Skip to content
2000
image of Nano-reusable CuO-ZnO Catalyzed One-Pot Synthesis of 1-Amidoalkyl-2-Naphthols under Green Condition

Abstract

Introduction

The Developed CuO-ZnO nanocomposite has been demonstrated as a new and environmentally friendly catalyst for one-pot multicomponent reaction between aldehydes, 2-naphthol and amides in the synthesis of 1-amidoalkyl-2-naphthols.

Method

The new catalyst was synthesized by a ball-milling method by mixing a mixture of CuO and ZnO powder in various proportions and characterized by different spectroscopic methods such as powder X-ray diffraction (pXRD), Scanning Electron Microscopy (SEM), UV-Visible analysis, EDAX elemental analysis and mapping. The advantages of the devised protocol include a green approach, simple work-up procedures, avoidance of hazardous solvents, and good to excellent yields. RE

Sult

Evaluation of the catalyst performance in the synthesis of some 1-amidoalkyl-2-naphthols showed presentable results. Sixteen derivatives were synthesized in desirable yield by our new method (-). CuO-ZnO nanocomposite as a safe and efficient catalyst could be reused up to 5 runs for the synthesis of naphthol derivatives without any significant decrease in its potency.

Conclusion

The High purity of the products and desirable yields are other points that make the present work more attractive.

Loading

Article metrics loading...

/content/journals/cocat/10.2174/0122133372337451240923173335
2024-10-08
2025-01-28
Loading full text...

Full text loading...

