Skip to content
2000
Volume 29, Issue 10
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Coumarins are a vital class of compounds recognized for their significant therapeutic potential, both in their natural forms and as synthetic derivatives. Characterized by a benzene ring fused to an α-pyranose ring, coumarins have garnered considerable attention from the scientific community due to their diverse pharmacological activities. This review article highlights the importance of coumarin hybrids, showcasing their enhanced biological properties and reactivity compared to traditional coumarin structures. We explore the pharmacological profiles of various coumarin derivatives, including their anti-cancer, anti-inflammatory, antiviral, antioxidant, antibacterial, and anti-tuberculosis activities, among others. The review examines how the incorporation of different functional groups on the coumarin scaffold can modulate its effectiveness against various diseases, particularly cancer. Furthermore, we discuss promising results from coumarin-based hybrids, such as coumarin-pyridine, coumarin-uracil, and coumarin-quinoline derivatives, demonstrating their efficacy against a range of pathogens. This comprehensive overview serves as a valuable resource for researchers interested in the potential of coumarin derivatives in therapeutic applications.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728340045240930075523
2024-10-25
2025-05-03
Loading full text...

Full text loading...

References

  1. MerinoG. SolàM. FernándezI. Foroutan-NejadC. LazzerettiP. FrenkingG. AndersonH.L. SundholmD. CossíoF.P. PetrukhinaM.A. WuJ. WuJ.I. RestrepoA. Aromaticity: Quo Vadis.Chem. Sci. (Camb.)202314215569557610.1039/D2SC04998H 37265727
    [Google Scholar]
  2. KakkarS. NarasimhanB. A comprehensive review on biological activities of oxazole derivatives.BMC Chem.20191311610.1186/s13065‑019‑0531‑9 31384765
    [Google Scholar]
  3. OlomolaT.O. AkinboyeA.J. OlasunkanmiO.O. OlasunkanmiL.O. Synthesis, antimicrobial activities and computational studies of some oxazolone derivatives.Ife J. Sci.2018201110.4314/ijs.v20i1.1
    [Google Scholar]
  4. AnsariK.F. LalC. Synthesis and evaluation of some new benzimidazole derivatives as potential antimicrobial agents.Eur. J. Med. Chem.20094452294229910.1016/j.ejmech.2008.01.022 18316140
    [Google Scholar]
  5. FernandesJ.P.S. The importance of medicinal chemistry knowledge in the Clinical Pharmacist’s Education.Am. J. Pharm. Educ.2018822608310.5688/ajpe6083 29606703
    [Google Scholar]
  6. Sharifi-RadJ. Cruz-MartinsN. López-JornetP. LopezE.P.F. HarunN. YeskaliyevaB. BeyatliA. SytarO. ShaheenS. SharopovF. TaheriY. DoceaA.O. CalinaD. ChoW.C. Natural coumarins: Exploring the pharmacological complexity and underlying molecular mechanisms.Oxid. Med. Cell. Longev.202120211649234610.1155/2021/6492346 34531939
    [Google Scholar]
  7. VenugopalaK.N. RashmiV. OdhavB. Review on natural coumarin lead compounds for their pharmacological activity.BioMed Res. Int.2013201311410.1155/2013/963248 23586066
    [Google Scholar]
  8. LončarM. JakovljevićM. ŠubarićD. PavlićM. Buzjak SlužekV. CindrićI. MolnarM. Coumarins in food and methods of their determination.Foods20209564510.3390/foods9050645 32443406
    [Google Scholar]
  9. NairM.S. Spectroscopic studies on the interaction of serum albumins with plant derived natural molecules.Appl. Spectrosc. Rev.201853863666610.1080/05704928.2017.1402184
    [Google Scholar]
  10. MatosM.J. SantanaL. UriarteE. AbreuO.A. MolinaE. YordiE.G. Coumarins - an Important Class of Phytochemicals. Phytochemicals - Isolation, Characterisation and Role in Human Health; InTechOpen: London,201510.5772/59982
    [Google Scholar]
  11. LončarićM. Gašo-SokačD. JokićS. MolnarM. Recent advances in the synthesis of coumarin derivatives from different starting materials.Biomolecules202010115110.3390/biom10010151 31963362
    [Google Scholar]
  12. SarkerS.D. NaharL. Progress in the chemistry of naturally occurring coumarins.Prog. Chem. Org. Nat. Prod.201710624130410.1007/978‑3‑319‑59542‑9_3 28762091
    [Google Scholar]
  13. ThomasV. GilesD. BasavarajaswamyG. DasA. PatelA. Coumarin derivatives as anti-inflammatory and anticancer agents.Anticancer. Agents Med. Chem.201717341542310.2174/1871520616666160902094739 27592545
    [Google Scholar]
  14. WitaicenisA. SeitoL.N. Di StasiL.C. Intestinal anti-inflammatory activity of esculetin and 4-methylesculetin in the trinitrobenzenesulphonic acid model of rat colitis.Chem. Biol. Interact.2010186221121810.1016/j.cbi.2010.03.045 20380826
    [Google Scholar]
