Skip to content
2000
Volume 29, Issue 11
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

The crucial need for sustainable and ecologically benign synthetic methodologies has propelled the exploration of catalytic systems that symbolize green chemistry principles. Zirconia, known for its exceptional catalytic properties and environmental compatibility, emerges as a promising catalyst for the synthesis of heterocyclic compounds. Parallelly, the one-pot multicomponent approach enhances the efficiency of the synthetic process, offering advantages such as reduced reaction steps, atom economy, and overall resource optimization. The Eco-friendly nature of zirconia catalysts, coupled with the versatility of one-pot multicomponent reactions, not only streamlines synthetic procedures but also addresses the pressing demand for sustainable protocols in contemporary organic synthesis. This comprehensive review systematically explores the current progress in zirconia-catalyzed one-pot multicomponent reactions to get various heterocycles and discusses the key advancements, reaction mechanisms, and the impact of reaction conditions on the catalytic efficiency of zirconia. Insights from this review will lead a path to the development of innovative and environmentally conscious strategies for the generation of diverse heterocycles, catering to the evolving landscape of green chemistry and green practices in the domain of organic synthesis.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728348025241114101345
2025-01-10
2025-05-06
Loading full text...

Full text loading...

References

  1. VarmaR.S. Journey on greener pathways: From the use of alternate energy inputs and benign reaction media to sustainable applications of nano-catalysts in synthesis and environmental remediation.Green Chem.20141642027204110.1039/c3gc42640h
    [Google Scholar]
  2. AnastasP.T. BartlettL.B. KirchhoffM.M. WilliamsonT.C. The role of catalysis in the design, development, and implementation of green chemistry.Catal. Today2000551-2112210.1016/S0920‑5861(99)00222‑9
    [Google Scholar]
  3. AnastasP.T. KirchhoffM.M. Origins, current status, and future challenges of green chemistry.Acc. Chem. Res.200235968669410.1021/ar010065m12234198
    [Google Scholar]
  4. Garcia-Martinez, J.; Serrano-Torregrosa, E., Eds.; The chemical nlm: Chemistry’s contribution to our global future.John Wiley & Sons201110.1002/9783527635641
    [Google Scholar]
  5. Cole-Hamilton, D.J.; Tooze, R.P., Eds.; Catalyst Separation, Recovery and Recycling: Chemistry and Process Design.Springer2006Vol. 3010.1007/1‑4020‑4087‑3
    [Google Scholar]
  6. CampeauL.C. SchipperD.J. FagnouK. Site-selective sp2 and benzylic sp3 palladium-catalyzed direct arylation.J. Am. Chem. Soc.2008130113266326710.1021/ja710451s18293986
    [Google Scholar]
  7. ChaseP.A. JurcaT. StephanD.W. Lewis acid-catalyzed hydrogenation: B(C6F5)3-mediated reduction of imines and nitriles with H2.Chem. Commun. (Camb.)2008141701170310.1039/b718598g18368170
    [Google Scholar]
  8. RaoH. LiC.J. Rearrangement of 2-aryloxybenzaldehydes to 2-hydroxybenzophenones by rhodium-catalyzed cleavage of aryloxy C-O bonds.Angew. Chem. Int. Ed.201150388936893910.1002/anie.20110359921834125
    [Google Scholar]
  9. Sui-SengC. FreutelF. LoughA.J. MorrisR.H. Highly efficient catalyst systems using iron complexes with a tetradentate PNNP ligand for the asymmetric hydrogenation of polar bonds.Angew. Chem. Int. Ed.200847594094310.1002/anie.20070511518098264
    [Google Scholar]
  10. Nasir BaigR.B. VarmaR.S. Organic synthesis via magnetic attraction: Benign and sustainable protocols using magnetic nanoferrites.Green Chem.201315239841710.1039/C2GC36455G
    [Google Scholar]
  11. GawandeM.B. BrancoP.S. VarmaR.S. Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies.Chem. Soc. Rev.20134283371339310.1039/c3cs35480f23420127
    [Google Scholar]
  12. BaigR.B.N. VarmaR.S. Magnetically retrievable catalysts for organic synthesis.Chem. Commun. (Camb.)201349875277010.1039/C2CC35663E23212208
    [Google Scholar]
  13. VarmaR.S. Greener routes to organics and nanomaterials: Sustainable applications of nanocatalysts.Pure Appl. Chem.20138581703171010.1351/PAC‑CON‑13‑01‑15
    [Google Scholar]
