Skip to content
2000
Volume 12, Issue 1
  • ISSN: 2213-3372
  • E-ISSN: 2213-3380

Abstract

Aims

Phosphine-catalyzed asymmetric allylic alkylation of isoxazol-5(4)-ones with achiral Morita-Baylis-Hillman (MBH) carbonates has been developed. A series of isoxazol-5(4)-ones bearing all-carbon quaternary stereocenters were obtained in 55-96% yield with 75-90% ee. Gram-scale reaction and further transformation of allylation products were conducted to demonstrate the synthetic practicability.

Methods

Under Ar atmosphere, the mixture of isoxazol-5-one (0.1 mmol), MBH carbonate (0.12 mmol, 1.2 equiv), catalyst (10 mol%), and 4Å MS (10 mg) in toluene (1 mL) was stirred at 0°C for 24 h. The solvent was removed under vacuum, and the residue was purified by flash chromatography (petroleum ether/ethyl acetate = 3/1) to provide product .

Result and Conclusion

We developed an efficient and enantioselective allylic alkylation of isoxazol-5(4)-ones with achiral MBH carbonates in the presence of chiral phosphine catalyst. A broad range of isoxazol-5(4)-ones bearing all-carbon quaternary stereocenters were prepared with high efficiency and enantioselectivity. Importantly, the organocatalytic δ-stereocontrol of MBH carbonates was achieved the synthetic strategy.

Loading

Article metrics loading...

/content/journals/cocat/10.2174/0122133372312095240607111040
2024-06-15
2025-07-07
Loading full text...

Full text loading...

