Skip to content
2000
Volume 29, Issue 10
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

This review article explores the direct oxidation of primary alcohols into carboxylic acids, highlighting its importance in organic synthesis for producing valuable chemicals in a sustainable and efficient manner. Carboxylic acids are widely employed in a wide range of applications, encompassing food preservatives, insecticides, dye intermediates, coatings, plasticizers, spices, flavors, scents, and a variety of industries such as polymers, solvents, and medications. This review article covers recent advancements in catalytic systems, including catalysts based on transition metals, organocatalysts, nanocatalysts, and electrochemical methods. It examines the impact of reaction conditions such as solvents, temperature, and substrate scope on these processes. The review also delves into mechanistic insights and recent developments in tandem and cascade reactions, aiming to provide a comprehensive understanding of current strategies and future research directions in this field.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728336586240910065821
2024-10-25
2025-05-20
Loading full text...

Full text loading...

References

  1. MallatT. BaikerA. Oxidation of alcohols with molecular oxygen on solid catalysts.Chem. Rev.200410463037305810.1021/cr020011615186187
    [Google Scholar]
  2. (a HudlickM. Oxidations in organic chemistry.ACS MonographWashington, DCAmerican Chemical Society1990
    [Google Scholar]
  3. (b TojoG. FernándezM. Oxidation of Primary Alcohols to Carboxylic Acids: A Guide to Current Common Practice.SpringerNew York20101st ed10.1007/0‑387‑35432‑8
    [Google Scholar]
  4. (a SheldonR.A. Fundamentals of green chemistry: Efficiency in reaction design.Chem. Soc. Rev.20124141437145110.1039/C1CS15219J22033698
    [Google Scholar]
  5. (b SimonM.O. LiC.J. Green chemistry oriented organic synthesis in water.Chem. Soc. Rev.20124141415142710.1039/C1CS15222J22048162
    [Google Scholar]
  6. (c MoriK. HaraT. MizugakiT. EbitaniK. KanedaK. Hydroxyapatite-supported palladium nanoclusters: A highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen.J. Am. Chem. Soc.200412634106571066610.1021/ja048868315327324
    [Google Scholar]
  7. UrgoitiaG. MaiztegiA. SanMartinR. HerreroM.T. DomínguezE. Aerobic oxidation at benzylic positions catalyzed by a simple Pd(OAc) 2 /bis-triazole system.RSC Advances2015512510321010321710.1039/C5RA22251F
    [Google Scholar]
  8. (aPulidin, A. Benzoic acid market size, share and industry analysis report, regional outlook, growth potential, competitive market share & forecast, Report ID: GMI340, 2024-2032.Available from: https://www.gminsights.com/industry-analysis/benzoicacid-market
  9. (b Tomás, R.A.F.; Bordado, J.C.M.; Gomes, J.F.P.; Sheehan, R.J. Terephthalic acid, dimethyl terephthalate, and isophthalic acid. Ullmann's encyclopedia of industrial chemistry, 2000, Weinheim: Wiley-VCH. ISBN 978-3527306732.Link: https://onlinelibrary.wiley.com/doi/abs/10.1002/14356007.a26_193.pub3?msockid=3c424e8e1c1b66db1b195b8a1da967fa 10.1002/14356007.a26_193
  10. (cPurified Terephthalic Acid (PTA) market outlook from 2024 to 2034.2024Available from: https://www.futuremarketinsights.com/reports/purified-terephthalic-acid-pta-market
  11. (a MishraD.K. LeeH.J. KimJ. LeeH.S. ChoJ.K. SuhY.W. YiY. KimY.J. MnCo2O4 spinel supported ruthenium catalyst for air-oxidation of HMF to FDCA under aqueous phase and base-free conditions.Green Chem.20171971619162310.1039/C7GC00027H
    [Google Scholar]
  12. (b AmarasekaraA.S. NguyenL.H. OkorieN.C. JamalS.M. A two-step efficient preparation of a renewable dicarboxylic acid monomer 5, 5′-[oxybis (methylene)] bis [2-furancarboxylic acid] from d-fructose and its application in polyester synthesis.Green Chem.20171961570157510.1039/C6GC03314H
    [Google Scholar]
  13. (c LaiL. ZhangY. The production of 5-hydroxymethylfurfural from fructose in isopropyl alcohol: A green and efficient system.ChemSusChem20114121745174810.1002/cssc.20110048922021223
    [Google Scholar]
  14. (d PartenheimerW. GrushinV. V. Synthesis of 2,5-diformylfuran and furan-2,5-dicarboxylic acid by catalytic air-oxidation of 5-hydroxymethylfurfural. Unexpectedly selective aerobic oxidation of benzyl alcohol to benzaldehyde with metal=bromide catalysts.Adv. Synth. Catal.20013471102111
    [Google Scholar]
