. On topological invariants of the product of graphs.Can. Math. Bull.196912215716610.4153/CMB‑1969‑015‑9
    [Google Scholar]
  30. BryantD.E. El-ZanatiS.I. EyndenC.V. Star factorizations of graph products.J. Graph Theory2001362596610.1002/1097‑0118(200102)36:2<59::AID‑JGT1>3.0.CO;2‑A
    [Google Scholar]
  31. ClarkeN.E. NowakowskiR.J. A Tandem version of the Cops and Robber Game played on products of graphs.Discuss. Math. Graph Theory200525324124910.7151/dmgt.1277
    [Google Scholar]
  32. JänickeS. HeineC. HellmuthM. StadlerP.F. ScheuermannG. Visualization of graph products.IEEE Trans. Vis. Comput. Graph.20101661082108910.1109/TVCG.2010.217 20975146
    [Google Scholar]
  33. HammackR. ImrichW. Klav, Handbook of product graphs.Boca RatonCRC Press201110.1201/b10959
    [Google Scholar]
  34. ImrichW. Klav, Product graphs: Structure and Recognition.New YorkWiley- Interscience2000
    [Google Scholar]
  35. ArockiarajM. ClementJ. TratnikN. MushtaqS. BalasubramanianK. Weighted Mostar indices as measures of molecular peripheral shapes with applications to graphene, graphyne and graphdiyne nanoribbons.SAR QSAR Environ. Res.202031318720810.1080/1062936X.2019.1708459 31960721
    [Google Scholar]
  36. ArockiarajM. KlavžarS. ClementJ. MushtaqS. BalasubramanianK. BalasubramanianK. Edge distance-based topological indices of strength-weighted graphs and their applications to Coronoid systems, carbon nanocones and SiO2 nanostructures.Mol. Inform.20193811-12190003910.1002/minf.201900039 31529609
    [Google Scholar]
  37. AlameriA.Q.S. Al-SharafiM.S.Y. Topological indices types in Graphs and their applications.New South Wales, AustraliaGeneris Publishing2021
    [Google Scholar]
  38. NatarajanR. KamalakananP. NirdoshI. Applications of topological indices to structure-activity relationship modelling and selection of mineral collectors.Indian J. Chem.202342A13301346
    [Google Scholar]
  39. HuilgolM.I. SriramV. UdupaH.J. BalasubramanianK. Computational studies of toxicity and properties of β-diketones through topological indices and M/NM-polynomials.Comput. Theor. Chem.2023122411410810.1016/j.comptc.2023.114108
    [Google Scholar]
  40. BajajS. SambiS.S. MadanA.K. Prediction of Anti-Inflammatory activity of N-Arylanthranilic acids: Computational approach using Refined Zagreb indices.Croat. Chem. Acta2005782165174
    [Google Scholar]
  41. HuilgolM.I. SriramV. BalasubramanianK. Structure–activity relations for antiepileptic drugs through omega polynomials and topological indices.Mol. Phys.20221203e198754210.1080/00268976.2021.1987542
    [Google Scholar]
  42. PoojaryP. ShenoyG.B. SwamyN.N. AnanthapadmanabhaR. SooryanarayanaB. PoojaryN. Reverse Topological indices of some molecules in drugs used in the Treatment of H1N1.Biointerface Res. Appl. Chem.202313171
    [Google Scholar]
  43. BindusreeA.R. CangulN. LokeshaV. CevikS. Zagreb polynomials of three graph operators.Filomat20163071979198610.2298/FIL1607979B
    [Google Scholar]
  44. DasK.C. YurttasA. ToganM. CevikA.S. CangulI.N. The multiplicative Zagreb indices of graph operations.J. Inequal. Appl.2013201319010.1186/1029‑242X‑2013‑90
    [Google Scholar]
  45. DasK.C. AkgunesN. ToganM. YurttasA. CangulI.N. CevikA.S. On the first Zagreb index and multiplicative Zagreb coindices of graphs.Seria Matematica2016241153176
    [Google Scholar]