References

  1. a Pinheiro A.V. Han D. Shih W.M. Yan H. Challenges and opportunities for structural DNA nanotechnology. Nat. Nanotechnol. 2011 6 12 763 772 10.1038/nnano.2011.187 22056726
    [Google Scholar]
  2. b Mahmoudi M. Lynch I. Ejtehadi M.R. Monopoli M.P. Bombelli F.B. Laurent S. Protein-nanoparticle interactions: Opportunities and challenges. Chem. Rev. 2011 111 9 5610 5637 10.1021/cr100440g 21688848
    [Google Scholar]
  3. Grunes J. Zhu J. Somorjai G.A. Catalysis and nanoscience. Chem. Commun. (Camb.) 2003 18 18 2257 2260 10.1039/b305719b 14518867
    [Google Scholar]
  4. Astruc D. Lu F. Aranzaes J.R. Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. 2005 44 48 7852 7872 10.1002/anie.200500766 16304662
    [Google Scholar]
  5. a Shimizu K. Sato R. Satsuma A. Direct C-C cross-coupling of secondary and primary alcohols catalyzed by a γ-alumina-supported silver subnanocluster. Angew. Chem. Int. Ed. 2009 48 22 3982 3986 10.1002/anie.200901057 19396891
    [Google Scholar]
  6. b Witham C.A. Huang W. Tsung C.K. Kuhn J.N. Somorjai G.A. Toste F.D. Converting homogeneous to heterogeneous in electrophilic catalysis using monodisperse metal nanoparticles. Nat. Chem. 2010 2 1 36 41 10.1038/nchem.468 21124378
    [Google Scholar]
  7. a Ugi I. Dömling A. Hörl W. Multicomponent reactions in organic chemistry. Endeavour 1994 18 3 115 122 10.1016/S0160‑9327(05)80086‑9
    [Google Scholar]
  8. b Hulme C. Gore V. “Multi-component reactions : Emerging chemistry in drug discovery” ‘from xylocain to crixivan’. Curr. Med. Chem. 2003 10 1 51 80 10.2174/0929867033368600 12570721
    [Google Scholar]
  9. c Sunderhaus J.D. Dockendorff C. Martin S.F. Applications of multicomponent reactions for the synthesis of diverse heterocyclic scaffolds. Org. Lett. 2007 9 21 4223 4226 10.1021/ol7018357 17887692
    [Google Scholar]
  10. d Armstrong R.W. Combs A.P. Tempest P.A. Brown S.D. Keating T.A. Multiple-component condensation strategies for combinatorial library synthesis. Acc. Chem. Res. 1996 29 3 123 131 10.1021/ar9502083
    [Google Scholar]
  11. e Liéby-Muller F. Constantieux T. Rodriguez J. Multicomponent domino reaction from β-ketoamides: Highly efficient access to original polyfunctionalized 2,6-diazabicyclo[2.2.2]octane cores. J. Am. Chem. Soc. 2005 127 49 17176 17177 10.1021/ja055885z 16332052
    [Google Scholar]
  12. f Haurena C. Le Gall E. Sengmany S. Martens T. Troupel M. A straightforward three-component synthesis of α-amino esters containing a phenylalanine or a phenylglycine scaffold. J. Org. Chem. 2010 75 8 2645 2650 10.1021/jo1002328 20302360
    [Google Scholar]
  13. Cioc R.C. Ruijter E. Orru R.V.A. Multicomponent reactions: Advanced tools for sustainable organic synthesis. Green Chem. 2014 16 6 2958 2975 10.1039/C4GC00013G
    [Google Scholar]
  14. Dömling A. Wang W. Wang K. Chemistry and biology of multicomponent reactions. Chem. Rev. 2012 112 6 3083 3135 10.1021/cr100233r 22435608
    [Google Scholar]
  15. Egorova K.S. Gordeev E.G. Ananikov V.P. Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chem. Rev. 2017 117 10 7132 7189 10.1021/acs.chemrev.6b00562 28125212
    [Google Scholar]
  16. a Shaterian H.R. Yarahmadi H. Ghashang M. An efficient, simple and expedition synthesis of 1-amidoalkyl-2-naphthols as ‘drug like’ molecules for biological screening. Bioorg. Med. Chem. Lett. 2008 18 2 788 792 10.1016/j.bmcl.2007.11.035 18053712
    [Google Scholar]
  17. b Seebach D. Matthews J.L. β-Peptides: A surprise at every turn. Chem. Commun. (Camb.) 1997 21 2015 2022 10.1039/a704933a
    [Google Scholar]
  18. Dingermann T. Steinhilber D. Folkers G. Molecular biology in medicinal chemistry. Wiley-VCH 2004 21
    [Google Scholar]