  14. MolenbroekA.M. HelvegS. TopsøeH. ClausenB.S. Nano-particles in heterogeneous catalysis.Top. Catal.200952101303131110.1007/s11244‑009‑9314‑1
    [Google Scholar]
  15. PolshettiwarV. VarmaR.S. Green chemistry by nano-catalysis.Green Chem.201012574375410.1039/b921171c
    [Google Scholar]
  16. AstrucD. LuF. AranzaesJ.R. Nanoparticles as recyclable catalysts: The frontier between homogeneous and heterogeneous catalysis.Angew. Chem. Int. Ed.200544487852787210.1002/anie.20050076616304662
    [Google Scholar]
  17. TsungC.K. KuhnJ.N. HuangW. AliagaC. HungL.I. SomorjaiG.A. YangP. Sub-10 nm platinum nanocrystals with size and shape control: Catalytic study for ethylene and pyrrole hydrogenation.J. Am. Chem. Soc.2009131165816582210.1021/ja809936n19341296
    [Google Scholar]
  18. HuangW. KuhnJ.N. TsungC.K. ZhangY. HabasS.E. YangP. SomorjaiG.A. Dendrimer templated synthesis of one nanometer Rh and Pt particles supported on mesoporous silica: Catalytic activity for ethylene and pyrrole hydrogenation.Nano Lett.2008872027203410.1021/nl801325m18543977
    [Google Scholar]
  19. KuhnJ.N. HuangW. TsungC.K. ZhangY. SomorjaiG.A. Structure sensitivity of carbon-nitrogen ring opening: Impact of platinum particle size from below 1 to 5 nm upon pyrrole hydrogenation product selectivity over monodisperse platinum nanoparticles loaded onto mesoporous silica.J. Am. Chem. Soc.200813043140261402710.1021/ja805050c18834126
    [Google Scholar]
  20. SomorjaiG.A. ZaeraF. Heterogeneous catalysis on the molecular scale.J. Phys. Chem.198286163070307810.1021/j100213a007
    [Google Scholar]
  21. NarayananR. El-SayedM.A. Effect of nanocatalysis in colloidal solution on the tetrahedral and cubic nanoparticle shape: Electron-transfer reaction catalyzed by platinum nanoparticles.J. Phys. Chem. B2004108185726573310.1021/jp0493780
    [Google Scholar]
  22. NarayananR. El-SayedM.A. Effect of colloidal nanocatalysis on the metallic nanoparticle shape: The Suzuki reaction.Langmuir20052152027203310.1021/la047600m15723506
    [Google Scholar]
  23. NarayananR. El-SayedM.A. Changing catalytic activity during colloidal platinum nanocatalysis due to shape changes: Electron-transfer reaction.J. Am. Chem. Soc.2004126237194719510.1021/ja048606115186154
    [Google Scholar]
  24. RaoH. JinY. FuH. JiangY. ZhaoY. A versatile and efficient ligand for copper-catalyzed formation of C-N, C-O, and P-C bonds: Pyrrolidine-2-phosphonic acid phenyl monoester.Chemistry200612133636364610.1002/chem.20050147316485315
    [Google Scholar]
  25. OjhaN.K. ZyryanovG.V. MajeeA. CharushinV.N. ChupakhinO.N. SantraS. Copper nanoparticles as inexpensive and efficient catalyst: A valuable contribution in organic synthesis.Coord. Chem. Rev.201735315710.1016/j.ccr.2017.10.004
    [Google Scholar]
  26. SrivastavaN. VermaM. ThakurA. BhartiR. SharmaR. Contemporary progress in the applications of iron-based magnetic nanoparticles in multicomponent synthesis: A review.Curr. Org. Chem.202326232122214210.2174/1385272827666230126124704
    [Google Scholar]
  27. HemmesiL. NaeimiH. Preparation and characterization of zinc oxide nanoparticles supported on reduced graphene oxide and using as an effective catalyst for synthesis of l,4‐dihydropyrimidinones under solvent‐free conditions.J. Heterocycl. Chem.202360347748810.1002/jhet.4603
    [Google Scholar]
  28. RawatM. RawatD.S. Mesoporous Copper–Magnesium oxide hybrid nanocatalyzed synthesis of 3-substituted Isocoumarins from 2-Iodobenzoic acid and terminal alkyne under green conditions.ACS Omega2023818162631627210.1021/acsomega.3c0071037179619
    [Google Scholar]
  29. MarshallJ.A. ChobanianH.R. YanikM.M. Coupling of alkynylTMS derivatives with vinylic iodides. An efficient route to 1,3-enynes and dienes.Org. Lett.20013254107411010.1021/ol016899m11735596
    [Google Scholar]
  30. ShindeH.M. BhosaleT.T. GavadeN.L. BabarS.B. KambleR.J. ShirkeB.S. GaradkarK.M. Biosynthesis of ZrO2 nanoparticles from Ficus benghalensis leaf extract for photocatalytic activity.J. Mater. Sci. Mater. Electron.20182916140551406410.1007/s10854‑018‑9537‑7
    [Google Scholar]
  31. UddinI. AhmadA. Bioinspired eco-friendly synthesis of ZrO2 nanoparticles.J. Mater. Environ. Sci.20167930683075
