Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1570-1794
  • E-ISSN: 1875-6271

Abstract

Background

This work describes the oxidation of a catechol moiety to the corresponding quinone by using Mn(III)-based catalysts in the presence of an organic base. Two newly reported Mn(III)-Schiff base complexes were utilized for the oxidation of three different substrates, namely, 3,5-di -butyl catechol, 1,4-dihydroxy benzene and pyrocatechol, aerobically.

Objective

We intended to understand the role of a base for the above-mentioned oxidation process. Also, we were interested to monitor the progress of reaction using 1H-NMR spectroscopy and to get more insight into the mechanistic path of the reaction.

Methods

The oxidation processes were studied in open air in acetonitrile or methanol solvent. The reaction mixture containing concerned substrate, catalyst, and base were stirred in open air and 1H-NMR spectrum was recorded using the crude reaction mixture in different time intervals.

Results

Interestingly, introduction of a base in the reaction mixture, enhanced the rate to a great extent for the first two substrates. This observation may provide an idea toward the rate determining step of the process. Notably, the third substrate, pyrocatechol, could not be oxidized by any of the two catalysts even with a base. The oxidation of 1,4-dihydroxy benzene may emphasize monodentate binding mode of the substrate. Each of the oxidation was monitored with the help of time dependent 1H-NMR spectroscopy.

Conclusion

A mechanistic pathway has been proposed. The spectra obtained in different cases help to compare the efficiency of the catalysts with or without base. In the absence of the catalysts, triethylamine alone cannot complete the conversion in the stipulated time, which may establish the effectiveness of the catalysts the base-assisted mechanism.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794285802240219064947
2024-03-12
2025-06-02
Loading full text...

Full text loading...