  15. (e SanbornA. Oxidation of furfural compounds.US Patent 85580182013
  16. (f van PuttenR.J. van der WaalJ.C. de JongE. RasrendraC.B. HeeresH.J. de VriesJ.G. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources.Chem. Rev.201311331499159710.1021/cr300182k23394139
    [Google Scholar]
  17. (g ZhangZ. DengK. Recent advances in the catalytic synthesis of 2, 5-furandicarboxylic acid and its derivatives.ACS Catal.20155116529654410.1021/acscatal.5b01491
    [Google Scholar]
  18. (h LiuB. ZhangZ. Catalytic conversion of biomass into chemicals and fuels over magnetic catalysts.ACS Catal.20166132633810.1021/acscatal.5b02094
    [Google Scholar]
  19. (i ChadderdonD.J. XinL. QiJ. QiuY. KrishnaP. MoreK.L. LiW. Electrocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on supported Au and Pd bimetallic nanoparticles.Green Chem.20141683778378610.1039/C4GC00401A
    [Google Scholar]
  20. (j LiuB. RenY. ZhangZ. Aerobic oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid in water under mild conditions.Green Chem.20151731610161710.1039/C4GC02019G
    [Google Scholar]
  21. (k McKennaS.M. LeimkühlerS. HerterS. TurnerN.J. CarnellA.J. Enzyme cascade reactions: Synthesis of furandicarboxylic acid (FDCA) and carboxylic acids using oxidases in tandem.Green Chem.20151763271327510.1039/C5GC00707K
    [Google Scholar]
  22. (l WanX. ZhouC. ChenJ. DengW. ZhangQ. YangY. WangY. Base-free aerobic oxidation of 5-hydroxymethyl-furfural to 2, 5-furandicarboxylic acid in water catalyzed by functionalized carbon nanotube-supported Au–Pd alloy nanoparticles.ACS Catal.2014472175218510.1021/cs5003096
    [Google Scholar]
  23. (m ZhangZ. ZhenJ. LiuB. LvK. DengK. Selective aerobic oxidation of the biomass-derived precursor 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid under mild conditions over a magnetic palladium nanocatalyst.Green Chem.20151721308131710.1039/C4GC01833H
    [Google Scholar]
  24. (n YiG. TeongS.P. ZhangY. Base-free conversion of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over a Ru/C catalyst.Green Chem.201618497998310.1039/C5GC01584G
    [Google Scholar]
  25. (o HanX. GengL. GuoY. JiaR. LiuX. ZhangY. WangY. Base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over a Pt/C–O–Mg catalyst.Green Chem.20161861597160410.1039/C5GC02114F
    [Google Scholar]
  26. (p NguyenC.V. LiaoY.T. KangT.C. ChenJ.E. YoshikawaT. NakasakaY. MasudaT. WuK.C.W. A metal-free, high nitrogen-doped nanoporous graphitic carbon catalyst for an effective aerobic HMF-to-FDCA conversion.Green Chem.201618225957596110.1039/C6GC02118B
    [Google Scholar]
  27. (q HanX. LiC. LiuX. XiaQ. WangY. Selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over MnO x –CeO 2 composite catalysts.Green Chem.2017194996100410.1039/C6GC03304K
    [Google Scholar]
  28. (r WangQ. HouW. LiS. XieJ. LiJ. ZhouY. WangJ. Hydrophilic mesoporous poly(ionic liquid)-supported Au–Pd alloy nanoparticles towards aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid under mild conditions.Green Chem.201719163820383010.1039/C7GC01116D
    [Google Scholar]
  29. (s McKennaS.M. MinesP. LawP. Kovacs-SchreinerK. BirminghamW.R. TurnerN.J. LeimkühlerS. CarnellA.J. The continuous oxidation of HMF to FDCA and the immobilisation and stabilisation of periplasmic aldehyde oxidase (PaoABC).Green Chem.201719194660466510.1039/C7GC01696D
    [Google Scholar]
  30. (t XuS. ZhouP. ZhangZ. YangC. ZhangB. DengK. BottleS. ZhuH. Selective oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid using O2 and a photocatalyst of Co-thioporphyrazine bonded to g-C3N4.J. Am. Chem. Soc.201713941147751478210.1021/jacs.7b0886128956917
    [Google Scholar]
  31. (u YiG. TeongS.P. ZhangY. The direct conversion of sugars into 2,5-furandicarboxylic acid in a triphasic system.ChemSusChem2015871151115510.1002/cssc.20150011825766123
    [Google Scholar]
  32. (v ZuoX. VenkitasubramanianP. BuschD.H. SubramaniamB. Optimization of Co/Mn/Br-catalyzed oxidation of 5-hydroxymethylfurfural to enhance 2, 5-furandicarboxylic acid yield and minimize substrate burning.ACS Sustain. Chem. Eng.2016473659366810.1021/acssuschemeng.6b00174
    [Google Scholar]
  33. (w GaoZ. XieR. FanG. YangL. LiF. Highly efficient and stable bimetallic Au Pd over La-doped Ca–Mg–Al layered double hydroxide for base-free aerobic oxidation of 5-hydroxymethylfurfural in water.ACS Sustain. Chem. Eng.2017575852586110.1021/acssuschemeng.7b00573
    [Google Scholar]