    [Google Scholar]
  32. ZarghaniM. AkhlaghiniaB. Green and efficient procedure for Suzuki–Miyaura and Mizoroki–Heck coupling reactions using Palladium catalyst supported on Phosphine functionalized ZrO2 NPs (ZrO2@ECP-Pd) as a new reusable nanocatalyst.Bull. Chem. Soc. Jpn.201689101192120010.1246/bcsj.20160163
    [Google Scholar]
  33. BansalP. BhanjanaG. PrabhakarN. DhauJ.S. ChaudharyG.R. Electrochemical sensor based on ZrO2 NPs/Au electrode sensing layer for monitoring hydrazine and catechol in real water samples.J. Mol. Liq.201724865165710.1016/j.molliq.2017.10.098
    [Google Scholar]
  34. MoazamiA. MontazerM. A novel multifunctional cotton fabric using ZrO 2 NPs/urea/CTAB/MA/SHP: Introducing flame retardant, photoactive and antibacterial properties.J. Textil. Inst.2016107101253126310.1080/00405000.2015.1100806
    [Google Scholar]
  35. MallakpourS. Nezamzadeh EzhiehA. Polymer nanocomposites based on modified ZrO2 NPs and poly (vinyl alcohol)/poly (vinyl pyrrolidone) blend: optical, morphological, and thermal properties.Polym. Plast. Technol. Eng.201756101136114510.1080/03602559.2016.1253741
    [Google Scholar]
  36. ShimJ.H. ChaoC.C. HuangH. PrinzF.B. Atomic layer deposition of yttria-stabilized zirconia for solid oxide fuel cells.Chem. Mater.200719153850385410.1021/cm070913t
    [Google Scholar]
  37. SuY.H. LaiY.S. Performance enhancement of natural pigments on a high light transmission ZrO 2 nanoparticle layer in a water-based dye-sensitized solar cell.Int. J. Energy Res.201438443644310.1002/er.3110
    [Google Scholar]
  38. RamamoorthyR. DuttaP.K. AkbarS.A. Oxygen sensors: Materials, methods, designs and applications.J. Mater. Sci.200338214271428210.1023/A:1026370729205
    [Google Scholar]
  39. JalillR.D.A. JawadM.M.H.M. AbdA.N. Plants extracts as green synthesis of zirconium oxide nanoparticles.J. Genet. Environ. Res. Conserv201751623
    [Google Scholar]
  40. GowriS. Rajiv GandhiR. SundrarajanM. Structural, optical, antibacterial and antifungal properties of zirconia nanoparticles by biobased protocol.J. Mater. Sci. Technol.201430878279010.1016/j.jmst.2014.03.002
    [Google Scholar]
  41. BalajiS. MandalB.K. RanjanS. DasguptaN. ChidambaramR. Nano-zirconia – Evaluation of its antioxidant and anticancer activity.J. Photochem. Photobiol. B201717012513310.1016/j.jphotobiol.2017.04.00428431297
    [Google Scholar]
  42. KumariN. SareenS. VermaM. SharmaS. SharmaA. SohalH.S. MehtaS.K. ParkJ. MutrejaV. Zirconia-based nanomaterials: Recent developments in synthesis and applications.Nanoscale Adv.20224204210423610.1039/D2NA00367H36321156
    [Google Scholar]
  43. LedadeP.V. LambatT.L. GunjateJ.K. MahmoodS.H. DasS. AbdalaA.A. ChaudharyR.G. BanerjeeS. Synthesis of oxygen and nitrogen containing heterocycles using Zirconium Dioxide/Mixed Oxide nanoparticles as reusable green catalysts: A comprehensive update.Curr. Org. Chem.202327322324110.2174/1385272827666230106112146
    [Google Scholar]
  44. MurtyM.S.R. KatikiM.R. KommulaD. Multicomponent click synthesis of β-hydroxy/benzyl 1, 2, 3-triazoles catalyzed by magnetically recyclable nano iron oxide in water.Can. Chem. Trans.201644761
    [Google Scholar]
  45. GawandeM.B. VelhinhoA. NogueiraI.D. GhummanC.A.A. TeodoroO.M.N.D. BrancoP.S. A facile synthesis of cysteine–ferrite magnetic nanoparticles for application in multicomponent reactions—a sustainable protocol.RSC Advances20122156144614910.1039/c2ra20955a
    [Google Scholar]
  46. Khalafi-NezhadA. NourisefatM. PanahiF. L-cysteine functionalized magnetic nanoparticles (LCMNP): A novel magnetically separable organocatalyst for one-pot synthesis of 2-amino-4H-chromene-3-carbonitriles in water.Org. Biomol. Chem.201513287772777910.1039/C5OB01030F26098281
    [Google Scholar]
  47. MobinikhalediA. MoghanianH. GhanbariM. Synthesis and characterization of sodium polyaspartate‐functionalized silica‐coated magnetite nanoparticles: A heterogeneous, reusable and magnetically separable catalyst for the solvent‐free synthesis of 2‐amino‐4 H ‐chromene derivatives.Appl. Organomet. Chem.2018323e410810.1002/aoc.4108
    [Google Scholar]
  48. YuanY. ZhaoD. ZhuH. ZhangL. Ligand-free copper oxide nanoparticle-catalyzed Sonogashira coupling reaction.Synthesis20112011111792179810.1055/s‑0030‑1260023