References

  1. FernandesC. NevesA. BortoluzziA.J. MangrichA.S. RentschlerE. SzpoganiczB. SchwingelE. A new dinuclear unsymmetric copper(II) complex as model for the active site of catechol oxidase.Inorg. Chim. Acta20013201-2122110.1016/S0020‑1693(01)00470‑4
    [Google Scholar]
  2. EickenC. KrebsB. SacchettiniJ.C. Catechol oxidase: Structure and activity.Curr. Opin. Struct. Biol.19999667768310.1016/S0959‑440X(99)00029‑9 10607672
    [Google Scholar]
  3. ThanR. FeldmannA.A. KrebsB. Structural and functional studies on model compounds of purple acid phosphatases and catechol oxidases.Coord. Chem. Rev.1999182121124110.1016/S0010‑8545(98)00234‑3
    [Google Scholar]
  4. KovalI.A. GamezP. BelleC. SelmecziK. ReedijkJ. Synthetic models of the active site of catechol oxidase: Mechanistic studies.Chem. Soc. Rev.200635981484010.1039/b516250p 16936929
    [Google Scholar]
  5. SolomonE.I. SundaramU.M. MachonkinT.E. Multiple oxidases and oxygenases.Chem. Rev.19969672563260610.1021/cr950046o 11848837
    [Google Scholar]
  6. MonzaniE. QuintiL. PerottiA. CasellaL. GullottiM. RandaccioL. GeremiaS. NardinG. FaleschiniP. TabbìG. Tyrosinase models. synthesis, structure, catechol oxidase activity, and phenol monooxygenase activity of a dinuclear copper complex derived from a triamino pentabenzimidazole ligand.Inorg. Chem.199837355356210.1021/ic970996n 11670307
    [Google Scholar]
  7. SimándiL.I. SimándiT.L. Kinetics and mechanism of the cobaloxime(II)-catalysed oxidative dehydrogenation of 3,5-di-tert-butylcatechol by O2. A functional oxidase model.J. Chem. Soc., Dalton Trans.1998193275328010.1039/a803597k
    [Google Scholar]
  8. DeyS.K. MukherjeeA. Catechol oxidase and phenoxazinone synthase: Biomimetic functional models and mechanistic studies.Coord. Chem. Rev.20163108011510.1016/j.ccr.2015.11.002
    [Google Scholar]
  9. KlabundeT. EickenC. SacchettiniJ.C. KrebsB. Crystal structure of a plant catechol oxidase containing a dicopper center.Nat. Struct. Biol.19985121084109010.1038/4193 9846879
    [Google Scholar]
  10. DeverallB.J. Phenolase and pectic enzyme activity in the chocolate spot disease of beans.Nature1961189476131110.1038/189311a0
    [Google Scholar]
  11. KaizerJ. PapJ. SpeierG. PárkányiL. KoreczL. RockenbauerA. Synthesis, structure and catecholase activity of dinuclear copper and zinc complexes with an N3-ligand.J. Inorg. Biochem.200291119019810.1016/S0162‑0134(02)00459‑2 12121775
    [Google Scholar]
  12. AckermannJ. MeyerF. KaiferE. PritzkowH. Tuning the activity of catechol oxidase model complexes by geometric changes of the dicopper core.Chemistry20028124725810.1002/1521‑3765(20020104)8:1<247:AID‑CHEM247>3.0.CO;2‑P 11822456
    [Google Scholar]
  13. MonzaniE. BattainiG. PerottiA. CasellaL. GullottiM. SantagostiniL. NardinG. RandaccioL. GeremiaS. ZanelloP. OpromollaG. Mechanistic, structural, and spectroscopic studies on the catecholase activity of a dinuclear copper complex by dioxygen.Inorg. Chem.199938235359536910.1021/ic990397b
    [Google Scholar]
  14. MajumderS. SarkarS. SasmalS. SañudoE.C. MohantaS. Heterobridged dinuclear, tetranuclear, dinuclear-based 1-d, and heptanuclear-based 1-D complexes of copper(II) derived from a dinucleating ligand: Syntheses, structures, magnetochemistry, spectroscopy, and catecholase activity.Inorg. Chem.201150167540755410.1021/ic200409d 21776948
    [Google Scholar]
  15. BanuK.S. ChattopadhyayT. BanerjeeA. BhattacharyaS. SureshE. NethajiM. ZangrandoE. DasD. Catechol oxidase activity of a series of new dinuclear copper(II) complexes with 3,5-DTBC and TCC as substrates: Syntheses, X-ray crystal structures, spectroscopic characterization of the adducts and kinetic studies.Inorg. Chem.200847167083709310.1021/ic701332w 18624404
    [Google Scholar]
  16. AhamadM.N. KumarM. AnsariA. i, M.; Ahmad, M.; Shahid, M. Synthesis, characterization, theoretical studies and catecholase like activities of [MO 6] type complexes.New J. Chem.20194335140741408310.1039/C9NJ03729B
    [Google Scholar]
  17. MitraM. MajiA.K. GhoshB.K. KaurG. ChoudhuryA.R. LinC.H. RibasJ. GhoshR. Synthesis, crystallographic characterization and catecholase activity of a monocopper(II) and a dimanganese(III) complex with an anionic Schiff base ligand.Polyhedron201361151910.1016/j.poly.2013.05.017