  19. Khodaei M. Khosropour A. Moghanian H. A simple and efficient procedure for the synthesis of amidoalkyl naphthols by p-TSA in solution or under solvent-free conditions. Synlett 2006 2006 6 916 920 10.1055/s‑2006‑939034
    [Google Scholar]
  20. Nandi G.C. Samai S. Kumar R. Singh M.S. Atom-efficient and environment-friendly multicomponent synthesis of amidoalkyl naphthols catalyzed by P2O5. Tetrahedron Lett. 2009 50 51 7220 7222 10.1016/j.tetlet.2009.10.055
    [Google Scholar]
  21. Singh R.K. Duvedi R. Environment-friendly green chemistry approaches for an efficient synthesis of 1-amidoalkyl-2-naphthols catalyzed by tannic acid. Arab. J. Chem. 2018 11 1 91 98 10.1016/j.arabjc.2014.08.022
    [Google Scholar]
  22. Hajipour A.R. Ghayeb Y. Sheikhan N. Ruoho A.E. Brønsted acidic ionic liquid as an efficient and reusable catalyst for one-pot synthesis of 1-amidoalkyl 2-naphthols under solvent-free conditions. Tetrahedron Lett. 2009 50 40 5649 5651 10.1016/j.tetlet.2009.07.116
    [Google Scholar]
  23. Kantevari S. Vuppalapati S.V.N. Nagarapu L. Montmorillonite K10 catalyzed efficient synthesis of amidoalkyl naphthols under solvent free conditions. Catal. Commun. 2007 8 11 1857 1862 10.1016/j.catcom.2007.02.022
    [Google Scholar]
  24. Shaterian H.R. Yarahmadi H. A modified reaction for the preparation of amidoalkyl naphthols. Tetrahedron Lett. 2008 49 8 1297 1300 10.1016/j.tetlet.2007.12.093
    [Google Scholar]
  25. Das B. Laxminarayana K. Ravikanth B. Rao B.R. Iodine catalyzed preparation of amidoalkyl naphthols in solution and under solvent-free conditions. J. Mol. Catal. Chem. 2007 261 2 180 183 10.1016/j.molcata.2006.07.077
    [Google Scholar]
  26. Safari J. Zarnegar Z. A magnetic nanoparticle-supported sulfuric acid as a highly efficient and reusable catalyst for rapid synthesis of amidoalkyl naphthols. J. Mol. Catal. Chem. 2013 379 269 276 10.1016/j.molcata.2013.08.028
    [Google Scholar]
  27. Kundu D. Majee A. Hajra A. Zwitterionic-type molten salt: An efficient mild organocatalyst for synthesis of 2-amidoalkyl and 2-carbamatoalkyl naphthols. Catal. Commun. 2010 11 14 1157 1159 10.1016/j.catcom.2010.06.001
    [Google Scholar]
  28. Kumar A. Gupta M.K. Kumar M. Micelle promoted supramolecular carbohydrate scaffold-catalyzed multicomponent synthesis of 1,2-dihydro-1-aryl-3H-naphth[1,2-e][1,3]oxazin-3-one and amidoalkyl naphthols derivatives in aqueous medium. RSC Advances 2012 2 19 7371 7376 10.1039/c2ra20848b
    [Google Scholar]
  29. Davoodnia A. Mahjoobin R. Tavakoli-Hoseini N. A facile, green, one-pot synthesis of amidoalkyl naphthols under solvent-free conditions catalyzed by a carbon-based solid acid. Chin. J. Catal. 2014 35 4 490 495 10.1016/S1872‑2067(14)60011‑5
    [Google Scholar]
  30. Hajjami M. Ghorbani F. Bakhti F. MCM-41-N-propylsulfamic acid: An efficient catalyst for one-pot synthesis of 1-amidoalkyl-2-naphtols. Appl. Catal. A Gen. 2014 470 303 310 10.1016/j.apcata.2013.11.002
    [Google Scholar]
  31. Shaterian H.R. Yarahmadi H. Ghashang M. Silica supported perchloric acid (HClO4–SiO2): An efficient and recyclable heterogeneous catalyst for the one-pot synthesis of amidoalkyl naphthols. Tetrahedron 2008 64 7 1263 1269 10.1016/j.tet.2007.11.070
    [Google Scholar]
  32. Supal A.R. Gokavi G.S. An environmentally benign three component one-pot synthesis of amidoalkyl naphthols using H4SiW12O40 as a recyclable catalyst. J. Chem. Sci. 2010 122 2 189 192 10.1007/s12039‑010‑0021‑z
    [Google Scholar]
  33. Samantaray S. Hota G. Mishra B.G. Physicochemical characterization and catalytic applications of MoO3–ZrO2 composite oxides towards one pot synthesis of amidoalkyl naphthols. Catal. Commun. 2011 12 13 1255 1259 10.1016/j.catcom.2011.04.014
    [Google Scholar]