  34. (x MeiN. LiuB. ZhengJ. LvK. TangD. ZhangZ. A novel magnetic palladium catalyst for the mild aerobic oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid in water.Catal. Sci. Technol.2015563194320210.1039/C4CY01407C
    [Google Scholar]
  35. (y WangS. ZhangZ. LiuB. Catalytic conversion of fructose and 5-hydroxymethylfurfural into 2, 5-furandicarboxylic acid over a recyclable Fe3O4–CoO X magnetite nanocatalyst.ACS Sustain. Chem. Eng.20153340641210.1021/sc500702q
    [Google Scholar]
  36. KalgutkarA.S. DanielsJ.S. Chapter 3: Carboxylic acids and their bioisosteres.Metabolism, Pharmacokinetics and Toxicity of Functional Groups: Impact of Chemical Building Blocks on ADMETRoyal Society of Chemistry20109916710.1039/9781849731102‑00099
    [Google Scholar]
  37. CiufoliniM.A. SwaminathanS. Synthesis of a model depsipeptide segment of Luzopeptins (BBM 928), potent antitumor and antiretroviral antibiotics.Tetrahedron Lett.198930233027302810.1016/S0040‑4039(00)99393‑6
    [Google Scholar]
  38. CrimminsM.T. DeBaillieA.C. Enantioselective total synthesis of bistramide A.J. Am. Chem. Soc.2006128154936493710.1021/ja057686l16608311
    [Google Scholar]
  39. SalunkeG.B. ShivakumarI. GurjarM.K. Total synthesis of verbalactone: An efficient, carbohydrate-based approach.Tetrahedron Lett.200950182048204910.1016/j.tetlet.2009.02.062
    [Google Scholar]
  40. FuwaH. (−)-Lyngbyaloside B, a marine macrolide glycoside. StrategiesTactics Org. Synth.,20161214316810.1016/B978‑0‑08‑100756‑3.00005‑4
    [Google Scholar]
  41. SongZ.J. ZhaoM. DesmondR. DevineP. TschaenD.M. TillyerR. FreyL. HeidR. XuF. FosterB. LiJ. ReamerR. VolanteR. DollingU.H. ReiderP.J. OkadaS. KatoY. ManoE. Practical asymmetric synthesis of an endothelin receptor antagonist.J. Org. Chem.199964269658966710.1021/jo991292t
    [Google Scholar]
  42. VeliogluY.S. Food acids: Organic acids, volatile organic acids, and phenolic acids.Advances in Food Biochemistry.CRC Press200931310.1201/9781420007695‑c10
    [Google Scholar]
  43. RiemenschneiderW. Carboxylic acids, aliphatic.Ullmann's Encyclopedia of Industrial ChemistryWiley-VCH2000118
    [Google Scholar]
  44. MarchJ. March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure.WileyNew York20004th ed11831184
    [Google Scholar]
  45. BeyerH. WalterW. Organic Chemistry Textbook24th edStuttgartHirzel2004
    [Google Scholar]
  46. OgliarusoM.A. WolfeJ.F. Synthesis of carboxylic acids, esters and their derivatives.PATAI'S Chemistry of Functional GroupsWeinheimWiley-VCH199110.1002/9780470772423
    [Google Scholar]
  47. TaylorR.J. KatritzkyA.R. Comprehensive organic functional group transformations II.Elsevier2005
    [Google Scholar]
  48. BowdenK. HeilbronI.M. JonesE.R.H. WeedonB.C.L. 13. Researches on acetylenic compounds. Part I. The preparation of acetylenic ketones by oxidation of acetylenic carbinols and glycols.J. Chem. Soc.1946394510.1039/jr9460000039
    [Google Scholar]
  49. ZhaoM. LiJ. SongZ. DesmondR. TschaenD.M. GrabowskiE.J.J. ReiderP.J. A novel chromium trioxide catalyzed oxidation of primary alcohols to the carboxylic acids.Tetrahedron Lett.199839305323532610.1016/S0040‑4039(98)00987‑3
    [Google Scholar]
  50. DegeringE.F. BoatrightL.G. Studies on the synthesis of lysine.J. Am. Chem. Soc.195072115137513910.1021/ja01167a091
    [Google Scholar]
  51. CoreyE.J. SchmidtG. Useful procedures for the oxidation of alcohols involving pyridinium dichromate in aprotic media.Tetrahedron Lett.197920539940210.1016/S0040‑4039(01)93515‑4
    [Google Scholar]
  52. CrombieL. HarperS.H. 515. Synthesis and configuration of (+)-6-methyloctanoic acid, a degradation product of the polymyxins.J. Chem. Soc.19502685268910.1039/jr9500002685
    [Google Scholar]
  53. TojoG. FernandezM. Oxidation of Primary Alcohols to Carboxylic Acids: A Guide to Current Common Practice.New YorkSpringer200713210.1007/0‑387‑35432‑8
    [Google Scholar]
  54. FatiadiA.J. The classical permanganate ion: Still a novel oxidant in organic chemistry.Synthesis1987198728512710.1055/s‑1987‑27859
    [Google Scholar]
  55. ZhuX. ZhangW. LinQ. YeM. XueL. LiuJ. WangY. ChengH. Direct microdroplet synthesis of carboxylic acids from alcohols by preparative paper spray ionization without phase transfer catalysts.ACS Sustain. Chem. Eng.2019776486649110.1021/acssuschemeng.9b00427
    [Google Scholar]
  56. SahaA. PayraS. BanerjeeS. Synthesis of smart bimetallic nano-Cu/Ag@SiO 2 for clean oxidation of alcohols.New J. Chem.20174122133771338110.1039/C7NJ02062G
