Skip to content
2000
Volume 11, Issue 4
  • ISSN: 2213-3372
  • E-ISSN: 2213-3380

Abstract

Background

Knoevenagel condensation is an important C-C bond formation reaction catalyzed by various homogeneous and heterogeneous acid-base catalysts.

Methods

The present work describes the eco-friendly preparation of magnetic nanoparticles FeO (MNPs) and its functionalization to FeO@SiO@SOH. The prepared MNPs and their functionalized materials were fully characterized by FT-IR, XRD, FE-SEM, HR-TEM, and VSM. Further demonstrated application of these catalysts for the C-C bond formation reactions of Knoevenagel condensation employing special aldehyde derivatives with malononitrile at room temperature gave excellent product isolation.

Results

The application of the prepared functionalized MNPs for the Knoevenagel condensation was demonstrated by the reaction of various aryl/heterocyclic and cholesterol aldehyde with malononitrile at room temperature stirring for about 30 min in ethanol solvent. The final product isolated is confirmed by various spectroscopic techniques such as FT-IR, 1H-, & 13C-NMR, and mass spectrometry. Furthermore, the selected compounds are screened for their photophysical properties, and interestingly compound showed good fluorescent properties.

Conclusion

Overall the present work described a greener method preparation of MNPs, and its functionalized employed as a heterogeneous catalyst for the Knoevenagel condensation of various aryl/heterocyclic and cholesterol aldehyde with malononitrile. The method developed is simple, easily separated catalyst by an external magnet, and recycled up to five cycles without any noticeable change in the final product isolation. Further, the prepared derivatives screened for their photophysical properties, and interestingly compound showed good fluorescent properties.

Loading

Article metrics loading...

/content/journals/cocat/10.2174/0122133372292087240228082859
2024-12-01
2024-11-26
Loading full text...

Full text loading...