References

  1. BeckerT. PasteelsJ. WeigelC. DahseH.M. VoigtK. BolandW. A tale of four kingdoms – isoxazolin-5-one- and 3-nitropropanoic acid-derived natural products.Nat. Prod. Rep.201734434336010.1039/C6NP00122J 28271107
    [Google Scholar]
  2. IshiokaT. KuboA. KoisoY. NagasawaK. ItaiA. HashimotoY. Novel non-steroidal/non-anilide type androgen antagonists with an isoxazolone moiety.Bioorg. Med. Chem.20021051555156610.1016/S0968‑0896(01)00421‑7 11886817
    [Google Scholar]
  3. ChandeM.S. VermaR.S. BarveP.A. KhanwelkarR.R. VaidyaR.B. AjaikumarK.B. Facile synthesis of active antitubercular, cytotoxic and antibacterial agents: A Michael addition approach.Eur. J. Med. Chem.200540111143114810.1016/j.ejmech.2005.06.004 16040160
    [Google Scholar]
  4. IshiokaT. TanataniA. NagasawaK. HashimotoY. Anti-Androgens with full antagonistic activity toward human prostate tumor LNCaP cells with mutated androgen receptor.Bioorg. Med. Chem. Lett.200313162655265810.1016/S0960‑894X(03)00575‑4 12873487
    [Google Scholar]
  5. KafleB. AherN.G. KhadkaD. ParkH. ChoH. Isoxazol-5(4H)one derivatives as PTP1B inhibitors showing an anti-obesity effect.Chem. Asian J.2011682073207910.1002/asia.201100154 21656690
    [Google Scholar]
  6. OkamotoK. OdaT. KohigashiS. OheK. Palladium-catalyzed decarboxylative intramolecular aziridination from 4H-isoxazol-5-ones leading to 1-azabicyclo[3.1.0]hex-2-enes.Angew. Chem. Int. Ed.20115048114701147310.1002/anie.201105153 21976376
    [Google Scholar]
  7. OkamotoK. ShimbayashiT. YoshidaM. NanyaA. OheK. Synthesis of 2 H ‐azirines by iridium‐Catalyzed decarboxylative ring contraction of isoxazol‐5(4 H)‐ones.Angew. Chem. Int. Ed.201655257199720210.1002/anie.201602241 27125870
    [Google Scholar]
  8. RieckhoffS. HellmuthT. PetersR. Regioselective Pd-catalyzed synthesis of 2,3,6-trisubstituted pyridines from isoxazolinones.J. Org. Chem.201580136822683010.1021/acs.joc.5b01065 26101943
    [Google Scholar]
  9. ShimbayashiT. MatsushitaG. NanyaA. EguchiA. OkamotoK. OheK. Divergent catalytic approach from cyclic oxime esters to nitrogen-containing heterocycles with group 9 metal catalysts.ACS Catal.2018897773778010.1021/acscatal.8b01646
    [Google Scholar]
  10. WannenmacherN. PfefferC. FreyW. PetersR. Enantioenriched γ-aminoalcohols, β-amino acids, β-lactams, and azetidines featuring tetrasubstituted fluorinated stereocenters via palladacycle-catalyzed asymmetric fluorination of isoxazolinones.J. Org. Chem.202287167068210.1021/acs.joc.1c02640 34890190
    [Google Scholar]
  11. HellmuthT. FreyW. PetersR. Regioselective catalytic asymmetric C-alkylation of isoxazolinones by a base-free palladacycle-catalyzed direct 1,4-addition.Angew. Chem. Int. Ed.20155492788279110.1002/anie.201410933 25534023
    [Google Scholar]
  12. RieckhoffS. MeisnerJ. KästnerJ. FreyW. PetersR. Double regioselective asymmetric C‐allylation of isoxazolinones: Iridium‐catalyzed N‐allylation followed by an Aza‐Cope rearrangement.Angew. Chem. Int. Ed.20185751404140810.1002/anie.201710940 29148614
    [Google Scholar]
  13. YuX. HuL. FreyW. LuG. PetersR. Stereoretentive regio‐ and enantioselective allylation of isoxazolinones by a planar chiral palladacycle catalyst.Angew. Chem. Int. Ed.20226142e20221014510.1002/anie.202210145 35900908
    [Google Scholar]
  14. ZhangH. WangB. CuiL. BaoX. QuJ. SongY. Organocatalytic asymmetric fluorination of 4‐substituted isoxazolinones.Eur. J. Org. Chem.20152015102143214710.1002/ejoc.201500046
    [Google Scholar]
  15. WannenmacherN. KeimN. FreyW. PetersR. Catalytic asymmetric chlorination of isoxazolinones.Eur. J. Org. Chem.202220229e20220003010.1002/ejoc.202200030
    [Google Scholar]
  16. TrostB.M. Van VrankenD.L. Asymmetric transition metal-catalyzed allylic alkylations.Chem. Rev.199696139542210.1021/cr9409804 11848758
    [Google Scholar]
  17. LuZ. MaS. Metal-catalyzed enantioselective allylation in asymmetric synthesis.Angew. Chem. Int. Ed.200847225829710.1002/anie.200605113 17968865
    [Google Scholar]
  18. ChengQ. TuH.F. ZhengC. QuJ.P. HelmchenG. YouS.L. Iridium-catalyzed asymmetric allylic substitution reactions.Chem. Rev.201911931855196910.1021/acs.chemrev.8b00506 30582688
    [Google Scholar]