    [Google Scholar]
  49. SharghiH. ShiriP. AberiM. A solvent-free and one-pot strategy for ecocompatible synthesis of substituted benzofurans from various salicylaldehydes, secondary amines, and nonactivated alkynes catalyzed by copper (I) oxide nanoparticles.Synthesis201446182489249810.1055/s‑0034‑1378206
    [Google Scholar]
  50. VenkannaA. SwapnaK. RaoP.V. Recyclable nano copper oxide catalyzed synthesis of quinoline-2,3-dicarboxylates under ligand free conditions.RSC Advances2014429151541516010.1039/c3ra47212d
    [Google Scholar]
  51. PalR. ChatterjeeN. RoyM. SarkarS. SarkarS. SenA.K. Cubic nano-copper(I) oxides as reusable catalyst in consecutive decarboxylative C H arylation and carbonylation: Rapid synthesis of carbonyl dibenzofurans.Tetrahedron Lett.201657454956496010.1016/j.tetlet.2016.09.074
    [Google Scholar]
  52. YanW. WangR. XuZ. XuJ. LinL. ShenZ. ZhouY. A novel, practical and green synthesis of Ag nanoparticles catalyst and its application in three-component coupling of aldehyde, alkyne, and amine.J. Mol. Catal. Chem.20062551-2818510.1016/j.molcata.2006.03.055
    [Google Scholar]
  53. ZhouX. LuY. ZhaiL.L. ZhaoY. LiuQ. SunW.Y. Propargylamines formed from three-component coupling reactions catalyzed by silver oxide nanoparticles.RSC Advances2013361732173410.1039/C2RA22390B
    [Google Scholar]
  54. ZhangQ. CaiS. LiL. ChenY. RongH. NiuZ. LiuJ. HeW. LiY. Direct syntheses of styryl ethers from benzyl alcohols via Ag nanoparticle-catalyzed tandem aerobic oxidation.ACS Catal.2013371681168410.1021/cs400295h
    [Google Scholar]
  55. CongH. BeckerC.F. ElliottS.J. GrinstaffM.W. PorcoJ.A.Jr Silver nanoparticle-catalyzed Diels-Alder cycloadditions of 2′-hydroxychalcones.J. Am. Chem. Soc.2010132217514751810.1021/ja102482b20443601
    [Google Scholar]
  56. YangW. WeiL. YiF. CaiM. Highly efficient and recyclable magnetic nanoparticles-supported gold(III)-bipy catalyst for oxidative α-cyanation of tertiary amines.Tetrahedron20167227-284059406710.1016/j.tet.2016.05.037
    [Google Scholar]
  57. MunshiA.M. AgarwalV. HoD. RastonC.L. SaundersM. SmithN.M. IyerK.S. Magnetically directed assembly of nanocrystals for catalytic control of a three-component coupling reaction.Cryst. Growth Des.20161694773477610.1021/acs.cgd.6b00582
    [Google Scholar]
  58. YangW. WeiL. YanT. CaiM. Highly efficient heterogeneous aerobic oxidative C–C coupling from C sp3 –H bonds by a magnetic nanoparticle-immobilized bipy–gold( iii ) catalyst.Catal. Sci. Technol.2017781744175510.1039/C6CY02567F
    [Google Scholar]
  59. MoeinpourF. Dorostkar-AhmadiN. Sardashti-BirjandiA. KhojastehnezhadA. VafaeiM. Multicomponent preparation of 1-amidoalkyl-2-naphthols using silica-supported molybdenum oxide (MoO3/SiO2) as a mild and recyclable catalyst.Res. Chem. Intermed.20144083145315210.1007/s11164‑013‑1160‑x
    [Google Scholar]
  60. KhojastehnezhadA. MoeinpouF. VafaeiM. Molybdenum oxide supported on silica (MoO3/SiO2): An efficient and reusable catalyst for the synthesis of 1, 8-dioxodecahydroacridines under solvent-free conditions.J. Mex. Chem. Soc.20155912935
    [Google Scholar]
  61. SamantarayS. MishraB.G. Combustion synthesis, characterization and catalytic application of MoO3–ZrO2 nanocomposite oxide towards one pot synthesis of octahydroquinazolinones.J. Mol. Catal. Chem.20113391-2929810.1016/j.molcata.2011.02.017
    [Google Scholar]
  62. Anaraki-ArdakaniH. Heidari-RakatiT. Zirconium oxide nanoparticles as an efficient catalyst for three-component synthesis of Pyrazolo[1,2-A][1,2,4]Triazole-1,3-Diones derivatives.Orient. J. Chem.20163231625162910.13005/ojc/320339
    [Google Scholar]
  63. BhojegowdM.R.M. SiddaramannaA. SiddappaA.B. ThimmannaC.G. PashaM.A. Combustion derived Nanocrystalline‐ZrO 2 and its catalytic activity for Biginelli condensation under microwave irradiation.Chin. J. Chem.20112991863186810.1002/cjoc.201180325
    [Google Scholar]
  64. AbaeeM.S. AkbarzadehE. ShockraviA. MojtahediM.M. KhavasiH.R. Nano ZrO 2 : An efficient, recyclable, and inexpensive catalyst for diastereoselective three-component Mannich reactions.Can. J. Chem.201492765966410.1139/cjc‑2013‑0410
    [Google Scholar]