  15. WangC.M. ZhouW. LiC.X. ChenH. ShiZ.Q. FanY.J. Efficacy of osthol, a potent coumarin compound, in controlling powdery mildew caused by Sphaerotheca fuliginea.J. Asian Nat. Prod. Res.200911978379110.1080/10286020903158964 20183325
    [Google Scholar]
  16. MandlerM.D. BaidinV. LeeJ. PahilK.S. OwensT.W. KahneD. Novobiocin enhances polymyxin activity by stimulating lipopolysaccharide transport.J. Am. Chem. Soc.2018140226749675310.1021/jacs.8b02283 29746111
    [Google Scholar]
  17. FengD. ZhangA. YangY. YangP. Coumarin‐containing hybrids and their antibacterial activities.Arch. Pharm. (Weinheim)20203536190038010.1002/ardp.201900380 32253782
    [Google Scholar]
  18. ShinE. ChoiK.M. YooH.S. LeeC.K. HwangB.Y. LeeM.K. Inhibitory effects of coumarins from the stem barks of Fraxinus rhynchophylla on adipocyte differentiation in 3T3-L1 cells.Biol. Pharm. Bull.20103391610161410.1248/bpb.33.1610 20823583
    [Google Scholar]
  19. SiY. LiX. GuoT. WeiW. ZhangJ. JiaA. WangY. ZhaoA. ChangJ. FengS. Isolation and characterization of phellodendronoside A, a new isoquinoline alkaloid glycoside with anti-inflammatory activity from Phellodendron Chinense Schneid.Fitoterapia202115410502110502110.1016/j.fitote.2021.105021 34403776
    [Google Scholar]
  20. PolloL.A.E. MartinE.F. MachadoV.R. CantillonD. WildnerL.M. BazzoM.L. WaddellS.J. BiavattiM.W. SandjoL.P. Search for antimicrobial activity among fifty-two natural and synthetic compounds identifies anthraquinone and polyacetylene classes that inhibit Mycobacterium tuberculosis.Front. Microbiol.20211162262910.3389/fmicb.2020.622629
    [Google Scholar]
  21. MajnooniM.B. FakhriS. ShokoohiniaY. MojarrabM. Kazemi-AfrakotiS. FarzaeiM.H. Isofraxidin: Synthesis, biosynthesis, isolation, pharmacokinetic and pharmacological properties.Molecules2020259204010.3390/molecules25092040 32349420
    [Google Scholar]
  22. PortugalJ. Chartreusin, elsamicin A and related anti-cancer antibiotics.Curr. Med. Chem. Anticancer Agents20033641142010.2174/1568011033482215 14529449
    [Google Scholar]
  23. WhangW.K. ParkH.S. HamI. OhM. NamkoongH. KimH.K. HwangD.W. HurS.Y. KimT.E. ParkY.G. KimJ.R. KimJ.W. Natural compounds, fraxin and chemicals structurally related to fraxin protect cells from oxidative stress.Exp. Mol. Med.200537543644610.1038/emm.2005.54 16264268
    [Google Scholar]
  24. GrabarskaA. Skalicka-WoźniakK. KiełbusM. Dmoszyńska-GraniczkaM. MiziakP. SzumiłoJ. NowosadzkaE. KowalczukK. KhalifaS. Smok-KalwatJ. KlatkaJ. KupiszK. PolbergK. Rivero-MüllerA. StepulakA. Imperatorin as a promising chemotherapeutic agent against human larynx cancer and rhabdomyosarcoma cells.Molecules2020259204610.3390/molecules25092046 32353989
    [Google Scholar]
  25. BourgaudF. HehnA. LarbatR. DoerperS. GontierE. KellnerS. MaternU. Biosynthesis of coumarins in plants: A major pathway still to be unravelled for cytochrome P450 enzymes.Phytochem. Rev.200652-329330810.1007/s11101‑006‑9040‑2
    [Google Scholar]
  26. ArokeE.N. DunganJ.R. Pharmacogenetics of anesthesia.Nurs. Res.201665431833010.1097/NNR.0000000000000164 27362518
    [Google Scholar]
  27. ChakthongS. WeaaryeeP. PuangphetP. MahabusarakamW. PlodpaiP. VoravuthikunchaiS.P. Kanjana-OpasA. Alkaloid and coumarins from the green fruits of Aegle marmelos.Phytochemistry20127510811310.1016/j.phytochem.2011.11.018 22196941
    [Google Scholar]
  28. RosselliS. MaggioA.M. FaraoneN. SpadaroV. Morris-NatschkeS.L. BastowK.F. LeeK-H. BrunoM. The cytotoxic properties of natural coumarins isolated from roots of Ferulago campestris (Apiaceae) and of synthetic ester derivatives of aegelinol.Nat. Prod. Commun.20094121701170610.1177/1934578X0900401219
    [Google Scholar]
  29. BasileA. SorboS. SpadaroV. BrunoM. MaggioA. FaraoneN. RosselliS. Antimicrobial and antioxidant activities of coumarins from the roots of Ferulago campestris (Apiaceae).Molecules200914393995210.3390/molecules14030939 19255552
    [Google Scholar]
  30. AhmadiF. ValadbeigiS. SajjadiS.E. ShokoohiniaY. AzizianH. TaheripakG. Grandivittin as a natural minor groove binder extracted from Ferulago macrocarpa to ct-DNA, experimental and in silico analysis.Chem. Biol. Interact.20162588910110.1016/j.cbi.2016.08.020 27569860
    [Google Scholar]
  31. PriyaM.R.K. AshokkumarM. PrecillaL.K. HannaL.E. IyerP.R. Nanomedicine perspective in HIV therapy: Biosynthesized gold nanoparticles exhibiting enhanced anti-HIV property.Beni. Suef Univ. J. Basic Appl. Sci.20211012310.1186/s43088‑021‑00105‑y
    [Google Scholar]
  32. NaharL. TalukdarA.D. NathD. NathS. MehanA. IsmailF.M.D. SarkerS.D. Naturally occurring calanolides: Occurrence, biosynthesis, and pharmacological properties including therapeutic potential.Molecules20202521498310.3390/molecules25214983 33126458