References

  1. WangS. YanW. ZhaoF. Recovery of solid waste as functional heterogeneous catalysts for organic pollutant removal and biodiesel production.Chem. Eng. J.202040112610410.1016/j.cej.2020.126104
    [Google Scholar]
  2. BhardwajB. SinghP. KumarA. KumarS. BudhwarV. Eco-friendly greener synthesis of nanoparticles.Adv. Pharm. Bull.202010456657610.34172/apb.2020.067 33072534
    [Google Scholar]
  3. SudarsanamP. ZhongR. Van den BoschS. ComanS.M. ParvulescuV.I. SelsB.F. Functionalised heterogeneous catalysts for sustainable biomass valorisation.Chem. Soc. Rev.201847228349840210.1039/C8CS00410B 30226518
    [Google Scholar]
  4. LiuF. WangL. SunQ. ZhuL. MengX. XiaoF.S. Transesterification catalyzed by ionic liquids on superhydrophobic mesoporous polymers: heterogeneous catalysts that are faster than homogeneous catalysts.J. Am. Chem. Soc.201213441169481695010.1021/ja307455w 23009896
    [Google Scholar]
  5. JohnsonB.F.G. Nanoparticles in catalysis.Top. Catal.2003241-414715910.1023/B:TOCA.0000003086.83434.b6
    [Google Scholar]
  6. ChngL.L. ErathodiyilN. YingJ.Y. Nanostructured catalysts for organic transformations.Acc. Chem. Res.20134681825183710.1021/ar300197s 23350747
    [Google Scholar]
  7. FatemehS-F. Amine functionalized SiO2@Fe3O4 as a green and reusable magnetic nanoparticles system for the synthesis of Knoevenagel condensation in water.J. Med. Nano. Mat. Chem.20221132143
    [Google Scholar]
  8. LaurentS. ForgeD. PortM. RochA. RobicC. Vander ElstL. MullerR.N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications.Chem. Rev.200810862064211010.1021/cr068445e 18543879
    [Google Scholar]
  9. KodamaR.H. Magnetic nanoparticles.J. Magn. Magn. Mater.19992001-335937210.1016/S0304‑8853(99)00347‑9
    [Google Scholar]
  10. AhmedA. SaaidI.M. AhmedA.A. PilusR.M. BaigM.K. Evaluating the potential of surface-modified silica nanoparticles using internal olefin sulfonate for enhanced oil recovery.Petrol. Sci.202017372273310.1007/s12182‑019‑00404‑1
    [Google Scholar]
  11. RostamiA. AtashkarB. GholamiH. Novel magnetic nanoparticles Fe3O4-immobilized domino Knoevenagel condensation, Michael addition, and cyclization catalyst.Catal. Commun.201337697410.1016/j.catcom.2013.03.022
    [Google Scholar]
  12. HaghighiP. ZiyadiH. HekmatiM. HabibnejadN. IranfarS. Hibiscus sabdariffa extract/poly (vinyl alcohol) modified magnetite as a magnetically recyclable nanocatalyst for the selective oxidation of amines.Results Chem.2022410048310.1016/j.rechem.2022.100483
    [Google Scholar]
  13. Yang-yangF. Xiao-zhongW. Ying-qiC. Li-yanD. NiCo2O4 nanoparticles: An efficient and magnetic catalyst for Knoevenagel condensation.Appl. Phys. Eng.20202117484
    [Google Scholar]
  14. SenthilkumarN. SharmaP.K. SoodN. BhallaN. Designing magnetic nanoparticles for in vivo applications and understanding their fate inside human body.Coord. Chem. Rev.202144521408210.1016/j.ccr.2021.214082
    [Google Scholar]
  15. ZiaeeM. SaminiM. BolourtchianM. GhaffarzadehM. AhmadiM. EgbalM.A. KhorramiA. AndalibS. Maleki-DizajiN. GarjaniA. Synthesis of a novel siliconized analog of clofibrate (Silafibrate) and comparison of their anti-inflammatory activities.Iran. J. Pharm. Res.20121119195 25317189
    [Google Scholar]
  16. AshishA. CarlosC. EstherP-T. ManuelP.L. Maria LuisaG-M. Magnetic nanoparticles as MRI contrast agents.Top. Curr. Chem.202040378
    [Google Scholar]
  17. ZhongJ. SchillingM. LudwigF. Magnetic nanoparticle-based biomolecule imaging with a scanning magnetic particle spectrometer.Nanotechnology2020312222510110.1088/1361‑6528/ab776a 32069445