  65. HeraviM.M. ZadsirjanV. Prescribed drugs containing nitrogen heterocycles: An overview.RSC Advances20201072442474431110.1039/D0RA09198G35557843
    [Google Scholar]
  66. ChandK. Rajeshwari HiremathadA. SinghM. SantosM.A. KeriR.S. A review on antioxidant potential of bioactive heterocycle benzofuran: Natural and synthetic derivatives.Pharmacol. Rep.201769228129510.1016/j.pharep.2016.11.00728171830
    [Google Scholar]
  67. ThakurA. VermaM. BhartiR. SharmaR. Oxazole and isoxazole: From one-pot synthesis to medical applications.Tetrahedron202211913281310.1016/j.tet.2022.132813
    [Google Scholar]
  68. VermaM. ThakurA. SharmaR. BhartiR. Recent advancement in the one-pot synthesis of the Tri-substituted Methanes (TRSMs) and their biological applications.Curr. Org. Synth.20221918611410.2174/157017941866621091010534234515005
    [Google Scholar]
  69. GabaM. MohanC. Development of drugs based on imidazole and benzimidazole bioactive heterocycles: Recent advances and future directions.Med. Chem. Res.201625217321010.1007/s00044‑015‑1495‑5
    [Google Scholar]
  70. AdhikariA. BhaktaS. GhoshT. Microwave-assisted synthesis of bioactive heterocycles: An overview.Tetrahedron202212613308510.1016/j.tet.2022.133085
    [Google Scholar]
  71. KambleO. ChatterjeeR. DandelaR. ShindeS. Ultrasonic energy for construction of bioactive heterocycles.Tetrahedron202212013289310.1016/j.tet.2022.132893
    [Google Scholar]
  72. KaurM. PriyaA. SharmaA. SinghA. BanerjeeB. Glycine and its derivatives catalyzed one-pot multicomponent synthesis of bioactive heterocycles.Synth. Commun.202252161635165610.1080/00397911.2022.2090262
    [Google Scholar]
  73. RajendranS. SivalingamK. Karnam JayarampillaiR.P. WangW.L. SalasC.O. Friedlӓnder’s synthesis of quinolines as a pivotal step in the development of bioactive heterocyclic derivatives in the current era of medicinal chemistry.Chem. Biol. Drug Des.202210061042108510.1111/cbdd.1404435322543
    [Google Scholar]
  74. BorahB. ChowhanL.R. Ultrasound-assisted transition-metal-free catalysis: A sustainable route towards the synthesis of bioactive heterocycles.RSC Advances20221222140221405110.1039/D2RA02063G35558846
    [Google Scholar]
  75. KamannaK. BadigerK.B. A decenary update on metal oxide nanoparticles as a heterogeneous greener catalyst for the synthesis of bioactive heterocycles.Curr. Organocatal.202310320922910.2174/2213337210666230426161057
    [Google Scholar]
  76. JangirN. Poonam DhaddaS. JangidD.K. Recent advances in the synthesis of five‐ and six‐membered heterocycles as bioactive skeleton: A concise overview.ChemistrySelect202276e20210313910.1002/slct.202103139
    [Google Scholar]
  77. PandaS.S. GirgisA.S. AzizM.N. BekheitM.S. Spirooxindole: A versatile biologically active heterocyclic scaffold.Molecules202328261810.3390/molecules2802061836677676
    [Google Scholar]
  78. BanerjeeB. SinghA. KaurG. Baker’s yeast ( Saccharomyces cerevisiae ) catalyzed synthesis of bioactive heterocycles and some stereoselective reactions.Phys. Sci. Rev.202274-530132310.1515/psr‑2021‑0021
    [Google Scholar]
  79. HassanR. Mohi-Ud-DinR. DarM. O. ShahA. J. MirP. A. ShaikhM. PottooF. H. Bioactive heterocyclic compounds as potential therapeutics in the treatment of Gliomas: A review.Med Chem.2022223551565
    [Google Scholar]
  80. KabirE. UzzamanM. A review on biological and medicinal impact of heterocyclic compounds.Results in ChemistryElsevier2022100606
    [Google Scholar]
  81. MajhiS. SahaI. Visible light-promoted synthesis of bioactive N, N-heterocycles.Curr. Green Chem.20229312714410.2174/2213346110666221223141323
    [Google Scholar]
  82. MandalT. Gold catalyzed synthesis of biologically active heterocycles from ynamides.J. Synth. Chem.202211815
    [Google Scholar]
  83. PatraP. PatraS. 4-Aminocoumarin derivatives as multifaceted building blocks for the development of various bioactive fused coumarin heterocycles: A brief review.Curr. Org. Chem.202226171585161410.2174/1385272827666221209101112
    [Google Scholar]
  84. Adarve-CardonaL. Garay-TaleroA. Gamba-SánchezD. Synthesis of naturally occurring seven-membered nitrogen heterocycles and related bioactive compounds.Nat. Prod. Res.20237818923510.1016/B978‑0‑323‑91253‑2.00016‑9
    [Google Scholar]