    [Google Scholar]
  18. MukherjeeS. SarkarG. DeA. BiswasB. A square planar copper(II) complex noncovalently conjugated with a p-cresol for bioinspired catecholase activity.Eur. J. Chem.202314449950610.5155/eurjchem.14.4.499‑506.2489
    [Google Scholar]
  19. BoutaybiM.E. BouroumaneN. AzzouziM. AaddouzM. BacroumeS. El MizM. TouzaniR. BahariZ. ZarroukA. El-MarghanyA. JamaC. Abu-RayyanA. WaradI. Synthesis, characterization, DFT, and thermogravimetric analysis of neutral Co(II)/pyrazole complex, catalytic activity toward catecholase and phenoxazinone oxidation.Crystals 202313215510.3390/cryst13020155
    [Google Scholar]
  20. ChowdhuryM. BiswasN. SahaS. ZangrandoE. SepayN. ChoudhuryC.R. A novel nickel(II) complex with N,S donor Schiff base: Structural characterisation, DFT, TD-DFT study and catalytic investigation.Acta Chim. Slov.202370447948810.17344/acsi.2023.8136 38124652
    [Google Scholar]
  21. ZherebtsovM.A. ArsenievM.V. BaranovE.V. ChesnokovS.A. Synthesis and structure of a cubanic copper complex based on o-quinone with a benzoxazole substitute.J. Struct. Chem.202364112051206210.1134/S0022476623110033
    [Google Scholar]
  22. ZhaoX. KongX. LiG. ZhaoY. JiaZ. HeF. YangP. GeK. ZhangM. LiuZ. Ru-based catalysts for hydrogenation of N-ethylcarbazole: Progress and prospects.Fuel202436013060510.1016/j.fuel.2023.130605
    [Google Scholar]
  23. RejaS. SarkarK. MukherjeeD. GuhaS. GhoshS. SahaT. KumarP. DasP. DasR.K. Novel bioinspired dinuclear Cu(II) ‘paddle wheel’ acetate complex: Catalytic and in vitro biological activity studies.J. Mol. Struct.2024130013726310.1016/j.molstruc.2023.137263
    [Google Scholar]
  24. CelikD. KoseM. Triazine based Mn (II) and Mn (II)/Ln (III) complexes: Synthesis, characterization and catecholase activities.Appl. Organomet. Chem.2019332e472110.1002/aoc.4721
    [Google Scholar]
  25. JanaN.C. BrandãoP. FronteraA. PanjaA. A facile biomimetic catalytic activity through hydrogen atom abstraction by the secondary coordination sphere in manganese(III) complexes.Dalton Trans.20204940142161423010.1039/D0DT02431G 33025999
    [Google Scholar]
  26. SarkarS. MajumderS. SasmalS. CarrellaL. RentschlerE. MohantaS. Triple bridged μ-phenoxo-bis(μ-carboxylate) and double bridged μ-phenoxo-μ1,1-azide/μ-methoxide dicopper(II) complexes: Syntheses, structures, magnetochemistry, spectroscopy and catecholase activity.Polyhedron201350127028210.1016/j.poly.2012.10.050
    [Google Scholar]
  27. DeyS.K. MukherjeeA. The synthesis, characterization and catecholase activity of dinuclear cobalt(II/III) complexes of an O-donor rich Schiff base ligand.New J. Chem.201438104985499510.1039/C4NJ00715H
    [Google Scholar]
  28. BaruahB. DasS. ChakravortyA. A family of vanadate esters of monoionized and diionized aromatic 1,2-diols: synthesis, structure, and redox activity.Inorg. Chem.200241174502450810.1021/ic020259d 12184768
    [Google Scholar]
  29. CamargoT.P. MaiaF.F. ChavesC. de SouzaB. BortoluzziA.J. CastilhoN. BortolottoT. TerenziH. CastellanoE.E. HaaseW. TomkowiczZ. PeraltaR.A. NevesA. Synthesis, characterization, hydrolase and catecholase activity of a dinuclear iron(III) complex: Catalytic promiscuity.J. Inorg. Biochem.2015146778810.1016/j.jinorgbio.2015.02.017 25792035
    [Google Scholar]
  30. NevesA. BortoluzziA.J. JovitoR. PeraltaR.A. SouzaB. SzpoganiczB. JoussefA.C. TerenziH. SeverinoP.C. FischerF.L. SchenkG. RileyM.J. SmithS.J. GahanL.R. Catalytic promiscuity: Catecholase-like activity and hydrolytic DNA cleavage promoted by a mixed-valence FeIII FeII complex.J. Braz. Chem. Soc.20102171201121210.1590/S0103‑50532010000700007
    [Google Scholar]
  31. SzigyártóI.C. SimándiL.I. PárkányiL. KoreczL. SchlosserG. Biomimetic oxidation of 3,5-di-tert-butylcatechol by dioxygen via Mn-enhanced base catalysis.Inorg. Chem.200645187480748710.1021/ic060618v 16933952
    [Google Scholar]
  32. MayZ. SimándiL.I. VértesA. A novel iron-enhanced pathway for base-catalyzed catechol oxidation by dioxygen.React. Kinet. Catal. Lett.200689234935810.1007/s11144‑006‑0147‑7
    [Google Scholar]