  46. MishraV.N. DelenS. CangulI.N. Algebraic structure of graph operations in terms of degree sequences.Int. J. Anal. App.2018166809821
    [Google Scholar]
  47. RanjiniP.S. LokeshaV. CangülI.N. On the Zagreb indices of the line graphs of the subdivision graphs.Appl. Math. Comput.2011218369970210.1016/j.amc.2011.03.125
    [Google Scholar]
  48. ToganM. YurttasA. CangulI.N. Zagreb and multiplicative Zagreb indices of r-subdivision graphs of double graphs.Scientia Magna2017121115119
    [Google Scholar]
  49. YurtasA. ToganM. LokeshaV. CangulI.N. GutmanI. Inverse problem for Zagreb indices.J. Math. Chem.201957260961510.1007/s10910‑018‑0970‑x
    [Google Scholar]
  50. SamieiZ. MovahediF. Investigating graph invariants for predicting properties of chemical structures of Antiviral drugs.Polycycl. Aromat. Compd.202311810.1080/10406638.2023.2283625
    [Google Scholar]
  51. Ul Haq BokharyS.A. ImranM. AkhterS. ManzoorS. Molecular topological invariants of certain chemical networks.Main Group Met. Chem.202144114114910.1515/mgmc‑2021‑0010
    [Google Scholar]
  52. ImranM. AkhterS. IqbalZ. Edge Mostar index of chemical structures and nanostructures using graph operations.Int. J. Quantum Chem.202012015e2625910.1002/qua.26259
    [Google Scholar]
  53. GutmanI. TosovicJ. ovi, J. Testing the quality of molecular structure descriptors. Vertex-degree-based topological indices.J. Serb. Chem. Soc.201378680581010.2298/JSC121002134G
    [Google Scholar]
  54. GutmanI. Degree-based topological indices.Croat. Chem. Acta201386435136110.5562/cca2294
    [Google Scholar]
  55. GutmanI. FurtulaB. DasK.C. Extended energy and its dependence on molecular structure.Can. J. Chem.201795552652910.1139/cjc‑2016‑0636
    [Google Scholar]
  56. HayatS. WangS. LiuJ.B. Valency-based topological descriptors of chemical networks and their applications.Appl. Math. Model.20186016417810.1016/j.apm.2018.03.016
    [Google Scholar]
  57. WardeckiD. DołowyM. Bober-MajnuszK. Evaluation of the usefulness of topological indices for predicting selected physicochemical properties of bioactive substances with Anti-Androgenic and Hypouricemic activity.Molecules20232815582210.3390/molecules2815582237570792
    [Google Scholar]
  58. DelenS. Naci CangulI. A New Graph Invariant.Turkish J. Anal. Num. Theory201861303310.12691/tjant‑6‑1‑4
    [Google Scholar]
  59. DelenS. ToganM. YurttasA. AnaU. CangulI. N. The effect of edge and vertex deletion on omega invariant.Appl. Anal. Discr. Math.2020141
    [Google Scholar]
  60. DelenS. DemirciM. CevikA.S. CangulI.N. On Omega index and average degree of graphs. J. Math2021202110.1155/2021/5565146
    [Google Scholar]
  61. DelenS. YurttasA. ToganM. CangulI.N. Omega invariant of graphs and cyclicness.Appl. Sci. (Basel)2019219195
    [Google Scholar]
  62. SanliU. CelikF. DelenS. CangulI. Connectedness criteria for graphs by means of omega invariant.Filomat202034264765210.2298/FIL2002647S
    [Google Scholar]
  63. OzM.S. CangulI.N. Bounds for matching number of fundamental realizations according to new graph invariant omega.Proc. Jangjeon Math. Soc.20202312337
    [Google Scholar]
  64. OzdenH. ZihniF.E. ErdoganF.O. CangulI.N. SrivastavaG. SrivastavaH.M. Independence number of graphs and line graphs of trees by means of omega invariant.Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas20201142