  85. RaoK.V. CullenW.P. Streptonigrin, an antitumor substance. I. Isolation and characterization.Antibiot. Annu.1959795095314436228
    [Google Scholar]
  86. LepkovskyS. Crystalline factor I.Science193887225116917010.1126/science.87.2251.16917740355
    [Google Scholar]
  87. BansalP. VirkJ.K. KumarS. SinghR. TripathiA.C. SarafS.K. GuptaV. Isolation and characterization of quinine from Polygonatum verticillatum: A new marker approach to identify substitution and adulteration.J. Adv. Pharm. Technol. Res.20167415315810.4103/2231‑4040.19142727833896
    [Google Scholar]
  88. DavisR.A. CarrollA.R. PierensG.K. QuinnR.J. New lamellarin alkaloids from the australian ascidian, Didemnum chartaceum.J. Nat. Prod.199962341942410.1021/np980353010096849
    [Google Scholar]
  89. SimoneM. ErbaE. DamiaG. VikhanskayaF. Di FrancescoA.M. RiccardiR. BaillyC. CuevasC. Fernandez Sousa-FaroJ.M. D’IncalciM. Variolin B and its derivate deoxy-variolin B: New marine natural compounds with cyclin-dependent kinase inhibitor activity.Eur. J. Cancer200541152366237710.1016/j.ejca.2005.05.01516181779
    [Google Scholar]
  90. CarrollA.R. DuffyS. AveryV.M. Aplidiopsamine A, an antiplasmodial alkaloid from the temperate Australian ascidian, Aplidiopsis confluata.J. Org. Chem.201075238291829410.1021/jo101695v21043526
    [Google Scholar]
  91. LiningtonR.G. WilliamsD.E. TahirA. van SoestR. AndersenR.J. Latonduines A and B, new alkaloids isolated from the marine sponge Stylissa carteri: Structure elucidation, synthesis, and biogenetic implications.Org. Lett.20035152735273810.1021/ol034950b12868902
    [Google Scholar]
  92. TilviS. MoriouC. MartinM.T. Gallard J.F. SorresJ. PatelK. PetekS. DebitusC. MourabitA. ErmolenkoL. Agelastatin E, agelastatin F, and benzosceptrin C from the marine sponge Agelas dendromorpha.J. Nat. Prod.2010734720723
    [Google Scholar]
  93. HirataK. YoshitomiS. DwiS. IwabeO. MahakhantA. PolchaiJ. MiyamotoK. Bioactivities of nostocine a produced by a freshwater cyanobacterium Nostoc spongiaeforme TISTR 8169.J. Biosci. Bioeng.200395551251710.1016/S1389‑1723(03)80053‑116233448
    [Google Scholar]
  94. Shin-yaK. WierzbaK. MatsuoK. OhtaniT. YamadaY. FurihataK. HayakawaY. SetoH. Telomestatin, a novel telomerase inhibitor from Streptomyces anulatus.J. Am. Chem. Soc.200112361262126310.1021/ja005780q11456694
    [Google Scholar]
  95. Available from Drotaverine https://go.drugbank.com/structures/DB06751/image.svg
  96. Available from: Flavoxate https://go.drugbank.com/structures/DB01148/thumb.svg
  97. Drotaverine.Available from: https://go.drugbank.com/structures/DB06751/thumb.svg
  98. Propantheline.Available from:https://go.drugbank.com/structures/DB00782/thumb.svg
  99. Cinchocaine.Available from:https://go.drugbank.com/structures/DB00527/thumb.svg
  100. Histamine.Available from:Histamine https://go.drugbank.com/structures/DB05381/thumb.svg
  101. Pramocaine.Available from:https://go.drugbank.com/structures/DB09345/thumb.svg
  102. Phenazopyridine.Available from:https://go.drugbank.com/structures/DB01438/thumb.svg
  103. Butorphanol.Available from:https://go.drugbank.com/structures/DB00611/thumb.svg
  104. Nalbuphine.Available from:https://go.drugbank.com/structures/DB00844/thumb.svg
  105. Pholcodine.Available from:https://go.drugbank.com/structures/DB09209/thumb.svg
  106. Cetylpyridinium.Available from:https://go.drugbank.com/structures/DB11073/thumb.svg
  107. Allantoin.Available from:https://go.drugbank.com/structures/DB11100/thumb.svg
  108. Methenamine.Available from:https://go.drugbank.com/structures/DB06799/thumb.svg
  109. Sulfaphenazole.Available from:https://go.drugbank.com/structures/DB06729/thumb.svg
  110. Isoniazid.Available from:https://go.drugbank.com/structures/DB00951/thumb.svg
  111. Pefloxacin.Available from:https://go.drugbank.com/structures/DB00487/thumb.svg
  112. Vaborbactam.Available from:https://go.drugbank.com/structures/DB12107/thumb.svg
  113. Grepafloxacin.Available from: https://go.drugbank.com/structures/DB00365/thumb.svg
  114. Thonzonium.Available from:https://go.drugbank.com/structures/DB09552/thumb.svg
  115. Paromomycin.Available from:https://go.drugbank.com/structures/DB01421/thumb.svg
  116. Ciclopirox.Available from:https://go.drugbank.com/structures/DB01188/thumb.svg