    [Google Scholar]
  57. NiJ. YuW.J. HeL. SunH. CaoY. HeH.Y. FanK.N. A green and efficient oxidation of alcohols by supported gold catalysts using aqueous H2O2 under organic solvent-free conditions.Green Chem.200911675675910.1039/b820197h
    [Google Scholar]
  58. YuH. RuS. ZhaiY. DaiG. HanS. WeiY. An efficient aerobic oxidation protocol of aldehydes to carboxylic acids in water catalyzed by an inorganic‐ligand‐supported copper catalyst.ChemCatChem20181061253125710.1002/cctc.201701599
    [Google Scholar]
  59. SheidonR.A. KkochiJ.K. Metal-catalysed oxidation of organic compoundsAcademic PressNew York1981
    [Google Scholar]
  60. GriffithW.P. LeyS.V. WhitcombeG.P. WhiteA.D. Preparation and use of tetra-n-butylammonium per-ruthenate (TBAP reagent) and tetra-n-propylammonium per-ruthenate (TPAP reagent) as new catalytic oxidants for alcohols.J. Chem. Soc. Chem. Commun.198721211625162710.1039/c39870001625
    [Google Scholar]
  61. (a MakarovI.S. MadsenR. Ruthenium-catalyzed self-coupling of primary and secondary alcohols with the liberation of dihydrogen.J. Org. Chem.201378136593659810.1021/jo400869923725014
    [Google Scholar]
  62. (b MakarovI.S. FristrupP. MadsenR. Mechanistic investigation of the ruthenium-N-heterocyclic-carbene-catalyzed amidation of amines with alcohols.Chemistry20121849156831569210.1002/chem.20120240023070855
    [Google Scholar]
  63. (c MaggiA. MadsenR. Dehydrogenative synthesis of imines from alcohols and amines catalyzed by a ruthenium N-heterocyclic carbene complex.Organometallics2011311451455
    [Google Scholar]
  64. RobertsD.A. SteinmetzG.R. BreenM.J. ShulmanP.M. MorrisonE.D. DutteraM.R. DeBrosseC.W. WhittleR.R. GeoffroyG.L. Heterobimetallic phosphido-bridged complexes containing coordinatively unsaturated rhodium(I) and iridium(I) centers. Structural characterization of FeIr(.mu.-PPh2)(CO)5(PPh3)2.Organometallics19832784685510.1021/om50001a012
    [Google Scholar]
  65. CuiX. HuangZ. van MuydenA.P. FeiZ. WangT. DysonP.J. Acceptorless dehydrogenation and hydrogenation of N- and O-containing compounds on Pd3Au1 (111) facets.Sci. Adv.2020627eabb383110.1126/sciadv.abb383132937440
    [Google Scholar]
  66. (a LiuH. ChuahG.K. JaenickeS. N-alkylation of amines with alcohols over alumina-entrapped Ag catalysts using the “borrowing hydrogen” methodology.J. Catal.201229213013710.1016/j.jcat.2012.05.007
    [Google Scholar]
  67. (b Hosseini-SarvariM. Ataee-KachoueiT. MoeiniF. A novel and active catalyst Ag/ZnO for oxidant-free dehydrogenation of alcohols.Mater. Res. Bull.2015729810510.1016/j.materresbull.2015.07.019
    [Google Scholar]
  68. (c MitsudomeT. MikamiY. FunaiH. MizugakiT. JitsukawaK. KanedaK. Oxidant-free alcohol dehydrogenation using a reusable hydrotalcite-supported silver nanoparticle catalyst.Angew. Chem. Int. Ed.200847113814110.1002/anie.20070316118038437
    [Google Scholar]
  69. (d ShimizuK. OhshimaK. SatsumaA. Direct dehydrogenative amide synthesis from alcohols and amines catalyzed by γ-alumina supported silver cluster.Chemistry200915399977998010.1002/chem.20090189619760737
    [Google Scholar]
  70. (e ShimizuK. SatoR. SatsumaA. Direct C-C cross-coupling of secondary and primary alcohols catalyzed by a γ-alumina-supported silver subnanocluster.Angew. Chem. Int. Ed.200948223982398610.1002/anie.20090105719396891
    [Google Scholar]
  71. (f ShimizuK. SuginoK. SawabeK. SatsumaA. Oxidant-free dehydrogenation of alcohols heterogeneously catalyzed by cooperation of silver clusters and acid-base sites on alumina.Chemistry200915102341235110.1002/chem.20080222219160439
    [Google Scholar]
  72. WhitesidesG.M. HackettM. BrainardR.L. LavalleyeJ.P.P.M. SowinskiA.F. IzumiA.N. MooreS.S. BrownD.W. StaudtE.M. Suppression of unwanted heterogeneous platinum(0)-catalyzed reactions by poisoning with mercury(0) in systems involving competing homogeneous reactions of soluble organoplatinum compounds: thermal decomposition of bis(triethylphosphine)-3,3,4,4-tetramethylplatinacyclopentane.Organometallics19854101819183010.1021/om00129a023
    [Google Scholar]
  73. (a BolmC. BellerM. Transition Metals for Organic Synthesis: Building Blocks and Fine ChemicalsWiley-VCHWeinheim1998
    [Google Scholar]
  74. (b DaviesS.G. Organotransition Metal Chemistry: Application to Organic Synthesis.OxfordPergamon Press1982
    [Google Scholar]