    [Google Scholar]
  65. OzM.S. CangulI.N. A survey of the maximal and the minimal nullity in terms of omega invariant on graphs.Acta Univ. Sapientiae Matem.202315233735310.2478/ausm‑2023‑0019
    [Google Scholar]
  66. DemirciM. GunesA. DelenS. CangulI.N. The effect of omega invariant on some topological graph indices.Creative Math. Inform.202130217518010.37193/CMI.2021.02.07
    [Google Scholar]
  67. GunesA.Y. New relations between Zagreb indices and Omega invariant.Curr. Org. Synth.2023202320 37278040
    [Google Scholar]
  68. GutmanI. ToganM. YurttasA. CevikA.S. CangulI.N. Inverse problem for Sigma index.MATCH Commun. Math. Comput. Chem.2018792491508
    [Google Scholar]
  69. ToganM. YurttasA. SanliU. CelikF. CangualI. Inverse problem for Bell index.Filomat202034261562110.2298/FIL2002615T
    [Google Scholar]
  70. DemirciM. DelenS. CevikA.S. CangulI.N. Omega Index of Line and Total graphs.J. Math2021202110.1155/2021/5552202
    [Google Scholar]
  71. ToganM. GunesA.Y. DelenS. CangulI.N. Omega invariant of the Line graphs of Unicyclic graphs.Montes Taurus J. Pure Appl. Math.2020224548
    [Google Scholar]
  72. DemirciM. OzbekA. AkbayrakO. CangulI.N. Lucas graphs.J. Appl. Math. Comput.2021651-29310610.1007/s12190‑020‑01382‑z
    [Google Scholar]
  73. GunesA.Y. DelenS. DemirciM. CevikA.S. CangulI.N. Fibonacci Graphs.Symmetry (Basel)2020121383
    [Google Scholar]
  74. DemirciM. CangulI.N. Tribonacci graphs.ITM Web of Conf.202034301002
    [Google Scholar]
  75. GunesA.Y. Omega invariant of complement graphs and Nordhaus-Gaddum type results.Curr. Org. Synth.202321 37859329
    [Google Scholar]
  76. AsciogluM. DemirciM. CangulI.N. Omega invariant of union, join and corona product of two graphs.Advanced Studies in Contemporary Mathematics2020303297306
    [Google Scholar]
  77. XingB.H. OzalanN.U. LiuJ.B. The degree sequence on tensor and cartesian products of graphs and their omega index.AIMS Math.202387166181663210.3934/math.2023850
    [Google Scholar]
  78. HuilgolM.I. D’SouzaG.D. CangulI.N. Omega invariant of some Cayley graphs.Preprint2024
    [Google Scholar]
  79. HuilgolM.I. D’SouzaG.D. CangulI.N. Omega indices of some Sierpiński type graphs.Preprint2024
    [Google Scholar]
  80. YurttasA. ToganM. DelenS. CangulI.N. Omega invariants and its applications in graph theory.Proc. Book MICOPAM201820187
    [Google Scholar]
  81. LiX. LiZ. WangL. The inverse problems for some topological indices in combinatorial chemistry.J. Comput. Biol.2003101475510.1089/106652703763255660 12676050
    [Google Scholar]
  82. AasiM.S. AsifM. IqbalT. IbrahimM. Radio labellings of Lexicographic product of some graphsJ. Math20212021
    [Google Scholar]
  83. ZhangX. FangZ. The Spectrum of weighted lexicographic production self-complementary graphs.IEEE Access202311853748538310.1109/ACCESS.2023.3303895
    [Google Scholar]
  84. AkhterS. ImranM. On degree-based topological descriptors of strong product graphs.Can. J. Chem.201694655956510.1139/cjc‑2015‑0562
    [Google Scholar]
  85. DelenS. CangulI.N. Extremal Problems on Components and Loops in Graphs.Acta Math. Sin.201935216117110.1007/s10114‑018‑8086‑6
    [Google Scholar]
/content/journals/cos/10.2174/0115701794281945240327053046
Loading
/content/journals/cos/10.2174/0115701794281945240327053046
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test