  19. TrostB. SchultzJ. Palladium-catalyzed asymmetric allylic alkylation strategies for the synthesis of acyclic tetrasubstituted stereocenters.Synthesis201951113010.1055/s‑0037‑1610386
    [Google Scholar]
  20. PàmiesO. MargalefJ. CañellasS. JamesJ. JudgeE. GuiryP.J. MobergC. BäckvallJ.E. PfaltzA. PericàsM.A. DiéguezM. Recent advances in enantioselective Pd-catalyzed allylic substitution: From design to applications.Chem. Rev.202112184373450510.1021/acs.chemrev.0c00736 33739109
    [Google Scholar]
  21. WeiY. ShiM. Recent advances in organocatalytic asymmetric Morita-Baylis-Hillman/aza-Morita-Baylis-Hillman reactions.Chem. Rev.201311386659669010.1021/cr300192h 23679920
    [Google Scholar]
  22. GuoH. KwonO. Phosphine organocatalysis.Chem. Rev.20181181004910293
    [Google Scholar]
  23. NiH. ChanW.L. LuY. Phosphine-catalyzed asymmetric organic reactions.Chem. Rev.2018118189344941110.1021/acs.chemrev.8b00261 30204423
    [Google Scholar]
  24. JiangY.Q. ShiY.L. ShiM. Chiral phosphine-catalyzed enantioselective construction of γ-butenolides through substitution of Morita-Baylis-Hillman acetates with 2-trimethylsilyloxy furan.J. Am. Chem. Soc.2008130237202720310.1021/ja802422d 18479136
    [Google Scholar]
  25. ZhongF. LuoJ. ChenG.Y. DouX. LuY. Highly enantioselective regiodivergent allylic alkylations of MBH carbonates with phthalides.J. Am. Chem. Soc.201213424102221022710.1021/ja303115m 22621622
    [Google Scholar]
  26. HuZ.P. ZhuangZ. LiaoW.W. Asymmetric synthesis of dihydronaphthoquinones containing adjacent stereocenters via a sulfa-michael addition triggered ring-expansion approach.J. Org. Chem.20158094627463710.1021/acs.joc.5b00502 25871849
    [Google Scholar]
  27. ZhuG. YangJ. BaoG. ZhangM. LiJ. LiY. SunW. HongL. WangR. Catalyst-controlled switch of regioselectivity in the asymmetric allylic alkylation of oxazolones with MBHCs.Chem. Commun. (Camb.)201652507882788510.1039/C6CC03246J 27250517
    [Google Scholar]
  28. MandoM. FaresM. KowandyC. GrellepoisF. RiguetE. Organocatalyzed asymmetric allylic alkylation enables synthesis of chiral γ-lactones bearing vicinal tertiary and quaternary stereocenters.Org. Lett.202224295351535510.1021/acs.orglett.2c02001 35856866
    [Google Scholar]
  29. ZhuangZ. HuZ.P. LiaoW.W. Asymmetric synthesis of functionalized dihydronaphthoquinones containing quaternary carbon centers via a metal-free catalytic intramolecular acylcyanation of activated alkenes.Org. Lett.201416123380338310.1021/ol501427h 24911621
    [Google Scholar]
  30. ZhangJ. WuH.H. ZhangJ. Enantioselective phosphine-catalyzed allylic alkylations of mix -indene with MBH carbonates.Org. Lett.201719226080608310.1021/acs.orglett.7b02895 29077416
    [Google Scholar]
  31. MandoM. GrellepoisF. RiguetE. Organocatalytic enantioselective allylic alkylation of α-aryl γ-lactones: An approach to densely functionalized quaternary stereocentres.Chem. Commun. (Camb.)202056496640664310.1039/D0CC02058C 32406441
    [Google Scholar]
  32. Alvin TanC.X. MeiG.J. LuY. Phosphine-catalyzed asymmetric allylic alkylation of achiral MBH carbonates with 3,3′-bisindolines: Enantioselective construction of quaternary stereogenic centers.Org. Lett.20212351787179210.1021/acs.orglett.1c00201 33615793
    [Google Scholar]
  33. ChengY. HanY. LiP. Organocatalytic enantioselective [1+4] annulation of Morita-Baylis-Hillman carbonates with electron-deficient olefins: Access to chiral 2,3-dihydrofuran derivatives.Org. Lett.201719184774477710.1021/acs.orglett.7b02144 28846432
    [Google Scholar]
  34. LuZ. JiaY. ChenX. LiP. Organocatalytic regio- and enantioselective [3 + 2]-annulations of ninhydrin-derived morita–baylis–hillman carbonates with 3-methyleneoxindoles.J. Org. Chem.20228753184319410.1021/acs.joc.1c02917 35133821
    [Google Scholar]
  35. ChenX. WangT. LuZ. LiP. Organocatalytic enantioselective formal (4 + 2)-cycloadditions of phosphine-containing dipoles with isocyanates.Org. Lett.202224163102310610.1021/acs.orglett.2c01154 35441518
    [Google Scholar]
/content/journals/cocat/10.2174/0122133372312095240607111040
Loading
/content/journals/cocat/10.2174/0122133372312095240607111040
Loading

Data & Media loading...

Supplements

Supplementary material (copies of 1H, 13C NMR, and HPLC of products) is available on the website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test