  75. HiranoJ. MiyamotoK. OhtaH. The green and effective oxidation of alcohols to carboxylic acids with molecular oxygen via biocatalytic reaction.Tetrahedron Lett.20084971217121910.1016/j.tetlet.2007.12.032
    [Google Scholar]
  76. GunanathanC. MilsteinD. Applications of acceptorless dehydrogenation and related transformations in chemical synthesis.Science20133416143122971210.1126/science.122971223869021
    [Google Scholar]
  77. GandolfiR. BorrometiA. RomanoA. Sinisterra GagoJ.V. MolinariF. Enantioselective oxidation of (±)-2-phenyl-1-propanol to (S)-2-phenyl-1-propionic acid with Acetobacter aceti: Influence of medium engineering and immobilization.Tetrahedron Asymmetry200213212345234910.1016/S0957‑4166(02)00641‑9
    [Google Scholar]
  78. VillaR. RomanoA. GandolfiR. Sinisterra GagoJ.V. MolinariF. Chemoselective oxidation of primary alcohols to aldehydes with Gluconobacter oxydans.Tetrahedron Lett.200243346059606110.1016/S0040‑4039(02)01221‑2
    [Google Scholar]
  79. BrinkG-J. ArendsI.W.C.E. SheldonR.A. ten Brink GJ Green, catalytic oxidation of alcohols in water.Science200028754581636163910.1126/science.287.5458.163610698735
    [Google Scholar]
  80. NakagawaK. KonakaR. NakataT. Oxidation with nickel peroxide. I.Oxid. Alcohols196227515971601
    [Google Scholar]
  81. MiyazakiS. SuharaY. Preparation of carboxylic acids from hydroxy compounds by oxidation with ozone.J. Am. Oil Chem. Soc.197855653653810.1007/BF02668065
    [Google Scholar]
  82. FiegeH. WedemeyerK. Activation of oxidations with oxygen on platinum metals using the example of the conversion of 2‐phenoxyethanols to phenoxyacetic acids.Angew. Chem. Int. Ed. Engl.198120978378410.1002/anie.198107831
    [Google Scholar]
  83. Lucio AnelliP. BiffiC. MontanariF. QuiciS. Fast and selective oxidation of primary alcohols to aldehydes or to carboxylic acids and of secondary alcohols to ketones mediated by oxoammonium salts under two-phase conditions.J. Org. Chem.198752122559256210.1021/jo00388a038
    [Google Scholar]
  84. VeeraiahT. PeriasamyM. A simple convenient method for the conversion of primary alcohols into carboxylic acids using Nabro3-HBr/CCl4/T-BuOH system.Synth. Commun.19891911-1221512157
    [Google Scholar]
  85. SatoK. TakagiJ. AokiM. NoyoriR. Hydrogen peroxide oxidation of benzylic alcohols to benzaldehydes and benzoic acids under halide-free conditions.Tetrahedron Lett.199839417549755210.1016/S0040‑4039(98)01642‑6
    [Google Scholar]
  86. PrashadM. LuY. KimH.Y. HuB. RepicO. BlacklockT.J. An improved and practical sharpless oxidation of primary alcohols to the carboxylic acids.Synth. Commun.199929172937294210.1080/00397919908086465
    [Google Scholar]
  87. ZhaoM. LiJ. ManoE. SongZ. TschaenD.M. GrabowskiE.J.J. ReiderP.J. Oxidation of primary alcohols to carboxylic acids with sodium chlorite catalyzed by tempo and bleach.J. Org. Chem.19996472564256610.1021/jo982143y
    [Google Scholar]
  88. PérezH.I. LunaH. ManjarrezN. SolísA. NuñezM.A. Preparation of (1S)-verbenone, aromatic and alicyclic carboxylic acids by oxidation of aldehydes, primary and secondary alcohols with Nocardia corallina.Biotechnol. Lett.1999211085585810.1023/A:1005513924016
    [Google Scholar]
  89. Shul’pinG.B. Süss-FinkG. Shul’pinaL.S. Oxidations by the system “hydrogen peroxide–manganese(IV) complex–carboxylic acid”.J. Mol. Catal. Chem.20011701-2173410.1016/S1381‑1169(01)00052‑8
    [Google Scholar]
  90. GandolfiR. FerraraN. MolinariF. An easy and efficient method for the production of carboxylic acids and aldehydes by microbial oxidation of primary alcohols.Tetrahedron Lett.200142351351410.1016/S0040‑4039(00)02008‑6
    [Google Scholar]
  91. YasudaK. LeyS.V. The simultaneous use of immobilised reagents for the one-pot conversion of alcohols to carboxylic acids.J. Chem. Soc., Perkin Trans. 12002181024102510.1039/b201776h
    [Google Scholar]
  92. JiH. MizugakiT. EbitaniK. KanedaK. Highly efficient oxidation of alcohols to carbonyl compounds in the presence of molecular oxygen using a novel heterogeneous ruthenium catalyst.Tetrahedron Lett.200243407179718310.1016/S0040‑4039(02)01678‑7
    [Google Scholar]
  93. MazitschekR. MülbaierM. GiannisA. IBX-mediated oxidation of primary alcohols and aldehydes to form carboxylic acids.Angew. Chem. Int. Ed.200241214059406112412081
    [Google Scholar]
  94. De LucaL. GiacomelliG. MasalaS. PorchedduA. Trichloroisocyanuric/TEMPO oxidation of alcohols under mild conditions: A close investigation.J. Org. Chem.200368124999500110.1021/jo034276b12790622