    [Google Scholar]
  33. BuckheitR.W.Jr RussellJ.D. XuZ.Q. FlavinM. Anti-HIV-1 activity of calanolides used in combination with other mechanistically diverse inhibitors of HIV-1 replication.Antivir. Chem. Chemother.200011532132710.1177/095632020001100502 11142630
    [Google Scholar]
  34. ShenW. HuX.L. LiS.Y. LiL. DongX.W. LiuH. CuiJ.M. SongZ. ZhangX.Q. YeW.C. WangH. Pyranochromones with anti-inflammatory activities in arthritis from Calophyllum membranaceum.J. Nat. Prod.20228551374138710.1021/acs.jnatprod.2c00157 35503996
    [Google Scholar]
  35. TimsonD. Dicoumarol: A drug which hits at least two very different targets in vitamin K metabolism.Curr. Drug Targets201718550051010.2174/1389450116666150722141906 26201483
    [Google Scholar]
  36. LimC.K. HemaroopiniS. GanS.Y. LooS.M. LowJ.R. JongV.Y.M. SooH.C. LeongC.O. MaiC.W. CheeC.F. In vitro cytotoxic activity of isolated compounds from Malaysian calophyllum species.Med. Chem. Res.20162581686169410.1007/s00044‑016‑1606‑y
    [Google Scholar]
  37. VerottaL. LovaglioE. VidariG. FinziP.V. NeriM.G. RaimondiA. ParapiniS. TaramelliD. RivaA. BombardelliE. 4-Alkyl- and 4-phenylcoumarins from Mesua ferrea as promising multidrug resistant antibacterials.Phytochemistry200465212867287910.1016/j.phytochem.2004.07.001 15501254
    [Google Scholar]
  38. SelimY. Three new coumarin types from aerial parts of Ammi majus L. and their cytotoxic activity.Z. Naturforsch. C2017731-21710.1515/znc‑2017‑0068 27705900
    [Google Scholar]
  39. BevansC.G. Determination of the warfarin inhibition constant Ki for vitamin K 2,3-epoxide reductase complex subunit-1 (VKORC1) using an in vitro DTT-driven assay.Biochim. Biophys. Acta2013183084202421010.1016/j.bbagen.2013.04.018
    [Google Scholar]
  40. KwonO.S. ChoiJ.S. IslamM.N. KimY.S. KimH.P. Inhibition of 5-lipoxygenase and skin inflammation by the aerial parts of Artemisia capillaris and its constituents.Arch. Pharm. Res.20113491561156910.1007/s12272‑011‑0919‑0 21975819
    [Google Scholar]
  41. YangS. DaiW. WangJ. ZhangX. ZhengY. BiS. PangL. RenT. YangY. SunY. ZhengZ. WuS. KongJ. Osthole: An up-to-date review of its anticancer potential and mechanisms of action.Front. Pharmacol.20221394562710.3389/fphar.2022.945627
    [Google Scholar]
  42. PatilA.D. FreyerA.J. EgglestonD.S. HaltiwangerR.C. BeanM.F. TaylorP.B. CaranfaM.J. BreenA.L. BartusH.R. JohnsonR.K. The inophyllums, novel inhibitors of HIV-1 reverse transcriptase isolated from the Malaysian tree, Calophyllum inophyllum Linn.J. Med. Chem.199336264131413810.1021/jm00078a001 7506311
    [Google Scholar]
  43. MazimbaO. Umbelliferone: Sources, chemistry and bioactivities review.Bull. Fac. Pharm. Cairo Univ.201755222323210.1016/j.bfopcu.2017.05.001
    [Google Scholar]
  44. ZhouJ. GelotC. PantelidouC. LiA. YücelH. DavisR.E. FärkkiläA. KochupurakkalB. SyedA. ShapiroG.I. TainerJ.A. BlaggB.S.J. CeccaldiR. D’AndreaA.D. A first-in-class polymerase theta inhibitor selectively targets homologous-recombination-deficient tumors.Nat. Cancer20212659861010.1038/s43018‑021‑00203‑x 34179826
    [Google Scholar]
  45. AnastasP. EghbaliN. Green chemistry: Principles and practice.Chem. Soc. Rev.201039130131210.1039/B918763B 20023854
    [Google Scholar]
  46. FerlayJ. ColombetM. SoerjomataramI. ParkinD.M. PiñerosM. ZnaorA. BrayF. Cancer statistics for the year 2020: An overview.Int. J. Cancer2021149477878910.1002/ijc.33588 33818764
    [Google Scholar]
  47. StruppC. CorvaroM. CohenS.M. CortonJ.C. OgawaK. RichertL. JacobsM.N. Increased cell proliferation as a key event in chemical carcinogenesis: Application in an integrated approach for the testing and assessment of non-genotoxic carcinogenesis.Int. J. Mol. Sci.20232417132461324610.3390/ijms241713246 37686053
    [Google Scholar]
  48. LeeE.Y.H.P. MullerW.J. Oncogenes and tumor suppressor genes.Cold Spring Harb. Perspect. Biol.2010210a003236a00323610.1101/cshperspect.a003236 20719876
    [Google Scholar]
  49. DebelaD.T. MuzazuS.G.Y. HeraroK.D. NdalamaM.T. MeseleB.W. HaileD.C. KituiS.K. ManyazewalT. New approaches and procedures for cancer treatment: Current perspectives.SAGE Open Med.202193436610.1177/20503121211034366 34408877
    [Google Scholar]
  50. CuiN. LinD.D. ShenY. ShiJ.G. WangB. ZhaoM.Z. ZhengL. ChenH. ShiJ.H. Triphenylethylene-coumarin hybrid TCH-5c suppresses tumorigenic progression in breast cancer mainly through the inhibition of angiogenesis.Anticancer. Agents Med. Chem.201919101253126110.2174/1871520619666190404155230 30947677
    [Google Scholar]
