Skip to content
2000
Volume 12, Issue 1
  • ISSN: 2213-3372
  • E-ISSN: 2213-3380

Abstract

Introduction

Synthesis of NiO nanoparticles using environmentally friendly Pongamia pinnata seeds as a source of fuel was demonstrated using a solution combustion approach.

Methods

The protocol for the synthesis of NiO NPs is simple and efficient. NiO NPs were utilized as the catalyst for the synthesis of -protected aminoalkyl sulfides from -protected alkyl thiols and bromo esters of amino acids.

Results

The NiO NPs were characterized using XRD, SEM, and EDX techniques. -protected aminoalkyl sulfides were characterized by HRMS, 1H, and 13C NMR techniques and were evaluated for their antifungal activities, against using Fluconazole as a standard.

Conclusion

The current study presents an effective approach for synthesizing a new class of sulfides from -protected aminoalkyl thiols and bromomethyl esters in the presence of nano NiO as a catalyst.

Loading

Article metrics loading...

/content/journals/cocat/10.2174/0122133372305191240528115104
2024-06-03
2025-04-09
Loading full text...

Full text loading...

References

  1. PolshettiwarV. LuqueR. FihriA. ZhuH. BouhraraM. BassetJ.M. Magnetically recoverable nanocatalysts.Chem. Rev.201111153036307510.1021/cr100230z 21401074
    [Google Scholar]
  2. SomwanshiS.B. SomvanshiS.B. KharatP.B. Nanocatalyst: A brief review on synthesis to applications.J. Phys. Conf. Ser.20201644101204601205310.1088/1742‑6596/1644/1/012046
    [Google Scholar]
  3. GuptaR. YadavM. GaurR. AroraG. YadavP. SharmaR.K. Magnetically supported ionic liquids: A sustainable catalytic route for organic transformations.Mater. Horiz.20207123097313010.1039/D0MH01088J
    [Google Scholar]
  4. SutradharM. Metal-based catalysts in organic synthesis.Catalysts202010121429143110.3390/catal10121429
    [Google Scholar]
  5. R, R., V, U., and D, L., Green chemistry concept: Applications of catalysis in pharmacuetical industry.Glob. Drugs Ther.20172416
    [Google Scholar]
  6. BhaskaruniS.V.H.S. MaddilaS. GanguK.K. JonnalagaddaS.B. A review on multi-component green synthesis of N-containing heterocycles using mixed oxides as heterogeneous catalysts.Arab. J. Chem.20201311142117810.1016/j.arabjc.2017.09.016
    [Google Scholar]
  7. WangJ. ZhuR. GaoY. JiaY. CaiG. Unveiling the multistep electrochemical desorption mechanism of cubic NiO Films for transmissive-to-black electrochromic energy storage devices.J. Phys. Chem. Lett.20231492284229110.1021/acs.jpclett.3c00050 36826414
    [Google Scholar]
  8. TaeñoM. MaestreD. CremadesA. An approach to emerging optical and optoelectronic applications based on NiO micro- and nanostructures.Nanophotonics20211071785179910.1515/nanoph‑2021‑0041
    [Google Scholar]
  9. BerheM.G. GebreslassieY.T. Biomedical applications of biosynthesized nickel oxide nanoparticles.Int. J. Nanomedicine2023184229425110.2147/IJN.S410668 37534055
    [Google Scholar]
  10. HashemM. SaionE. HadaA.N.M. KamariH.M. ShaariA.H. TalibZ.A. PaimanS.B. KamarudeenM.A. Fabrication and characterization of semiconductor nickel oxide (NiO) nanoparticles manufactured using a facile thermal treatment.Results Phys.201661024103010.1016/j.rinp.2016.11.031
    [Google Scholar]
  11. ParmarM.P. ValaR.M. PatelH.M. Importance of hybrid catalysts toward the synthesis of 5H-Pyrano[2,3-d]pyrimidine-2-ones/2,4-diones (Thiones).ACS Omega2023821759181610.1021/acsomega.2c05349 36687108
    [Google Scholar]
  12. AhmadW. KaurN. Microwave-assisted single step green synthesis of NiO nanoparticles using Coleus scutellariodes leaf extract for the photocatalytic degradation of rufloxacin.MRS Adv.202381583584210.1557/s43580‑023‑00618‑x