    [Google Scholar]
  95. AndersonR. GriffinK. JohnstonP. AlstersP.L. Selective oxidation of alcohols to carbonyl compounds and carboxylic acids with platinum group metal catalysts.Adv. Synth. Catal.2003345451752310.1002/adsc.200390060
    [Google Scholar]
  96. TogoH. TashinoY. TEMPO-mediated environmentally benign oxidation of primary alcohols to carboxylic acids with poly[4-(diacetoxyiodo)styrene].Synlett20042004112010201210.1055/s‑2004‑830881
    [Google Scholar]
  97. HunsenM. Carboxylic acids from primary alcohols and aldehydes by a pyridinium chlorochromate catalyzed oxidation.Synthesis20052005152487249010.1055/s‑2005‑872085
    [Google Scholar]
  98. ThottumkaraA.P. BowsherM.S. VinodT.K. In situ generation of o-iodoxybenzoic acid (IBX) and the catalytic use of it in oxidation reactions in the presence of Oxone as a co-oxidant.Org. Lett.20057142933293610.1021/ol050875o15987173
    [Google Scholar]
  99. GrillJ.M. OgleJ.W. MillerS.A. An efficient and practical system for the catalytic oxidation of alcohols, aldehydes, and α,β-unsaturated carboxylic acids.J. Org. Chem.200671259291929610.1021/jo061257417137354
    [Google Scholar]
  100. WilesC. WattsP. HaswellS.J. Clean and selective oxidation of aromatic alcohols using silica-supported Jones’ reagent in a pressure-driven flow reactor.Tetrahedron Lett.200647305261526410.1016/j.tetlet.2006.05.157
    [Google Scholar]
  101. HuangL. TeumelsanN. HuangX. A facile method for oxidation of primary alcohols to carboxylic acids and its application in glycosaminoglycan syntheses.Chemistry200612205246525210.1002/chem.20060029016637084
    [Google Scholar]
  102. DonzeC. KorovchenkoP. GallezotP. BessonM. Aerobic selective oxidation of (hetero)aromatic primary alcohols to aldehydes or carboxylic acids over carbon supported platinum.Appl. Catal. B2007701-462162910.1016/j.apcatb.2006.01.029
    [Google Scholar]
  103. MannamS. SekarG. CuCl catalyzed selective oxidation of primary alcohols to carboxylic acids with tert-butyl hydroperoxide at room temperature.Tetrahedron Lett.200849152457246010.1016/j.tetlet.2008.02.031
    [Google Scholar]
  104. UyanikM. AkakuraM. IshiharaK. 2-Iodoxybenzenesulfonic acid as an extremely active catalyst for the selective oxidation of alcohols to aldehydes, ketones, carboxylic acids, and enones with oxone.J. Am. Chem. Soc.2009131125126210.1021/ja807110n19053813
    [Google Scholar]
  105. ShibuyaM. SatoT TomizawaM. IwabuchiY. Oxoammonium salt/NaClO2: An expedient, catalytic system for one-pot oxidation of primary alcohols to carboxylic acids with broad substrate applicability.Chem. Commun.20091317391741
    [Google Scholar]
  106. MeiZ-W. MaL-J. KawafuchiH. OkiharaT. InokuchiT. TEMPO-mediated oxidation of primary alcohols to carboxylic acids by exploitation of ethers in an aqueous–organic biphase system.Bull. Chem. Soc. Jpn.20098281000100210.1246/bcsj.82.1000
    [Google Scholar]
  107. MannamS. SekarG. Efficient CuCl-catalyzed selective and direct oxidation of β - and γ -substituted aliphatic primary alcohols to carboxylic acids.Synth. Commun.201040192822282910.1080/00397910903318690
    [Google Scholar]
  108. Al-HunaitiA. NiemiT. SibaouihA. PihkoP. LeskeläM. RepoT. Solvent free oxidation of primary alcohols and diols using thymine iron(iii) catalyst.Chem. Commun. (Camb.)201046489250925210.1039/c0cc04043f21042629
    [Google Scholar]
  109. ChoudharyV.R. DumbreD.K. Solvent-free selective oxidation of primary alcohols-to-aldehydes and aldehydes-to-carboxylic acids by molecular oxygen over MgO-supported nano-gold catalyst.Catal. Commun.2011131828610.1016/j.catcom.2011.07.001
    [Google Scholar]
  110. YakuraT. OzonoA. Novel 2,2,6,6‐tetramethylpiperidine 1‐oxyl–iodobenzene hybrid catalyst for oxidation of primary alcohols to carboxylic acids.Adv. Synth. Catal.2011353685585910.1002/adsc.201100024
    [Google Scholar]
  111. SchmidtA.K.C. StarkC.B.W. TPAP-catalyzed direct oxidation of primary alcohols to carboxylic acids through stabilized aldehyde hydrates.Org. Lett.201113164164416710.1021/ol201433521793539
    [Google Scholar]
  112. QiuJ.C. PradhanP.P. BlanckN.B. BobbittJ.M. BaileyW.F. Selective oxoammonium salt oxidations of alcohols to aldehydes and aldehydes to carboxylic acids.Org. Lett.201214135035310.1021/ol203096f22149048
    [Google Scholar]
  113. BekishA.V. Carbon–carbon bond fission on oxidation of primary alcohols to carboxylic acids.Tetrahedron Lett.201253243082308510.1016/j.tetlet.2012.04.035