  51. ConfortiF. IoeleG. StattiG.A. MarrelliM. RagnoG. MenichiniF. Antiproliferative activity against human tumor cell lines and toxicity test on Mediterranean dietary plants.Food Chem. Toxicol.200846103325333210.1016/j.fct.2008.08.004 18768152
    [Google Scholar]
  52. ChenL. LvQ. CaiJ. LiangJ. LiangZ. LinJ. XiaoY. ChenR. ZhangZ. HongY. JiH. Design, synthesis and anticancer activity studies of 3-(coumarin-3-yl)-acrolein derivatives: Evidenced by integrating network pharmacology and vitro assay.Front. Pharmacol.202314114112110.3389/fphar.2023.1141121 37033621
    [Google Scholar]
  53. ZhouR. YuY.H. KimH. HaH.H. Synthesis of coumarin derivatives and investigation of their inhibitory effects on lung cancer cell motility.Sci. Rep.20221212163510.1038/s41598‑022‑26212‑z 36517633
    [Google Scholar]
  54. ZhaoJ.W. WuZ.H. GuoJ.W. HuangM.J. YouY.Z. LiuH.M. HuangL.H. Synthesis and anti-gastric cancer activity evaluation of novel triazole nucleobase analogues containing steroidal/coumarin/quinoline moieties.Eur. J. Med. Chem.201918111152010.1016/j.ejmech.2019.07.023 31404863
    [Google Scholar]
  55. ChiewG.G.Y. FuA. Perng LowK. Qian LuoK. Physical supports from liver cancer cells are essential for differentiation and remodeling of endothelial cells in a HepG2-HUVEC co-culture model.Sci. Rep.2015511080110.1038/srep10801 26053957
    [Google Scholar]
  56. KurtB.Z. DagA. DoğanB. DurdagiS. AngeliA. NocentiniA. SupuranC.T. SonmezF. Synthesis, biological activity and multiscale molecular modeling studies of bis-coumarins as selective carbonic anhydrase IX and XII inhibitors with effective cytotoxicity against hepatocellular carcinoma.Bioorg. Chem.20198783885010.1016/j.bioorg.2019.03.003 31003041
    [Google Scholar]
  57. TaslimiP. GulcinI. OzgerisB. GoksuS. TumerF. AlwaselS.H. SupuranC.T. The human carbonic anhydrase isoenzymes I and II (hCA I and II) inhibition effects of trimethoxyindane derivatives.J. Enzyme Inhib. Med. Chem.201631115215710.3109/14756366.2015.1014476 25697270
    [Google Scholar]
  58. Zengin KurtB. SonmezF. DurdagiS. AksoydanB. Ekhteiari SalmasR. AngeliA. KucukislamogluM. SupuranC.T. Synthesis, biological activity and multiscale molecular modeling studies for coumaryl-carboxamide derivatives as selective carbonic anhydrase IX inhibitors.J. Enzyme Inhib. Med. Chem.20173211042105210.1080/14756366.2017.1354857 28776440
    [Google Scholar]
  59. LinM.H. WangJ.S. HsiehY.C. ZhengJ.H. ChoE.C. NO2 functionalized coumarin derivatives suppress cancer progression and facilitate apoptotic cell death in KRAS mutant colon cancer.Chem. Biol. Interact.201930910870810.1016/j.cbi.2019.06.021 31199928
    [Google Scholar]
  60. TohkayomateeR. ReabroiS. TungmunnithumD. ParichatikanondW. PinthongD. Andrographolide exhibits anticancer activity against breast cancer cells (MCF-7 and MDA-MB-231 cells) through suppressing cell proliferation and inducing cell apoptosis via inactivation of ER-α receptor and PI3K/AKT/mTOR signaling.Molecules20222711354410.3390/molecules27113544 35684480
    [Google Scholar]
  61. AhmedE.Y. Abdel LatifN.A. El-MansyM.F. ElserwyW.S. AbdelhafezO.M. VEGFR-2 inhibiting effect and molecular modeling of newly synthesized coumarin derivatives as anti-breast cancer agents.Bioorg. Med. Chem.202028511532810.1016/j.bmc.2020.115328 31992477
    [Google Scholar]
  62. MbabaM. de la MareJ.A. SterrenbergJ.N. KajewoleD. MaharajS. EdkinsA.L. IsaacsM. HoppeH.C. KhanyeS.D. Novobiocin-ferrocene conjugates possessing anticancer and antiplasmodial activity independent of HSP90 inhibition.J. Biol. Inorg. Chem.201924213914910.1007/s00775‑018‑1634‑9 30542925
    [Google Scholar]
  63. ShermanJ. WangR. Rapid profiling of G2 phase to mitosis progression by flow cytometry in asynchronous cells.Cell Cycle202019212897290510.1080/15384101.2020.1827510 33043808
    [Google Scholar]
  64. FayedE.A. Design, synthesis, biological evaluation and molecular modeling of new coumarin derivatives as potent anticancer agents.Med. Chem. Res.20192881284129710.1007/s00044‑019‑02373‑x
    [Google Scholar]
  65. SuskiJ.M. LebiedzinskaM. BonoraM. PintonP. DuszynskiJ. WieckowskiM.R. Relation between mitochondrial membrane potential and ROS formation.Methods Mol. Biol.201281018320510.1007/978‑1‑61779‑382‑0_12 22057568
    [Google Scholar]
  66. TaheriS. NazifiM. MansourianM. HosseinzadehL. ShokoohiniaY. Ugi efficient synthesis, biological evaluation and molecular docking of coumarin-quinoline hybrids as apoptotic agents through mitochondria-related pathways.Bioorg. Chem.20199110314710314710.1016/j.bioorg.2019.103147 31377390
    [Google Scholar]