  117. Cefixime.Available from:https://go.drugbank.com/structures/DB00671/thumb.svg
  118. Ertapenem.Available from:https://go.drugbank.com/structures/DB00303/thumb.svg
  119. Benzatropine.Available from: https://go.drugbank.com/structures/DB00245/thumb.svg
  120. Pramipexole.Available from: https://go.drugbank.com/structures/DB00413/thumb.svg
  121. Metixene.Available from:https://go.drugbank.com/structures/DB00340/thumb.svg
  122. Profenamine.Available from:https://go.drugbank.com/structures/DB00392/thumb.svg
  123. SunderhausJ.D. MartinS.F. Applications of multicomponent reactions to the synthesis of diverse heterocyclic scaffolds.Chemistry20091561300130810.1002/chem.20080214019132705
    [Google Scholar]
  124. SahuB. VermaM. ThakurA. BhartiR. SharmaR. TBAB in one-pot green approach for the synthesis of N-Heterocyclic compounds: A comprehensive review.Curr. Chin. Sci.20244122410.2174/0122102981233465230920154404
    [Google Scholar]
  125. IbarraI.A. Islas-JácomeA. González-ZamoraE. Synthesis of polyheterocycles via multicomponent reactions.Org. Biomol. Chem.20181691402141810.1039/C7OB02305G29238790
    [Google Scholar]
  126. ThakralA. VermaM. ThakurA. BhartiR. SharmaR. Comprehensive review on one-pot green synthesis of Pyran and Chromene fused benzo [α] phenazines.Polycycl. Aromat. Compd.2023125
    [Google Scholar]
  127. ZhangW. Green synthesis of heterocycles.Multicomponent Reactions towards Heterocycles: Concepts and ApplicationsWiley2022163209
    [Google Scholar]
  128. ThakurA. BhartiR. SharmaR. Effect of methods and catalysts on the one-pot synthesis of Tetrahydropyridine derivatives: A mini-review.Orbital: Electron. J. Chem.2021335349
    [Google Scholar]
  129. MamaghaniM. Hossein NiaR. Recent developments in the MCRs synthesis of Pyridopyrimidines and Spiro‐Pyridopyrimidines.J. Heterocycl. Chem.20175431700172210.1002/jhet.2783
    [Google Scholar]
  130. YadavV. ThakurA. BhartiR. VermaM. SharmaR. Recent advancement in multicomponent synthesis of fused Coumarin derivatives.Curr. Org. Synth.202421330333010.2174/157017942066623042711001937102478
    [Google Scholar]
  131. BhartiR. ThakurA. VermaM. SharmaR. SharmaA. GuptaA. SharmaV. Ultra-sonicated one-pot synthesis of potent bioactive Biscoumarin and polycyclic Pyranodichromenone scaffolds in aqueous media: A complementary tool to organic synthesis.Synthesis202355193129314410.1055/s‑0042‑1751475
    [Google Scholar]
  132. PacettiM. PismataroM.C. FelicettiT. GiammarinoF. BonominiA. TieccoM. BertagninC. BarrecaM.L. GermaniR. CecchettiV. VicentiI. TabarriniO. ZazziM. LoregianA. MassariS. Switching the three-component Biginelli-like reaction conditions for the regioselective synthesis of new 2-amino[1,2,4]triazolo[1,5- a ]pyrimidines.Org. Biomol. Chem.202422476778310.1039/D3OB01861J38167738
    [Google Scholar]
  133. ThakurA. VermaM. SetiaP. BhartiR. SharmaR. SharmaA. NegiN.P. AnandV. BansalR. DFT analysis and in vitro studies of isoxazole derivatives as potent antioxidant and antibacterial agents synthesized via one-pot methodology.Res. Chem. Intermed.202349385988310.1007/s11164‑022‑04910‑7
    [Google Scholar]
  134. PatelY. KumarA. SharmaP. N-acetyl-PABA@Cu(II) supported on Fe3O4 as the new heterogeneous catalytic system to assist the MCR derived synthesis of 2,2-dimethyl-2H-[1,3]dioxino[4,5-b]pyrrol-4(7H)-ones heterocyclic scaffolds.Next Mater.2024310016610.1016/j.nxmate.2024.100166
    [Google Scholar]
  135. VermaM. ThakurA. KapilS. SharmaR. SharmaA. BhartiR. Antibacterial and antioxidant assay of novel heteroaryl-substituted methane derivatives synthesized via ceric ammonium nitrate (CAN) catalyzed one-pot green approach.Mol. Divers.202327288990010.1007/s11030‑022‑10461‑135781657
    [Google Scholar]
  136. SahuB. BhartiR. ThakurA. VermaM. SharmaR. DMAP catalyzed one-pot multicomponent synthesis of benzo phenazine and pyrimidine tethered tri-substituted methanes and their DFT analysis.Mater. Today Proc.202210.1016/j.matpr.2022.11.379
    [Google Scholar]
  137. ReddyB.M. SreekanthP.M. ReddyV.R. Modified zirconia solid acid catalysts for organic synthesis and transformations.J. Mol. Catal. Chem.20052251717810.1016/j.molcata.2004.09.003
    [Google Scholar]