    [Google Scholar]
  114. IgnatowskaJ. ShyshkovO. ZippliesT. HintzerK. RöschenthalerG-V. TEMPO mediated oxidation of fluorinated alcohols to carboxylic acids.J. Fluor. Chem.2012141354010.1016/j.jfluchem.2012.06.002
    [Google Scholar]
  115. BaratiB. MoghadamM. RahmatiA. TangestaninejadS. MirkhaniV. Mohammadpoor-BaltorkI. Ruthenium hydride catalyzed direct oxidation of alcohols to carboxylic acids via transfer hydrogenation: Styrene oxide as oxygen source.Synlett20132419096
    [Google Scholar]
  116. BalaramanE. KhaskinE. LeitusG. MilsteinD. Catalytic transformation of alcohols to carboxylic acid salts and H2 using water as the oxygen atom source.Nat. Chem.2013512212510.1038/nchem.1536
    [Google Scholar]
  117. ZhouL. YuW. WuL. LiuZ. ChenH. YangX. SuY. XuJ. Nanocrystalline gold supported on NaY as catalyst for the direct oxidation of primary alcohol to carboxylic acid with molecular oxygen in water.Appl. Catal. A Gen.201345113714310.1016/j.apcata.2012.11.003
    [Google Scholar]
  118. WangJ. LiuC. YuanJ. LeiA. Transition-metal-free aerobic oxidation of primary alcohols to carboxylic acids.New J. Chem.20133761700170310.1039/c3nj00045a
    [Google Scholar]
  119. ChoiJ.H. HeimL.E. AhrensM. PrechtlM.H.G. Selective conversion of alcohols in water to carboxylic acids by in situ generated ruthenium trans dihydrido carbonyl PNP complexes.Dalton Trans.20144346172481725410.1039/C4DT01634C25019331
    [Google Scholar]
  120. KönningD. OlbrischT. SypaseuthF.D. TzschuckeC.C. ChristmannM. Oxidation of allylic and benzylic alcohols to aldehydes and carboxylic acids.Chem. Commun. (Camb.)201450395014501610.1039/C4CC01305K24710078
    [Google Scholar]
  121. ZhouL. ChenM. WangY. SuY. YangX. ChenC. XuJ. Au/mesoporous-TiO2 as catalyst for the oxidation of alcohols to carboxylic acids with molecular oxygen in water.Appl. Catal. A Gen.201447534735410.1016/j.apcata.2014.01.042
    [Google Scholar]
  122. GallettiP. PoriM. FunicielloF. SoldatiR. BallardiniA. GiacominiD. Laccase-mediator system for alcohol oxidation to carbonyls or carboxylic acids: Toward a sustainable synthesis of profens.ChemSusChem2014792684268910.1002/cssc.20140213625044433
    [Google Scholar]
  123. LiH. HallM.B. Mechanism of the formation of carboxylate from alcohols and water catalyzed by a bipyridine-based ruthenium complex: A computational study.J. Am. Chem. Soc.2014136138339510.1021/ja410541v24328295
    [Google Scholar]
  124. SawamaY. MoritaK. AsaiS. KozawaM. TadokoroS. NakajimaJ. MonguchiY. SajikiH. Palladium on carbon‐catalyzed aqueous transformation of primary alcohols to carboxylic acids based on dehydrogenation under mildly reduced pressure.Adv. Synth. Catal.201535761205121010.1002/adsc.201401123
    [Google Scholar]
  125. MalineniJ. KeulH. MöllerM. A green and sustainable phosphine-free NHC-ruthenium catalyst for selective oxidation of alcohols to carboxylic acids in water.Dalton Trans.20154439174091741410.1039/C5DT01358E26390134
    [Google Scholar]
  126. SantilliC. MakarovI.S. FristrupP. MadsenR. Dehydrogenative synthesis of carboxylic acids from primary alcohols and hydroxide catalyzed by a ruthenium n-heterocyclic carbene complex.J. Org. Chem.201681209931993810.1021/acs.joc.6b0210527685175
    [Google Scholar]
  127. LagerblomK. WrigstedtP. KeskiväliJ. ParviainenA. RepoT. Iron‐catalysed selective aerobic oxidation of alcohols to carbonyl and carboxylic compounds.ChemPlusChem201681111160116510.1002/cplu.20160024031964107
    [Google Scholar]
  128. DaiZ. LuoQ. MengX. LiR. ZhangJ. PengT. Ru(II) complexes bearing 2,6-bis(benzimidazole-2-yl)pyridine ligands: A new class of catalysts for efficient dehydrogenation of primary alcohols to carboxylic acids and H2 in the alcohol/CsOH system.J. Organomet. Chem.2017830111810.1016/j.jorganchem.2016.11.038
    [Google Scholar]
  129. ZhangL. NguyenD.H. RaffaG. TrivelliX. CapetF. DessetS. PaulS. DumeignilF. GauvinR.M. Catalytic conversion of alcohols into carboxylic acid salts in water: Scope, recycling, and mechanistic insights.ChemSusChem20169121413142310.1002/cssc.20160024327115079
    [Google Scholar]
  130. PradhanD.R. PattanaikS. KishoreJ. GunanathanC. Cobalt-catalyzed acceptorless dehydrogenation of alcohols to carboxylate salts and hydrogen.Org. Lett.20202251852185710.1021/acs.orglett.0c0019332045254
    [Google Scholar]