  67. DhamijaI. KumarN. ManjulaS.N. PariharV. SettyM.M. PaiK.S.R. Preliminary evaluation of in vitro cytotoxicity and in vivo antitumor activity of Premna herbacea Roxb. in Ehrlich ascites carcinoma model and Dalton’s lymphoma ascites model.Exp. Toxicol. Pathol.201365323524210.1016/j.etp.2011.08.009 21920724
    [Google Scholar]
  68. PrashanthT. AvinB.R.V. ThirusanguP. RanganathaV.L. PrabhakarB.T. Sharath ChandraJ.N.N. KhanumS.A. Synthesis of coumarin analogs appended with quinoline and thiazole moiety and their apoptogenic role against murine ascitic carcinoma.Biomed. Pharmacother.201911210870710870710.1016/j.biopha.2019.108707 30970513
    [Google Scholar]
  69. AhmedE.Y. ElserwyW.S. El-MansyM.F. SerryA.M. SalemA.M. AbdouA.M. AbdelrahmanB.A. ElsayedK.H. Abd ElazizM.R. Angiokinase inhibition of VEGFR-2, PDGFR and FGFR and cell growth inhibition in lung cancer: Design, synthesis, biological evaluation and molecular docking of novel azaheterocyclic coumarin derivatives.Bioorg. Med. Chem. Lett.20214812825812825810.1016/j.bmcl.2021.128258 34246754
    [Google Scholar]
  70. MohamedT.K. BatranR.Z. ElseginyS.A. AliM.M. MahmoudA.E. Synthesis, anticancer effect and molecular modeling of new thiazolylpyrazolyl coumarin derivatives targeting VEGFR-2 kinase and inducing cell cycle arrest and apoptosis.Bioorg. Chem.20198525327310.1016/j.bioorg.2018.12.040 30641320
    [Google Scholar]
  71. JamalzadehL. GhafooriH. AghamaaliM. SaririR. Induction of apoptosis in human breast cancer MCF-7 cells by a semisynthetic derivative of artemisinin: A caspase-related mechanism.Iran. J. Biotechnol.201715315716510.15171/ijb.1567 29845064
    [Google Scholar]
  72. SonmezF. Synthesis of coumarin-sulfonamide derivatives and determination of their cytotoxicity, carbonic anhydrase inhibitory and molecular docking studies.Eur. J. Med. Chem.201918311170211170210.1016/j.ejmech.2019.111702
    [Google Scholar]
  73. LauvrakS.U. MuntheE. KresseS.H. StratfordE.W. NamløsH.M. Meza-ZepedaL.A. MyklebostO. Functional characterisation of osteosarcoma cell lines and identification of mRNAs and miRNAs associated with aggressive cancer phenotypes.Br. J. Cancer201310982228223610.1038/bjc.2013.549 24064976
    [Google Scholar]
  74. SandujaM. GuptaJ. SinghH. PagareP.P. RanaA. Uracil-coumarin based hybrid molecules as potent anti-cancer and anti-bacterial agents.J. Saudi Chem. Soc.202024225126610.1016/j.jscs.2019.12.001
    [Google Scholar]
  75. GoudN.S. PooladandaV. MahammadG.S. JakkulaP. GatreddiS. QureshiI.A. AlvalaR. GoduguC. AlvalaM. Synthesis and biological evaluation of morpholines linked coumarin-triazole hybrids as anticancer agents.Chem. Biol. Drug Des.20199451919192910.1111/cbdd.13578 31169963
    [Google Scholar]
  76. DiaoQ.P. GuoH. WangG.Q. Design, synthesis, and in vitro anticancer activities of diethylene glycol tethered isatin‐1,2,3‐triazole‐coumarin hybrids.J. Heterocycl. Chem.20195651667167110.1002/jhet.3538
    [Google Scholar]
  77. NarellaS.G. ShaikM.G. MohammedA. AlvalaM. AngeliA. SupuranC.T. Synthesis and biological evaluation of coumarin-1,3,4-oxadiazole hybrids as selective carbonic anhydrase IX and XII inhibitors.Bioorg. Chem.20198776577210.1016/j.bioorg.2019.04.004 30974299
    [Google Scholar]
  78. TrifonovA.V. GazizovA.S. TapalovaA.S. KibardinaL.K. AppazovN.O. VoloshinaA.D. SapunovaA.S. LuybinaA.P. AbyzbekovaG.M. DobryninA.B. LitvinovI.A. TauekelA.K. YespenbetovaS.O. BurilovA.R. PudovikM.A. Synthesis and anticancer evaluation of novel 7-aza-coumarine-3-carboxamides.Int. J. Mol. Sci.202324129927992710.3390/ijms24129927 37373075
    [Google Scholar]
  79. WangY. ZhangW. DongJ. GaoJ. Design, synthesis and bioactivity evaluation of coumarin-chalcone hybrids as potential anticancer agents.Bioorg. Chem.20209510353010.1016/j.bioorg.2019.103530 31887477
    [Google Scholar]
  80. DhawanS. AwoladeP. KistenP. CeleN. PillayA-S. SahaS. KaurM. JonnalagaddaS.B. SinghP. Synthesis, cytotoxicity and antimicrobial evaluation of new coumarin-tagged β-lactam triazole hybrid.Chem. Biodivers.2020171e190046210.1002/cbdv.201900462 31788939
    [Google Scholar]
  81. VaarlaK. KarnewarS. PanugantiD. PeddiS.R. VedulaR.R. MangaV. KotamrajuS. 3‐(2‐(5‐amino‐3‐aryl‐1H‐pyrazol‐1‐yl) thiazol‐4‐yl)‐2H‐chromen‐2‐ones as potential anticancer agents: synthesis, anticancer activity evaluation and molecular docking studies.ChemistrySelect20194144324433010.1002/slct.201900077
    [Google Scholar]
  82. AaesT.L. VandenabeeleP. The intrinsic immunogenic properties of cancer cell lines, immunogenic cell death, and how these influence host antitumor immune responses.Cell Death Differ.20202884386010.1038/s41418‑020‑00658‑y 33214663
    [Google Scholar]