    [Google Scholar]
  13. TohidiyanZ. HashemiS. BoroujeniK.P. Facile microwave‐assisted synthesis of NiO nanoparticles and its effect on soybean (Glycine max).IET Nanobiotechnol.201913210110610.1049/iet‑nbt.2018.5003 31051438
    [Google Scholar]
  14. RajA.R. AlSalhiM. DevanesanS. Microwave-assisted synthesis of nickel oxide nanoparticles using Coriandrum sativum leaf extract and their structural-magnetic catalytic properties.Materials201710546047210.3390/ma10050460 28772818
    [Google Scholar]
  15. NadiaN. ZorkipliM. HaidaN. KausM. Synthesis of NiO nanoparticles through Sol-gel Method.Procedia Chem.20161962663110.1016/j.proche.2016.03.062
    [Google Scholar]
  16. LimH.H. HorriB.A. SalamatiniaB. Synthesis and Characterizations of Nickel (II) Oxide Sub-Micro Rods via co-precipitation Methods Int. Conf. On manuf. Tech2nd; Orland, USA201839801203301204210.1088/1757‑899X/398/1/012033
    [Google Scholar]
  17. BrewsterD.A. BianY. KnowlesK.E. Direct solvothermal synthesis of phase-pure colloidal NiO nanocrystals.Chem. Mater.20203252004201310.1021/acs.chemmater.9b05045
    [Google Scholar]
  18. SafaS. HejaziR. RabbaniM. AzimiradR. Hydrothermal synthesis of NiO nanostructures for photodegradation of 4-nitrophenol.Desalination Water Treat.20165746219822198910.1080/19443994.2015.1125799
    [Google Scholar]
  19. JiangY. ChenD. SongJ. JiaoZ. MaQ. ZhangH. ChengL. ZhaoB. ChuY. A facile hydrothermal synthesis of graphene porous NiO nanocomposite and its application in electrochemical capacitors.Electrochim. Acta20139117317810.1016/j.electacta.2012.12.032
    [Google Scholar]
  20. SimonenkoT.L. SimonenkoN.P. GorobtsovP.Y. SimonenkoE.P. KuznetsovN.T. Hydrothermal synthesis of a cellular NiO Film on Carbon paper as a promising way to obtain a hierarchically organized electrode for a flexible supercapacitor.Materials202316155208522110.3390/ma16155208 37569912
    [Google Scholar]
  21. MaliD.P. PatilR.T. PatilA.S. FulariV.J. Facile synthesis of NiO nanoflakes via hydrothermal route: Effect of urea concentration.Chem. Phys. Lett.202177013843113843810.1016/j.cplett.2021.138431
    [Google Scholar]
  22. BainsA.K. SinghV. AdhikariD. Homogeneous nickel-catalyzed sustainable synthesis of quinoline and quinoxaline under aerobic conditions.J. Org. Chem.20208523149711497910.1021/acs.joc.0c01819 33174416
    [Google Scholar]
  23. PengJ.B. WuF.P. XuC. QiX. YingJ. WuX.F. Nickel-catalyzed carbonylative synthesis of functionalized alkyl iodides.iScience2018817518210.1016/j.isci.2018.09.024 30321812
    [Google Scholar]
  24. SachdevaH. DwivediD. BhattacharjeeR.R. KhaturiaS. SarojR. NiO nanoparticles: an efficient catalyst for the multicomponent one-pot synthesis of novel spiro and condensed indole derivatives.J. Chem.2013201311010.1155/2013/606259
    [Google Scholar]
  25. MoaviJ. BuazarF. SayahiM.H. Algal magnetic nickel oxide nanocatalyst in accelerated synthesis of pyridopyrimidine derivatives.Sci. Rep.20211116296631110.1038/s41598‑021‑85832‑z 33739019
    [Google Scholar]
  26. ReddyP.B. IniyavanP. SarveswariS. VijayakumarV. Nickel oxide nanoparticles catalyzed synthesis of poly-substituted quinolines via Friedlander hetero-annulation reaction.Chin. Chem. Lett.201425121595160010.1016/j.cclet.2014.06.026
    [Google Scholar]
  27. HashemiZ. AlbadiJ. JalaliM. Melamine-supported nickel oxide nanoparticles as a good alternative to conventional copper catalysts for the regioselective synthesis of triazole derivatives in water.Res. Chem. Intermed.202147125291530210.1007/s11164‑021‑04569‑6