    [Google Scholar]
  18. AndersonS.D. GweninV.V. GweninC.D. Magnetic functionalized nanoparticles for biomedical, drug delivery and imaging applications.Nanoscale Res. Lett.201914118810.1186/s11671‑019‑3019‑6 31147786
    [Google Scholar]
  19. XuJ. SunJ. WangY. ShengJ. WangF. SunM. Application of iron magnetic nanoparticles in protein immobilization.Molecules2014198114651148610.3390/molecules190811465 25093986
    [Google Scholar]
  20. Magnetic nanoparticles are useful for a wide range of applications from data storage to medicinal imaging. The large-scale preparation of FeCo nanoparticles boosts this potential.Nat. Mater.20054725726
    [Google Scholar]
  21. ZhangQ. YangX. GuanJ. Applications of magnetic nanomaterials in heterogeneous catalysis.ACS Appl. Nano Mater.2019284681469710.1021/acsanm.9b00976
    [Google Scholar]
  22. KudrJ. HaddadY. RichteraL. HegerZ. CernakM. AdamV. ZitkaO. Magnetic nanoparticles: From design and synthesis to real world applications.Nanomaterials20177924310.3390/nano7090243 28850089
    [Google Scholar]
  23. PengX. WangY. TangX. LiuW. Functionalized magnetic core–shell Fe3O4@SiO2 nanoparticles as selectivity-enhanced chemosensor for Hg(II).Dyes Pigments2011911263210.1016/j.dyepig.2011.01.012
    [Google Scholar]
  24. AliA. ZafarH. ZiaM. ul Haq, I.; Phull, A.R.; Ali, J.S.; Hussain, A. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles.Nanotechnol. Sci. Appl.20169496710.2147/NSA.S99986 27578966
    [Google Scholar]
  25. PandeyR. SinghD. ThakurN. RajK.K. Catalytic C–H bond activation and knoevenagel condensation using pyridine-2,3-dicarboxylate-based metal–organic frameworks.ACS Omega2021620132401325910.1021/acsomega.1c01155 34056473
    [Google Scholar]
  26. SinghS.B. Iron and iron oxide-based eco-nanomaterials for catalysis and water remediationSpringer, Cham.20189871319428
    [Google Scholar]
  27. GazitA. YaishP. GilonC. LevitzkiA. TyrphostinsI. Synthesis and biological activity of protein tyrosine kinase inhibitors.J. Med. Chem.198932102344235210.1021/jm00130a020 2552117
    [Google Scholar]
  28. RenzettiA. DardennesE. FontanaA. De MariaP. SapiJ. GérardS. TiCl4/Et3N-promoted three-component condensation between aromatic heterocycles, aldehydes, and active methylene compounds.J. Org. Chem.200873176824682710.1021/jo800529q 18690741
    [Google Scholar]
  29. KumbhareR.M. SridharM. Magnesium fluoride catalyzed Knoevenagel reaction: An efficient synthesis of electrophilic alkenes.Catal. Commun.20089340340510.1016/j.catcom.2007.07.027
    [Google Scholar]
  30. Shanthan RaoP. VenkataratnamR.V. Zinc chloride as a new catalyst for knoevenagel condensation.Tetrahedron Lett.199132415821582210.1016/S0040‑4039(00)93564‑0
    [Google Scholar]
  31. SalvittiC. BortolamiM. ChiarottoI. TroianiA. de PetrisG. The Knoevenagel condensation catalysed by ionic liquids: A mass spectrometric insight into the reaction mechanism.New J. Chem.20214538177871779510.1039/D1NJ03594K
    [Google Scholar]
  32. HanJ. XuY. SuY. SheX. PanX. Guanidine-catalyzed Henry reaction and Knoevenagel condensation.Catal. Commun.20089102077207910.1016/j.catcom.2008.04.006
    [Google Scholar]
  33. JiaH. ZhaoY. NiuP. LuN. FanB. LiR. Amine-functionalized MgAl LDH nanosheets as efficient solid base catalysts for Knoevenagel condensation.Mol. Catal.2018449313710.1016/j.mcat.2018.02.004
    [Google Scholar]
  34. SebastianS. SebastianN. RicoT. MichaelM. ChristophT. PetrF. ReneH. HeinrichL. Porous magnesium oxide by twin polymerization: From hybrid materials to catalysis.Eur. J. Inorg. Chem.202326e2022006