  83. HersiF. OmarH.A. Al-QawasmehR.A. AhmadZ. JaberA.M. ZaherD.M. Al-TelT.H. Design and synthesis of new energy restriction mimetic agents: Potent anti-tumor activities of hybrid motifs of aminothiazoles and coumarins.Sci. Rep.2020101289310.1038/s41598‑020‑59685‑x 32076009
    [Google Scholar]
  84. DurgapalS.D. SomanS.S. Evaluation of novel coumarin-proline sulfonamide hybrids as anticancer and antidiabetic agents.Synth. Commun.2019201911510.1080/00397911.2019.1647439
    [Google Scholar]
  85. GovindaiahP. DumalaN. GroverP. Jaya PrakashM. Synthesis and biological evaluation of novel 4,7-dihydroxycoumarin derivatives as anticancer agents.Bioorg. Med. Chem. Lett.201929141819182410.1016/j.bmcl.2019.05.008 31104996
    [Google Scholar]
  86. Uday KumarT. Fused chromeno‐thieno/furo‐pyridines as potential analogs of Lamellarin D and their anticancer activity evaluation.Chem. Select2019436107261073010.1002/slct.201902946
    [Google Scholar]
  87. MaJ. HuangK. NiX. ChenR. XuB. WangC. Design, synthesis, biological activity and molecular docking study of coumarin derivatives bearing 2-methylbiphenyl moiety.Chem. Res. Chin. Univ.201935341041710.1007/s40242‑019‑8310‑7
    [Google Scholar]
  88. SharminS. RahamanM.M. MartorellM. Sastre-SerraJ. Sharifi-RadJ. ButnariuM. BagiuI.C. BagiuR.V. IslamM.T. Cytotoxicity of synthetic derivatives against breast cancer and multi-drug resistant breast cancer cell lines: A literature-based perspective study.Cancer Cell Int.202121161210.1186/s12935‑021‑02309‑9 34801046
    [Google Scholar]
  89. El-AgrodyA.M. FoudaA.M. AssiriM.A. MoraA. AliT.E. AlamM.M. AlfaifiM.Y. In vitro anticancer activity of pyrano[3, 2-c]chromene derivatives with both cell cycle arrest and apoptosis induction.Med. Chem. Res.202029461762910.1007/s00044‑019‑02494‑3
    [Google Scholar]
  90. BakareS.B. Synthesis and anticancer evaluation of some coumarin and azacoumarin derivatives.Pol. J. Chem. Technol.2021232273410.2478/pjct‑2021‑0013
    [Google Scholar]
  91. MoreirasH. PereiraF.J.C. NetoM.V. Bento-LopesL. FestasT.C. SeabraM.C. BarralD.C. The exocyst is required for melanin exocytosis from melanocytes and transfer to keratinocytes.Pigment Cell Melanoma Res.202033236637110.1111/pcmr.12840 31665827
    [Google Scholar]
  92. LiJ. FengL. LiuL. WangF. OuyangL. ZhangL. HuX. WangG. Recent advances in the design and discovery of synthetic tyrosinase inhibitors.Eur. J. Med. Chem.202122411374410.1016/j.ejmech.2021.113744
    [Google Scholar]
  93. ParvezS. KangM. ChungH.S. BaeH. Naturally occurring tyrosinase inhibitors: Mechanism and applications in skin health, cosmetics and agriculture industries.Phytother. Res.200721980581610.1002/ptr.2184 17605157
    [Google Scholar]
  94. FuD. YuanY. QinF. XuY. CuiX. LiG. YaoS. DengY. TangZ. Design, synthesis and biological evaluation of tyrosinase-targeting PROTACs.Eur. J. Med. Chem.202122611385011385010.1016/j.ejmech.2021.113850 34628235
    [Google Scholar]
  95. NunesJ.A. AraújoR.S.A. SilvaF.N. CytarskaJ. ŁączkowskiK.Z. CardosoS.H. Mendonça-JúniorF.J.B. Silva-JúniorE.F. Coumarin-based compounds as inhibitors of tyrosinase/tyrosine hydroxylase: Synthesis, kinetic studies, and in silico approaches.Int. J. Mol. Sci.20232465216521610.3390/ijms24065216 36982292
    [Google Scholar]
  96. LuL. ZhangX. KangY. XiongZ. ZhangK. XuX. BaiL. LiH. Novel coumarin derivatives as potential tyrosinase inhibitors: Synthesis, binding analysis and biological evaluation.Arab. J. Chem.202316610472410.1016/j.arabjc.2023.104724
    [Google Scholar]
  97. HeM. ZhangJ. LiN. ChenL. HeY. PengZ. WangG. Synthesis, anti-browning effect and mechanism research of kojic acid-coumarin derivatives as anti-tyrosinase inhibitors.Food Chem. X20242110112810112810.1016/j.fochx.2024.101128 38292671
    [Google Scholar]
  98. ArmghanA. LogeshwaranJ. SutharshanS.M. AliqabK. AlsharariM. PatelS.K. Design of biosensor for synchronized identification of diabetes using deep learning.Results Eng.20232010138210138210.1016/j.rineng.2023.101382
    [Google Scholar]
  99. MenteşeE. BaltaşN. BekircanO. Synthesis and kinetics studies of N′‐(2‐(3,5‐disubstituted‐4H‐1,2,4‐triazol‐4‐yl)acetyl)‐6/7/8‐substituted‐2‐oxo‐2H‐chromen‐3‐carbohydrazide derivatives as potent antidiabetic agents.Arch. Pharm. (Weinheim)201935212190022710.1002/ardp.201900227 31609028
    [Google Scholar]
  100. HuY. WangB. YangJ. LiuT. SunJ. WangX. Synthesis and biological evaluation of 3-arylcoumarin derivatives as potential anti-diabetic agents.J. Enzyme Inhib. Med. Chem.2019341153010.1080/14756366.2018.1518958 30362362
    [Google Scholar]