    [Google Scholar]
  28. MuthuvinothiniA. StellaS. A simple method for the reduction of Schiff bases using biosynthesized nickel oxide nanoparticles.Inorganic and Nano-Metal Chemistry202151226727110.1080/24701556.2020.1783683
    [Google Scholar]
  29. KolaeiE.A. TweddellR.J. AvisT.J. Antifungal activity of sulfur-containing salts against the development of carrot cavity spot and potato dry rot.Postharvest Biol. Technol.2012631555910.1016/j.postharvbio.2011.09.006
    [Google Scholar]
  30. NeubeckA. FreundF. Sulfur chemistry may have paved the way for evolution of antioxidants.Astrobiology202020567067510.1089/ast.2019.2156 31880469
    [Google Scholar]
  31. AnandG.T. NithiyavathiR. RameshR. SundaramJ.S. KaviyarasuK. Structural and optical properties of nickel oxide nanoparticles: Investigation of antimicrobial applications.Surf. Interfaces20201810046010047110.1016/j.surfin.2020.100460
    [Google Scholar]
  32. KaiserD. KloseI. OostR. NeuhausJ. MaulideN. Bond-Forming and -breaking reactions at sulfur(iv): sulfoxides, sulfonium salts, sulfur ylides, and sulfinate salts.Chem. Rev.2019119148701878010.1021/acs.chemrev.9b00111 31243998
    [Google Scholar]
  33. WuQ. ZhaoD. QinX. LanJ. YouJ. Synthesis of di(hetero)aryl sulfides by directly using arylsulfonyl chlorides as a sulfur source.Chem. Commun.201147329188919010.1039/c1cc13633j 21750836
    [Google Scholar]
  34. ChauhanP. MahajanS. EndersD. Organocatalytic carbon-sulfur bond-forming reactions.Chem. Rev.2014114188807886410.1021/cr500235v 25144663
    [Google Scholar]
  35. ReevesJ.T. CamaraK. HanZ.S. XuY. LeeH. BusaccaC.A. SenanayakeC.H. The reaction of Grignard reagents with Bunte salts: A thiol-free synthesis of sulfides.Org. Lett.20141641196119910.1021/ol500067f 24512478
    [Google Scholar]
  36. WangH. LuQ. QianC. LiuC. LiuW. ChenK. LeiA. Solvent‐enabled radical selectivities: controlled syntheses of sulfoxides and sulfides.Angew. Chem. Int. Ed.20165531094109710.1002/anie.201508729 26636985
    [Google Scholar]
  37. KibriyaG. MondalS. HajraA. Visible-light-mediated synthesis of unsymmetrical diaryl sulfides via oxidative coupling of arylhydrazine with thiol.Org. Lett.201820237740774310.1021/acs.orglett.8b03549 30484662
    [Google Scholar]
  38. SakaiN. OgiwaraY. MaedaH. Copper-catalyzed production of diaryl sulfides using aryl iodides and a disilathiane.Synlett201829565565710.1055/s‑0036‑1591723
    [Google Scholar]
  39. NakagawaH. TsutaK. KiuchiK. SenzakiH. TanakaK. HiokiK. TsuburaA. Growth inhibitory effects of diallyl disulfide on human breast cancer cell lines.Carcinogenesis200122689189710.1093/carcin/22.6.891 11375895
    [Google Scholar]
  40. MontanariL. PavanettoF. MazzaM. Antifungal activity of 3,3′-diindolyl-2,2′-tetrasulfide.Farmaco, Sci.19813610856861 7308457
    [Google Scholar]
  41. GavrilovV.V. StartsevaV.A. NikitinaL.E. LodochnikovaO.A. GnezdilovO.I. LisovskayaS.A. GlushkoN.I. KlimovitskiiE.N. Synthesis and antifungal activity of sulfides, sulfoxides, and sulfones based on (1S)-(-)-β-pinene.Pharm. Chem. J.201044312612910.1007/s11094‑010‑0413‑x
    [Google Scholar]
  42. ZiaratiA. BadieiA. ZiaraniM.G. EskandarlooH. Simultaneous photocatalytic and catalytic activity of p–n junction NiO@anatase/rutile-TiO2 as a noble-metal free reusable nanoparticle for synthesis of organic compounds.Catal. Commun.201795778210.1016/j.catcom.2017.02.023
    [Google Scholar]
  43. SunW. GeX. DuW. ZengJ. MaJ. ChenW. QianG. CaoY. DuanX. ZhouX. ZhangJ. Kinetics and mechanistic insights into selective hydrogenation of furfural to furfuryl alcohol over Ni–Ga intermetallics.AIChE J.2024e1842310.1002/aic.18423