    [Google Scholar]
  35. ZhangW. LiangJ. LiuY. SunS. RenX. JiangM. Knoevenagel condensation reaction over acid-base bifunctional MgO/HMCM-22 catalysts.Chin. J. Catal.201334355956610.1016/S1872‑2067(11)60493‑2
    [Google Scholar]
  36. ChatterjeeS. AnslynE.V. BandyopadhyayA. Boronic acid based dynamic click chemistry: Recent advances and emergent applications.Chem. Sci.20211251585159910.1039/D0SC05009A
    [Google Scholar]
  37. BahugunaA. KumarA. ChhabraT. KumarA. KrishnanV. Potassium-functionalized graphitic carbon nitride supported on reduced graphene oxide as a sustainable catalyst for knoevenagel condensation.ACS Appl. Nano Mater.20181126711672310.1021/acsanm.8b01524
    [Google Scholar]
  38. BahugunaA. KumarS. SharmaV. ReddyK.L. BhattacharyyaK. RavikumarP.C. KrishnanV. Nanocomposite of MoS 2 -RGO as facile, heterogeneous, recyclable, and highly efficient green catalyst for one-pot synthesis of indole alkaloids.ACS Sustain. Chem. Eng.20175108551856710.1021/acssuschemeng.7b00648
    [Google Scholar]
  39. BrillonD. SauveG. Silica gel-catalyzed Knoevenagel condensation of peptidyl cyanomethyl ketones with aromatic aldehydes and ketones. A novel Michael acceptor functionality for C-modified peptides: the benzylidene and alkylidene cyanomethyl ketone function.J. Org. Chem.19925761838184210.1021/jo00032a042
    [Google Scholar]
  40. LombaL. TucciaroneF. GinerB. ArtalM. LafuenteC. Thermophysical characterization of choline chloride: Resorcinol and its mixtures with water.Fluid Phase Equilib.202255711343510.1016/j.fluid.2022.113435
    [Google Scholar]
  41. NematiF. SabaqianS. Nano-Fe3O4 encapsulated-silica particles bearing sulfonic acid groups as an efficient, eco-friendly and magnetically recoverable catalyst for synthesis of various xanthene derivatives under solvent-free conditions.J. Saudi Chem. Soc.201721S383S39310.1016/j.jscs.2014.04.009
    [Google Scholar]
  42. NavjeetK. DharmaK. Montmorillonite: An efficient, heterogeneous and green catalyst for organic synthesis.J. Chem. Pharm. Res.2012429911015
    [Google Scholar]
  43. BigiF. ChesiniL. MaggiR. SartoriG. Montmorillonite KSF as an inorganic, water stable, and reusable catalyst for the knoevenagel synthesis of coumarin-3-carboxylic acids.J. Org. Chem.19996431033103510.1021/jo981794r 11674183
    [Google Scholar]
  44. AlmášiM. ZeleňákV. OpanasenkoM. CísařováI. Ce(III) and Lu(III) metal–organic frameworks with Lewis acid metal sites: Preparation, sorption properties and catalytic activity in Knoevenagel condensation.Catal. Today201524318419410.1016/j.cattod.2014.07.028
    [Google Scholar]
  45. RahmatiE. RafieeZ. Synthesis of Co-MOF/COF nanocomposite: application as a powerful and recoverable catalyst in the Knoevenagel reaction.J. Porous Mater.2021281192710.1007/s10934‑020‑00965‑2
    [Google Scholar]
  46. AryanejadS. BagherzadeG. FarrokhiA. Efficient and recyclable novel Ni‐based metal–organic framework nanostructure as catalyst for the cascade reaction of alcohol oxidation–Knoevenagel condensation.Appl. Organomet. Chem.2018322e399510.1002/aoc.3995
    [Google Scholar]
  47. HegedusL.S. Organocatalysis in organic synthesis.J. Am. Chem. Soc.200913150179951799710.1021/ja908581u 20000854
    [Google Scholar]
  48. VarmaR.S. Greener and sustainable trends in synthesis of organics and nanomaterials.ACS Sustain. Chem. Eng.20164115866587810.1021/acssuschemeng.6b01623 32704457
    [Google Scholar]
  49. ZhaoB. LiC. HuT. ZhangX. Nanoporous Pb 3 -organic framework for catalytic cycloaddition of CO 2 with epoxides and knoevenagel condensation.ACS Appl. Nano Mater.2023624231962320610.1021/acsanm.3c04586