  34. Nagarapu L. Baseeruddin M. Apuri S. Kantevari S. Three component, one-pot synthesis of amidoalkyl naphthols using polyphosphate ester under solvent-free conditions. Catal. Commun. 2007 8 1729 1734 10.1016/j.catcom.2007.02.008
    [Google Scholar]
  35. a Rekunge D.S. Bendale H.S. Chaturbhuj G.U. Activated Fuller’s earth: An efficient, inexpensive, environmentally benign, and reusable catalyst for rapid solvent-free synthesis of 1-(amido/amino)alkyl-2-naphthols. Monatsh. Chem. 2018 149 11 1991 1997 10.1007/s00706‑018‑2247‑2
    [Google Scholar]
  36. b Nasresfahani Z. Kassaee M.Z. Eidi E. Homopiperazine sulfamic acid functionalized mesoporous silica nanoparticles (MSNs-HPZ-SO 3 H) as an efficient catalyst for one-pot synthesis of 1-amidoalkyl-2-naphthols. New J. Chem. 2016 40 5 4720 4726 10.1039/C5NJ02974K
    [Google Scholar]
  37. Safari J. Zarnegar Z. Synthesis of amidoalkyl naphthols by nano-Fe3O4 modified carbon nanotubes via a multicomponent strategy in the presence of microwaves. J. Ind. Eng. Chem. 2014 20 4 2292 2297 10.1016/j.jiec.2013.10.004
    [Google Scholar]
  38. a Datta B. Pasha M.A. Cavitational chemistry: A mild and efficient multi-component synthesis of amidoalkyl-2-naphthols using reusable silica chloride as catalyst under sonic conditions. Ultrason. Sonochem. 2011 18 2 624 628 10.1016/j.ultsonch.2010.09.011 21036092
    [Google Scholar]
  39. b Safari J. Zarnegar Z. Ultrasound mediation for one-pot multi-component synthesis of amidoalkyl naphthols using new magnetic nanoparticles modified by ionic liquids. Ultrason. Sonochem. 2014 21 3 1132 1139 10.1016/j.ultsonch.2013.10.024 24275534
    [Google Scholar]
  40. Gong K. Wang H. Ren X. Wang Y. Chen J. β-Cyclodextrin-butane sulfonic acid: An efficient and reusable catalyst for the multicomponent synthesis of 1-amidoalkyl-2-naphthols under solvent-free conditions. Green Chem. 2015 17 5 3141 3147 10.1039/C5GC00384A
    [Google Scholar]
  41. Das V.K. Borah M. Thakur A.J. Piper-betle-shaped nano-S-catalyzed synthesis of 1-amidoalkyl-2-naphthols under solvent-free reaction condition: A greener “nanoparticle-catalyzed organic synthesis enhancement” approach. J. Org. Chem. 2013 78 7 3361 3366 10.1021/jo302682k 23472638
    [Google Scholar]
  42. a Vadivelu M. Sampath S. Muthu K. Karthikeyan K. Praveen C. Mechanochemistry enabled construction of isoxazole skeleton via CuO nanoparticles catalyzed intermolecular dehydrohalogenative annulation. Adv. Synth. Catal. 2021 262 21 4941 4952 10.1002/adsc.202100730
    [Google Scholar]
  43. b Vadivelu M. Sugirdha S. Dheenkumar P. Arun Y. Karthikeyan K. Praveen C. Solvent-free implementation of two dissimilar reactions using recyclable CuO nanoparticles under ball-milling conditions: Synthesis of new oxindole-triazole pharmacophores. Green Chem. 2017 19 15 3601 3610 10.1039/C7GC01284E
    [Google Scholar]
  44. a Prasad V. Kale R.R. Mishra B.B. Kumar D. Tiwari V.K. Diacetoxyiodobenzene mediated one-pot synthesis of diverse carboxamides from aldehydes. Org. Lett. 2012 14 12 2936 2939 10.1021/ol3012315 22630055
    [Google Scholar]
  45. b Mane V. Pandey J. Ayyagari N. Dey C. Kale R. Namboothiri I.N.N. Synthesis of hydrazinoheterocycles from Morita–Baylis–Hillman adducts of nitroalkenes with azodicarboxylates. Org. Biomol. Chem. 2016 14 8 2427 2438 10.1039/C5OB02656C 26810956
    [Google Scholar]
  46. c Hosamani B. Kale R.R. Sharma H. Wachtel E. Kesselman E. Danino D. Friedman N. Sheves M. Namboothiri I.N.N. Patchornik G. Membrane protein crystallization in micelles conjugated by nucleoside base-pairing: A different concept. J. Struct. Biol. 2016 195 3 379 386 10.1016/j.jsb.2016.06.021 27368128
    [Google Scholar]
  47. d Dhandapani G. Nair D.K. Kale R.R. Wachtel E. Namboothiri I.N.N. Patchornik G. Role of amphiphilic [metal:chelator] complexes in a non-chromatographic antibody purification platform. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2019 1133 121830 10.1016/j.jchromb.2019.121830 31704445