  33. DuttaS. BhuniaP. MayansJ. DrewM.G.B. GhoshA. Roles of basicity and steric crowding of anionic coligands in catechol oxidase-like activity of Cu(II)–Mn(II) complexes.Dalton Trans.20204932112681128110.1039/D0DT00952K 32760992
    [Google Scholar]
  34. Rekha TripathyR. JanaS. Kumar MajiS. SarkarS. Catecholase activity of a Mn(III) complex: An approach through 1H-NMR spectroscopy.ChemistrySelect2022748e20220320510.1002/slct.202203205
    [Google Scholar]
  35. MekonnenH.G. SahooD. JanaS. MajiS.K. Exploration of mesyl chloride in a one pot conversion of carboxylic acid to ketone.Curr. Organocatal.20207324224710.2174/2213337207999200611160509
    [Google Scholar]
  36. TripathyR.R. JanaS. SarkarS. Effect of solvent and auxiliary ligand on catecholase activities of Mn(III) complexes: A comparative study.J. Mol. Struct.2023129013590310.1016/j.molstruc.2023.135903
    [Google Scholar]
  37. PalK. BarmanS. BagJ. Enzymatic substrate inhibition in metal free catecholase activity.Chem. Biodivers.2023203e20220116610.1002/cbdv.202201166 36762430
    [Google Scholar]
  38. SongR. YuH. HuangH. ChenY. Controlled one-pot synthesis of multiple heterocyclic scaffolds based on an amphiphilic Claisen-Schmidt reaction intermediate.Chem. Select2019447140211402610.1002/slct.201904110
    [Google Scholar]
  39. SimándiT.L. SimándiL.I. Ferroxime(II)-catalysed oxidation of 3,5-di-tert-butylcatechol by O2. Kinetics and mechanism.J. Chem. Soc., Dalton Trans.1999244529453310.1039/a907373f
    [Google Scholar]
  40. GrinsteadR.R. Metal-catalyzed oxidation of 3,5-di-t-butyl pyrocatechol, and its significance in the mechanism of pyrocatechase action.Biochemistry1964391308131410.1021/bi00897a021 14229674
    [Google Scholar]
  41. GhoshK. HarmsK. ChattopadhyayS. Two cobalt(III) Schiff base complexes of the type [Co(ABC)(DE)X]: Facile synthesis, characterization, catechol oxidase and phenoxazinone synthase mimicking activity.Chem. Select20172278207822010.1002/slct.201701536
    [Google Scholar]
  42. SarmahS. KalitaD. HazarikaP. BorahR. IslamN.S. Synthesis of new dinuclear and mononuclear peroxovanadium(V) complexes containing biogenic co-ligands: A comparative study of some of their properties.Polyhedron20042371097110710.1016/j.poly.2003.11.060
    [Google Scholar]
  43. ShyamalM. MandalT.K. PanjaA. SahaA. Influence of anionic co-ligands on the structural diversity and catecholase activity of copper(II) complexes with 2-methoxy-6-(8-iminoquinolinylmethyl)phenol.RSC Advances2014496535205353010.1039/C4RA08025D
    [Google Scholar]
  44. ParimalaS. KandaswamyM. Mononuclear, dinuclear nickel(II) and heterodinuclear Zn(II)Ni(II) complexes as models for the active site of phosphatase.Inorg. Chem. Commun.2003691252125410.1016/S1387‑7003(03)00243‑0
    [Google Scholar]
  45. JayaweeraM.N.P. Synthesis, characterization and mechanistic studies of biomimetic dinuclear copper(II) complexes., Masters Theses, Eastern Illinois university.20194460
    [Google Scholar]
  46. BiswasA. DasL.K. DrewM.G.B. AromíG. GamezP. GhoshA. Synthesis, crystal structures, magnetic properties and catecholase activity of double phenoxido-bridged penta-coordinated dinuclear nickel(II) complexes derived from reduced Schiff-base ligands: mechanistic inference of catecholase activity.Inorg. Chem.201251157993800110.1021/ic202748m 22759340
    [Google Scholar]
  47. ChakrabortyP. MohantaS. Syntheses, structures and catecholase activity of two cobalt(III) complexes derived from N,N′-ethylenebis(3-ethoxysalicylaldiimine): A special host–guest system from a special ligand.Inorg. Chim. Acta2015435384510.1016/j.ica.2015.06.007
    [Google Scholar]
  48. DasM. NasaniR. SahaM. MobinS.M. MukhopadhyayS. Nickel(II) complexes with a flexible piperazinyl moiety: studies on DNA and protein binding and catecholase like properties.Dalton Trans.20154452299231010.1039/C4DT02675F 25531802
    [Google Scholar]
  49. TripathyR.R. SinghaS. SarkarS. A review on bio-functional models of catechol oxidase probed by less explored first row transition metals.J. Coord. Chem.20227515-161967201710.1080/00958972.2022.2122053
    [Google Scholar]
/content/journals/cos/10.2174/0115701794285802240219064947
Loading
/content/journals/cos/10.2174/0115701794285802240219064947
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test