  138. ArataK. Organic syntheses catalyzed by superacidic metal oxides: Sulfated zirconia and related compounds.Green Chem.200911111719172810.1039/b822795k
    [Google Scholar]
  139. PengL. ZhaoY. YangT. TongZ. TangZ. OritaA. QiuR. Zirconium-based catalysts in organic synthesis.Top. Curr. Chem.202238054110.1007/s41061‑022‑00396‑435951161
    [Google Scholar]
  140. SahaA. PayraS. BanerjeeS. On water synthesis of pyran–chromenes via a multicomponent reactions catalyzed by fluorescent t-ZrO 2 nanoparticles.RSC Advances2015512310166410167110.1039/C5RA19290K
    [Google Scholar]
  141. PagadalaR. KommidiD.R. RanaS. MaddilaS. MoodleyB. KoorbanallyN.A. JonnalagaddaS.B. Multicomponent synthesis of pyridines via diamine functionalized mesoporous ZrO 2 domino intramolecular tandem Michael type addition.RSC Advances2015585627563210.1039/C4RA13552K
    [Google Scholar]
  142. MaddilaS.N. MaddilaS. van ZylW.E. JonnalagaddaS.B. Mn doped ZrO 2 as a green, efficient and reusable heterogeneous catalyst for the multicomponent synthesis of pyrano[2,3-d]-pyrimidine derivatives.RSC Advances2015547373603736610.1039/C5RA06373F
    [Google Scholar]
  143. AmoozadehA. RahmaniS. BitarafM. AbadiF.B. TabrizianE. Nano-zirconia as an excellent nano support for immobilization of sulfonic acid: A new, efficient and highly recyclable heterogeneous solid acid nanocatalyst for multicomponent reactions.New J. Chem.201640177078010.1039/C5NJ02430G
    [Google Scholar]
  144. Sagar Vijay KumarP. SureshL. VinodkumarT. ReddyB.M. ChandramouliG.V.P. Zirconium doped ceria nanoparticles: An efficient and reusable catalyst for a green multicomponent synthesis of novel Phenyldiazenyl–chromene derivatives using aqueous medium.ACS Sustain. Chem.& Eng.2016442376238610.1021/acssuschemeng.6b00056
    [Google Scholar]
  145. Safaei-GhomiJ. Shahbazi-AlaviH. TeymuriR. Nano ZrP 2 O 7 catalyzed multicomponent reaction for an easy access of 4 H -pyrans and 1,4-dihydropyridines.Polycycl. Aromat. Compd.201636583484710.1080/10406638.2015.1061027
    [Google Scholar]
  146. HosseiniM.M. KolvariE. KoukabiN. ZiyaeiM. ZolfigolM.A. Zirconia sulfuric acid: An efficient heterogeneous catalyst for the one-pot synthesis of 3, 4-dihydropyrimidinones under solvent-free conditions.Catal. Lett.201614661040104910.1007/s10562‑016‑1723‑8
    [Google Scholar]
  147. JadhavS.A. SarkateA.P. RautA.V. ShindeD.B. ZrO2 nano particle catalyzed multi-component synthesis of 3-benzylidene-1-phenylquinoline-2,4(1H,3H)-diones and its antimicrobial activity.Res. Chem. Intermed.20174384531454710.1007/s11164‑017‑2894‑7
    [Google Scholar]
  148. BajpaiS. SinghS. SrivastavaV. Monoclinic zirconia nanoparticle-catalyzed regioselective synthesis of some novel substituted spirooxindoles through one-pot multicomponent reaction in a ball mill: A step toward green and sustainable chemistry.Synth. Commun.201747161514152510.1080/00397911.2017.1336244
    [Google Scholar]
  149. BhaskaruniS.V.H.S. MaddilaS. van ZylW.E. JonnalagaddaS.B. Four-component fusion protocol with NiO/ZrO2 as a robust recyclable catalyst for novel 1, 4-Dihydropyridines.ACS Omega2019425211872119610.1021/acsomega.9b0260831867512
    [Google Scholar]
  150. SinghS. BajpaiS. Eco-friendly and facile synthesis of substituted imidazoles via nano zirconia catalyzed one-pot multicomponent reaction of isatin derivatives with ammonium acetate and substituted aromatic aldehydes under solvent free conditions. Nanocatalysts.IntechOpen201910.5772/intechopen.82720
    [Google Scholar]
  151. NasseriM.A. KazemnejadiM. MahmoudiB. AssadzadehF. AlaviS.A. AllahresaniA. Efficient preparation of 1,8-dioxo-octahydroxanthene derivatives by recyclable cobalt-incorporated sulfated zirconia (ZrO2/SO42−/Co) nanoparticles.J. Nanopart. Res.2019211021410.1007/s11051‑019‑4643‑x
    [Google Scholar]
  152. MaddilaS. GorleS. ShabalalaS. OyetadeO. MaddilaS.N. LavanyaP. JonnalagaddaS.B. Ultrasound mediated green synthesis of pyrano[2,3-c]pyrazoles by using Mn doped ZrO2.Arab. J. Chem.201912567167910.1016/j.arabjc.2016.04.016
    [Google Scholar]
/content/journals/coc/10.2174/0113852728348025241114101345
Loading
/content/journals/coc/10.2174/0113852728348025241114101345
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test