    [Google Scholar]
  48. e Kale R.R. Prasad V. Mohapatra P.P. Tiwari V.K. Recent developments in benzotriazole methodology for construction of pharmacologically important heterocyclic skeletons. Monatsh. Chem. 2010 141 11 1159 1182 10.1007/s00706‑010‑0378‑1
    [Google Scholar]
  49. f Kale R.R. Prasad V. Hussain H.A. Tiwari V.K. Facile route for N1-aryl benzotriazoles from diazoamino arynes via CuI-mediated intramolecular N-arylation. Tetrahedron Lett. 2010 51 43 5740 5743 10.1016/j.tetlet.2010.08.083 32287442
    [Google Scholar]
  50. g Prasad V. Kale R. Kumar V. Tiwari V. Carbohydrate chemistry and room temperature ionic liquids (RTILs): Recent trends, opportunities, challenges and future perspectives. Curr. Org. Synth. 2010 7 5 506 531 10.2174/157017910792246063
    [Google Scholar]
  51. h Kale R.R. Prasad V. Tiwari V.K. Facile route for novel quinazolinone-fused azauracils through cyclodesulfurization of thioquinazolinones. Synlett 2011 2 195 198
    [Google Scholar]
  52. i Tiwari V.K. Kale R.R. Mishra B.B. Singh A. A facile one-pot MW approach for N3-(heteroaryl-2′-yl)- 2-thioxo-2,3-dihydro-1H-quinazolin-4-one. ARKIVOC 2008 2008 14 27 36 10.3998/ark.5550190.0009.e04
    [Google Scholar]
  53. j Jadhav N.K. Kale B.R. Alam M.S. Gaikwad V.B. Prasad V. Kale R.R. Synthesis and functionalization of coumarin-pyrazole scaffold: Recent development, challenges, and opportunities. Curr. Org. Synth. 2021 18 7 685 710 10.2174/1570179418666210301122322 33645484
    [Google Scholar]
  54. Ashok C.H. Venkateswara Rao K. ZnO/TiO2 nanocomposite rods synthesized by microwave-assisted method for humidity sensor application. Superlattices Microstruct. 2014 76 46 54 10.1016/j.spmi.2014.09.029
    [Google Scholar]
  55. Ghodrati K. Farrokhi A. Karami C. Hamidi Z. Nano silica sulfuric acid an efficient and recoverable heterogeneous catalyst for the preparation of amidoalkyl naphthols under solvent-free conditions. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2015 45 1 15 20 10.1080/15533174.2013.809746
    [Google Scholar]
  56. Hajjami M. Bakhti F. Ghiasbeygi E. Incredible role of glycerol in multicomponent synthesis of 2,3-Dihydroquinazoline-4(1H)-ones and 1-Amidoalkyl-2-naphthols. Croat. Chem. Acta 2015 88 2 197 205 10.5562/cca2637
    [Google Scholar]
  57. Kiasat A.R. Hemat-Alian L. Saghanezhad S.J. Nano Al2O3: An efficient and recyclable nanocatalyst for the one-pot preparation of 1-amidoalkyl-2-naphthols under solvent-free conditions. Res. Chem. Intermed. 2016 42 2 915 922 10.1007/s11164‑015‑2062‑x
    [Google Scholar]
  58. Zali A. Shokrolahi A. Nano-sulfated zirconia as an efficient, recyclable and environmentally benign catalyst for one-pot three component synthesis of amidoalkyl naphthols. Chin. Chem. Lett. 2012 23 3 269 272 10.1016/j.cclet.2011.12.002
    [Google Scholar]
  59. Zare A. Hasaninejad A. Rostami E. Moosavi-Zare A.R. Pishahang N. Roshankar M. Khedri F. Khedri M. An efficient solvent‐free protocol for the synthesis of 1‐amidoalkyl‐2‐naphthols using silica‐supported molybdatophosphoric acid. J. Chem. 2010 7 4 1162 1169 10.1155/2010/512392
    [Google Scholar]
  60. Srihari G. Nagaraju M. Murthy M.M. Solvent-free one-pot synthesis of amidoalkyl naphthols catalyzed by silica sulfuric acid. Helv. Chim. Acta 2007 90 8 1497 1504 10.1002/hlca.200790156
    [Google Scholar]
/content/journals/cocat/10.2174/0122133372337451240923173335
Loading
/content/journals/cocat/10.2174/0122133372337451240923173335
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: green chemistry ; heterogeneous catalyst ; multicomponent reaction ; Nanocomposite
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test