    [Google Scholar]
  44. ZhuP. HanC. XiaH. High-efficient hydrogenolysis of xylose to polyols over Ni-W/CeO2 catalysts.Catal. Lett.202415431219123110.1007/s10562‑023‑04382‑3
    [Google Scholar]
  45. MoraesT.S. BergamaschiV.S. FerreiraJ.C. SpinacéE.V. Preparation and characterization of high-performance Ni-based core–shell catalyst for ethanol steam reforming.J. Mater. Sci.20225795384539510.1007/s10853‑022‑06969‑4
    [Google Scholar]
  46. ZhangY. LiaoY. ShiG. WangW. SuB. Preparation, characterization, and catalytic performance of Pd–Ni/AC bimetallic nano-catalysts.Green Proc. Syn.20209176076910.1515/gps‑2020‑0071
    [Google Scholar]
  47. ChristyJ.A. UmadeviM. Novel combustion method to prepare octahedral NiO nanoparticles and its photocatalytic activity.Mater. Res. Bull.201348104248425410.1016/j.materresbull.2013.06.072
    [Google Scholar]
  48. RoyS. PhukanP. Biaryl thioether synthesis via CuI catalyzed dominothiolation of aryl halides in the presence of DMAP as ligand.Tetrahedron Lett.201556192426242910.1016/j.tetlet.2015.03.075
    [Google Scholar]
  49. ParkN. ParkK. JangM. LeeS. One-pot synthesis of symmetrical and unsymmetrical aryl sulfides by Pd-catalyzed couplings of aryl halides and thioacetates.J. Org. Chem.201176114371437810.1021/jo2007253 21545186
    [Google Scholar]
  50. KumarA. BhakuniB.S. PrasadC.D. KumarS. KumarS. Potassium tert-butoxide-mediated synthesis of unsymmetrical diaryl ethers, sulfides and selenides from aryl bromides.Tetrahedron201369265383539210.1016/j.tet.2013.04.113
    [Google Scholar]
  51. DondoniA. MarraA. Metal‐catalyzed and metal‐free alkyne hydrothiolation: synthetic aspects and application trends.Eur. J. Org. Chem.20142014193955396910.1002/ejoc.201301879
    [Google Scholar]
  52. XingD. FengM. ZhengY. HuangB. JiangH. HuangL. Alkyne/thio umpolung tactic replacement: Synthesis of alkynyl sulfides via capturing the in situ formed alkynylthiolate anion.Org. Chem. Front.202310143603361110.1039/D3QO00491K
    [Google Scholar]
  53. RanjitS. DuanZ. ZhangP. LiuX. Synthesis of vinyl sulfides by copper-catalyzed decarboxylative C-S cross-coupling.Org. Lett.201012184134413610.1021/ol101729k 20726572
    [Google Scholar]
  54. PandaS. SahuS.K. BeheraP.K. PanigrahiR. GarnaikB. RoutL. Bimetallic BaMoO 4 nanoparticles for the C–S cross-coupling of thiols with haloarenes.New J. Chem.20204462500250410.1039/C9NJ05581A
    [Google Scholar]
  55. SakaiN. MiyazakiT. SakamotoT. YatsudaT. MoriyaT. IkedaR. KonakaharaT. Single-step thioetherification by indium-catalyzed reductive coupling of carboxylic acids with thiols.Org. Lett.201214174366436910.1021/ol302109v 22928473
    [Google Scholar]
  56. YuanJ. MaX. YiH. LiuC. LeiA.I. 2 -catalyzed oxidative C(sp 3)–H/S–H coupling: Utilizing alkanes and mercaptans as the nucleophiles.Chem. Commun.20145092143861438910.1039/C4CC05661B 25297879
    [Google Scholar]
  57. DhayanithiV. ShafiS. KumaranK. JaiS. RagavanV. GoudK. KumariS. PatiH. Synthesis of selected 5-thio-substituted tetrazole derivatives and evaluation of their antibacterial and antifungal activities.J. Serb. Chem. Soc.201176216517510.2298/JSC090421001D
    [Google Scholar]
/content/journals/cocat/10.2174/0122133372305191240528115104
Loading
/content/journals/cocat/10.2174/0122133372305191240528115104
Loading

Data & Media loading...

Supplements

Supplementary material, along with the published article, is available on the publisher’s website.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test