  101. AsgariM.S. Mohammadi-KhanaposhtaniM. KianiM. RanjbarP.R. ZabihiE. PourbagherR. RahimiR. FaramarziM.A. BiglarM. LarijaniB. MahdaviM. HamedifarH. HajimiriM.H. Biscoumarin-1,2,3-triazole hybrids as novel anti-diabetic agents: Design, synthesis, in vitro α-glucosidase inhibition, kinetic, and docking studies.Bioorg. Chem.20199210320610.1016/j.bioorg.2019.103206 31445191
    [Google Scholar]
  102. Channa BasappaV. Hamse KameshwarV. KumaraK. AchuthaD.K. Neratur KrishnappagowdaL. KariyappaA.K. Design and synthesis of coumarin-triazole hybrids: Biocompatible anti-diabetic agents, in silico molecular docking and ADME screening.Heliyon2020610e0529010.1016/j.heliyon.2020.e05290 33102875
    [Google Scholar]
  103. XuX.T. DengX.Y. ChenJ. LiangQ.M. ZhangK. LiD.L. WuP.P. ZhengX. ZhouR.P. JiangZ.Y. MaA.J. ChenW.H. WangS.H. Synthesis and biological evaluation of coumarin derivatives as α-glucosidase inhibitors.Eur. J. Med. Chem.202018911201311201310.1016/j.ejmech.2019.112013 31972390
    [Google Scholar]
  104. KonidalaS.K. KotraV. DandugaR.C.S.R. KolaP.K. Coumarin-chalcone hybrids targeting insulin receptor: Design, synthesis, anti-diabetic activity, and molecular docking.Bioorg. Chem.202010410420710.1016/j.bioorg.2020.104207 32947135
    [Google Scholar]
  105. FranciscoC.S. JavariniC.L. de S Barcelos, I.; Morais, P.A.B.; de Paula, H.; de S Borges, W.; Neto, Á.C.; Lacerda, V. Synthesis of coumarin derivatives as versatile scaffolds for GSK-3β enzyme inhibition.Curr. Top. Med. Chem.202020215316010.2174/1568026619666191019105349 31648640
    [Google Scholar]
  106. WangT. PengT. WenX. WangG. LiuS. SunY. ZhangS. WangL. Design, Synthesis and evaluation of 3-substituted coumarin derivatives as anti-inflammatory agents.Chem. Pharm. Bull. (Tokyo)202068544344610.1248/cpb.c19‑01085 32173668
    [Google Scholar]
  107. KrishnaR.J. PandagaleA. RonadP.M. HonnalliS.S. DasB.K. GadadP.C. Synthesis and pharmacological evaluation of schiff bases of 7-amino-4-methyl coumarins as novel anti-inflammatory agents.Asian J. Pharm. Pharmacol.20195469370010.31024/ajpp.2019.5.4.7
    [Google Scholar]
  108. ShanL.P. ZhouY. YanM.C. LiuL. ChenJ. ChenJ.P. A novel antiviral coumarin derivative as a potential agent against WSSV infection in shrimp seedling culture.Virus Res.202129719838710.1016/j.virusres.2021.198387 33716181
    [Google Scholar]
  109. LiW.B. QiaoX.P. WangZ.X. WangS. ChenS.W. Synthesis and antioxidant activity of conjugates of hydroxytyrosol and coumarin.Bioorg. Chem.202010510442710.1016/j.bioorg.2020.104427 33161248
    [Google Scholar]
  110. LiuH. XiaD.G. ChuZ.W. HuR. ChengX. LvX.H. Novel coumarin-thiazolyl ester derivatives as potential DNA gyrase Inhibitors: Design, synthesis, and antibacterial activity.Bioorg. Chem.202010010390710390710.1016/j.bioorg.2020.103907 32413631
    [Google Scholar]
  111. HuY. HuC. PanG. YuC. AnsariM.F. Yadav BheemanaboinaR.R. ChengY. ZhouC. ZhangJ. Novel chalcone-conjugated, multi-flexible end-group coumarin thiazole hybrids as potential antibacterial repressors against methicillin-resistant Staphylococcus aureus.Eur. J. Med. Chem.202122211362811362810.1016/j.ejmech.2021.113628 34139627
    [Google Scholar]
  112. ReddyD.S. KongotM. KumarA. Coumarin hybrid derivatives as promising leads to treat tuberculosis: Recent developments and critical aspects of structural design to exhibit anti-tubercular activity.Tuberculosis (Edinb.)202112710205010.1016/j.tube.2020.102050 33540334
    [Google Scholar]
  113. MangasuliS.N. HosamaniK.M. DevarajegowdaH.C. KurjogiM.M. JoshiS.D. Synthesis of coumarin-theophylline hybrids as a new class of anti-tubercular and anti-microbial agents.Eur. J. Med. Chem.201814674775610.1016/j.ejmech.2018.01.025 29407993
    [Google Scholar]
  114. PiresC.T.A. ScodroR.B.L. CortezD.A.G. BrenzanM.A. SiqueiraV.L.D. Caleffi-FerracioliK.R. VieiraL.C.C. MonteiroJ.L. CorrêaA.G. CardosoR.F. Structure-activity relationship of natural and synthetic coumarin derivatives against Mycobacterium tuberculosis.Future Med. Chem.202012171533154610.4155/fmc‑2018‑0281 32820960
    [Google Scholar]
  115. BangN.C. AbyshevA.Z. IvkinD.Y. Synthesis and in vivo evaluation of new coumarin conjugates as potential indirect-action anticoagulants.Pharm. Chem. J.201953541942210.1007/s11094‑019‑02013‑z
    [Google Scholar]
  116. MustafaY. MohammedE. KhalilR. Synthesis, characterization, and anticoagulant activity of new functionalized biscoumarins.Egypt. J. Chem.202164184461446810.21608/ejchem.2021.73699.3641
    [Google Scholar]
  117. Flores-MoralesV. Villasana-RuízA.P. Garza-VelozI. González-DelgadoS. Martinez-FierroM.L. Therapeutic effects of coumarins with different substitution patterns.Molecules20232852413241310.3390/molecules28052413 36903660