    [Google Scholar]
  50. LiC. LvH. YangK. ZhangX. Robust fluorine-functionalized Ln 5 -organic frameworks for excellent catalytic performance on cycloaddition of CO 2 with epoxides and knoevenagel condensation.ACS Appl. Mater. Interfaces20231529350523506110.1021/acsami.3c06804 37436029
    [Google Scholar]
  51. KantharajuK. KhataviS.Y. Microwave accelerated synthesis of 2‐amino‐4 H ‐chromenes catalyzed by WELFSA: A green protocol.ChemistrySelect20183185016502410.1002/slct.201800096
    [Google Scholar]
  52. AitkenR.J. BakerM.A. The role of genetics and oxidative stress in the etiology of male infertility—a unifying hypothesis?Front. Endocrinol.20201158183810.3389/fendo.2020.581838 33101214
    [Google Scholar]
  53. YaoG. WuL. LvT. LiJ. HuangY. DongK. LiX. The effect of CuO modification for a TiO2 nanotube confined CeO2 catalyst on the catalytic combustion of butane.Open Chem.20181611810.1515/chem‑2018‑0003
    [Google Scholar]
  54. AllinS.M. Bulman PageP.C. The development and application of 1,3-dithiane 1-oxide derivatives as chiral auxiliaries and asymmetric building blocks for organic synthesis. A review.Org. Prep. Proced. Int.199830214517610.1080/00304949809355275
    [Google Scholar]
  55. MukherjeeS. KunduA. PramanikA. A new and efficient synthesis of pyrazole-fused isocoumarins on the solid surface of magnetically separable Fe 3 O 4 @SiO 2 -SO 3 H nanoparticles.Tetrahedron Lett.201657192103210810.1016/j.tetlet.2016.04.002
    [Google Scholar]
  56. DanehchinM. EsmaeiliA.A. Synthesis of Fe3O4@SiO2@Pr-NH2@DAP as a magnetic recyclable nano-catalyst for efficient synthesis of pyranothiazolopyrimidines and 4H-pyrans under solvent-free condition.Sci. Rep.20231311493710.1038/s41598‑023‑41793‑z 37696928
    [Google Scholar]
  57. MoradiZ. Ghorbani-ChoghamaraniA. Design and synthesis of Fe3O4@SiO2@KIT-6@DTZ-Pd0 as a new and efficient mesoporous magnetic catalyst in carbon–carbon cross-coupling reactions.Sci. Rep.20211112396710.1038/s41598‑021‑03485‑4 34907281
    [Google Scholar]
  58. DhameliyaT.M. DongaH.A. VaghelaP.V. PanchalB.G. SurejaD.K. BodiwalaK.B. ChhabriaM.T. A decennary update on applications of metal nanoparticles (MNPs) in the synthesis of nitrogen- and oxygen-containing heterocyclic scaffolds.RSC Advances20201054327403282010.1039/D0RA02272A 35516511
    [Google Scholar]
  59. KumarA. DewanM. SaxenaA. DeA. MozumdarS. Knoevenagel condensation catalyzed by chemo-selective Ni-nanoparticles in neutral medium.Catal. Commun.201011867968310.1016/j.catcom.2010.01.017
    [Google Scholar]
  60. XiaoJ. ZhangH. EjikeA.C. WangL. TaoM. ZhangW. Phenanthroline functionalized polyacrylonitrile fiber with Pd(0) nanoparticles as a highly active catalyst for the Heck reaction.React. Funct. Polym.202116110484310.1016/j.reactfunctpolym.2021.104843
    [Google Scholar]
  61. HeraviM.M. BakhtiariK. TaheriS. OskooieH.A. A straightforward method for the synthesis of functionalized trisubstituted alkenes through Na 2 S/Al 2 O 3 catalyzed knoevenagel condensation.J. Chin. Chem. Soc.20075461557156010.1002/jccs.200700219
    [Google Scholar]
  62. ShiriL. ZareiS. KazemiM. SheikhD. Sulfuric acid heterogenized on magnetic Fe 3 O 4 nanoparticles: A new and efficient magnetically reusable catalyst for condensation reactions.Appl. Organomet. Chem.2018321e393810.1002/aoc.3938
    [Google Scholar]
/content/journals/cocat/10.2174/0122133372292087240228082859
Loading
/content/journals/cocat/10.2174/0122133372292087240228082859
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test