    [Google Scholar]
  118. Rodríguez-EnríquezF. Costas-LagoM.C. BesadaP. Alonso-PenaM. Torres-TeránI. ViñaD. FontenlaJ.Á. SturleseM. MoroS. QuezadaE. TeránC. Novel coumarin-pyridazine hybrids as selective MAO-B inhibitors for the Parkinson’s disease therapy.Bioorg. Chem.202010410420310.1016/j.bioorg.2020.104203 32932120
    [Google Scholar]
  119. NabeelZ. JaberQ.A.H. Abdul-RidaN.A. Novel benzo[f]coumarin derivatives as probable acetylcholinesterase inhibitors: Synthesis, in vitro, and in silico studies for evaluation of their anti-AChE activity.Indonesian J. Chem.20212213510.22146/ijc.65663
    [Google Scholar]
  120. DinodiaM. Recent advances in N-Heterocycles for COVID-19 treatment A mini review. Med. Chem.,202319871772910.2174/1573406419666230228115410 36852805
    [Google Scholar]
  121. ChidambaramS. El-SheikhM.A. AlfarhanA.H. RadhakrishnanS. AkbarI. Synthesis of novel coumarin analogues: Investigation of molecular docking interaction of SARS-CoV-2 proteins with natural and synthetic coumarin analogues and their pharmacokinetics studies.Saudi J. Biol. Sci.20212811100110810.1016/j.sjbs.2020.11.038 33199969
    [Google Scholar]
  122. ÖzdemirM. KöksoyB. CeyhanD. SayınK. ErçağE. BulutM. YalçınB. Design and in silico study of the novel coumarin derivatives against SARS-CoV-2 main enzymes.J. Biomol. Struct. Dyn.202240114905492010.1080/07391102.2020.1863263 33357038
    [Google Scholar]
  123. MiaoY. YangJ. YunY. SunJ. WangX. Synthesis and anti-rheumatoid arthritis activities of 3-(4-aminophenyl)-coumarin derivatives.J. Enzyme Inhib. Med. Chem.202136145046110.1080/14756366.2021.1873978 33557646
    [Google Scholar]
  124. XuZ. ChenQ. ZhangY. LiangC. Coumarin-based derivatives with potential anti-HIV activity.Fitoterapia202115010486310.1016/j.fitote.2021.104863 33582266
    [Google Scholar]
  125. SafakishM. HajimahdiZ. AghasadeghiM.R. VahabpourR. ZarghiA. Design, synthesis, molecular modeling and anti-HIV assay of novel quinazolinone incorporated coumarin derivatives.Curr. HIV Res.20191780910.2174/1570162X17666191210105809 31820700
    [Google Scholar]
  126. EspositoF. AmbrosioF.A. MaledduR. CostaG. RoccaR. MaccioniE. CatalanoR. RomeoI. EleftheriouP. KariaD.C. TsiridesP. GodvaniN. PandyaH. CoronaA. AlcaroS. ArteseA. GeronikakiA. TramontanoE. Chromenone derivatives as a versatile scaffold with dual mode of inhibition of HIV-1 reverse transcriptase-associated Ribonuclease H function and integrase activity.Eur. J. Med. Chem.201918211161711161710.1016/j.ejmech.2019.111617 31442684
    [Google Scholar]
  127. ZhuM. MaL. WenJ. DongB. WangY. WangZ. ZhouJ. ZhangG. WangJ. GuoY. LiangC. CenS. WangY. Rational design and structure-activity relationship of coumarin derivatives effective on HIV-1 protease and partially on HIV-1 reverse transcriptase.Eur. J. Med. Chem.202018611190010.1016/j.ejmech.2019.111900 31771827
    [Google Scholar]
  128. WangX. ZhouH. WangX. LeiK. WangS. Design, synthesis, and in vivo and in silico evaluation of coumarin derivatives with potential antidepressant effects.Molecules20212618555610.3390/molecules26185556 34577028
    [Google Scholar]
  129. AgamennoneM. FantacuzziM. CarradoriS. PetzerA. PetzerJ.P. AngeliA. SupuranC.T. LuisiG. Coumarin-based dual inhibitors of human carbonic anhydrases and monoamine oxidases featuring amino acyl and (Pseudo)-dipeptidyl appendages: In vitro and computational studies.Molecules20222722788410.3390/molecules27227884 36431985
    [Google Scholar]
  130. OnyılmazM. KocaM. BonardiA. DegirmenciM. SupuranC.T. Isocoumarins: A new class of selective carbonic anhydrase IX and XII inhibitors.J. Enzyme Inhib. Med. Chem.202237174374810.1080/14756366.2022.2041630 35188025
    [Google Scholar]
  131. AbdelrahmanM.A. IbrahimH.S. NocentiniA. EldehnaW.M. BonardiA. Abdel-AzizH.A. GratteriP. Abou-SeriS.M. SupuranC.T. Novel 3-substituted coumarins as selective human carbonic anhydrase IX and XII inhibitors: Synthesis, biological and molecular dynamics analysis.Eur. J. Med. Chem.202120911289710.1016/j.ejmech.2020.112897 33038795
    [Google Scholar]
  132. Mahammad GhouseS. BahatamK. AngeliA. PawarG. ChinchilliK.K. YaddanapudiV.M. MohammedA. SupuranC.T. NanduriS. Synthesis and biological evaluation of new 3-substituted coumarin derivatives as selective inhibitors of human carbonic anhydrase IX and XII.J. Enzyme Inhib. Med. Chem.2023381218576010.1080/14756366.2023.2185760
    [Google Scholar]
/content/journals/coc/10.2174/0113852728340045240930075523
Loading
/content/journals/coc/10.2174/0113852728340045240930075523
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test