  131. ShiS. LiuM. ZhaoL. WangM. ChenC. GaoJ. XuJ. Catalytic oxidation of alcohol to carboxylic acid with hydrophobic cobalt catalyst in hydrocarbon solvent.Chem. Asian J.201712182404240910.1002/asia.20170071728627807
    [Google Scholar]
  132. DaiZ. LuoQ. JiangH. LuoQ. LiH. ZhangJ. PengT. Ni( ii )–N′NN′ pincer complexes catalyzed dehydrogenation of primary alcohols to carboxylic acids and H 2 accompanied by alcohol etherification.Catal. Sci. Technol.20177122506251110.1039/C7CY00432J
    [Google Scholar]
  133. AhmedM.S. MannelD.S. RootT.W. StahlS.S. Aerobic oxidation of diverse primary alcohols to carboxylic acids with a heterogeneous Pd–Bi–Te/c (PBT/C) catalyst.Org. Process Res. Dev.20172191388139310.1021/acs.oprd.7b00223
    [Google Scholar]
  134. SarbajnaA. DuttaI. DawP. DindaS. RahamanS.M.W. SarkarA. BeraJ.K. Catalytic conversion of alcohols to carboxylic acid salts and hydrogen with alkaline water.ACS Catal.2017742786279010.1021/acscatal.6b03259
    [Google Scholar]
  135. HazraS. DebM. EliasA.J. Iodine catalyzed oxidation of alcohols and aldehydes to carboxylic acids in water: A metal-free route to the synthesis of furandicarboxylic acid and terephthalic acid.Green Chem.201719235548555210.1039/C7GC02802D
    [Google Scholar]
  136. GhalehshahiH.G. MadsenR. Silver‐catalyzed dehydrogenative synthesis of carboxylic acids from primary alcohols.Chemistry20172349119201192610.1002/chem.20170242028714546
    [Google Scholar]
  137. CherepakhinV. WilliamsT.J. Iridium catalysts for acceptorless dehydrogenation of alcohols to carboxylic acids: Scope and mechanism.ACS Catal.2018853754376310.1021/acscatal.8b0010530288338
    [Google Scholar]
  138. RafieeM. KonzZ.M. GraafM.D. KoolmanH.F. StahlS.S. Electrochemical oxidation of alcohols and aldehydes to carboxylic acids catalyzed by 4-acetamido-TEMPO: An alternative to “Anelli” and “Pinnick” oxidations.ACS Catal.2018876738674410.1021/acscatal.8b01640
    [Google Scholar]
  139. SinghA. SinghS.K. SainiA.K. MobinS.M. MathurP. Facile oxidation of alcohols to carboxylic acids in basic water medium by employing ruthenium picolinate cluster as an efficient catalyst.Appl. Organomet. Chem.20183212e457410.1002/aoc.4574
    [Google Scholar]
  140. MondaF. MadsenR. Zinc oxide‐catalyzed dehydrogenation of primary alcohols into carboxylic acids.Chemistry20182467178321783710.1002/chem.20180440230273451
    [Google Scholar]
  141. LiuK.J. JiangS. LuL.H. TangL.L. TangS.S. TangH.S. TangZ. HeW.M. XuX. Bis(methoxypropyl) ether-promoted oxidation of aromatic alcohols into aromatic carboxylic acids and aromatic ketones with O2 under metal- and base-free conditions.Green Chem.201820133038304310.1039/C8GC00223A
    [Google Scholar]
  142. MaS. JiangX. Studies on iron-catalyzed aerobic oxidation of benzylic alcohols to carboxylic acids.Synthesis20185081629163910.1055/s‑0036‑1591761
    [Google Scholar]
  143. LiuH.M. JianL. LiC. ZhangC.C. FuH.Y. ZhengX.L. ChenH. LiR.X. Dehydrogenation of alcohols to carboxylic acid catalyzed by in situ-generated facial ruthenium- CPP complex.J. Org. Chem.201984149151916010.1021/acs.joc.9b0110031273988
    [Google Scholar]
  144. NandiJ. HutchesonE.L. LeadbeaterN.E. Combining photoredox catalysis and oxoammonium cations for the oxidation of aromatic alcohols to carboxylic acids.Tetrahedron Lett.20216315263215263610.1016/j.tetlet.2020.152632
    [Google Scholar]
  145. ZhuX. LiuC. LiuY. YangH. FuH. A sodium trifluoromethanesulfinate-mediated photocatalytic strategy for aerobic oxidation of alcohols.Chem. Commun. (Camb.)20205682124431244610.1039/D0CC05799A32940293
    [Google Scholar]
  146. GanjiN. KarimiB. Najafvand-DerikvandiS. ValiH. Palladium supported on a novel ordered mesoporous polypyrrole/carbon nanocomposite as a powerful heterogeneous catalyst for the aerobic oxidation of alcohols to carboxylic acids and ketones on water.RSC Advances20201023136161363110.1039/C9RA10941B35492988
    [Google Scholar]
  147. RafieeM. AlherechM. KarlenS.D. StahlS.S. Electrochemical aminoxyl-mediated oxidation of primary alcohols in lignin to carboxylic acids: Polymer modification and depolymerization.J. Am. Chem. Soc.201914138152661527610.1021/jacs.9b0724331483640
    [Google Scholar]
  148. GongD. HuB. ChenD. Bidentate Ru(ii)-NC complexes as catalysts for the dehydrogenative reaction from primary alcohols to carboxylic acids.Dalton Trans.201948248826883410.1039/C9DT01414D31134995
    [Google Scholar]
  149. CherepakhinV. WilliamsT.J. direct oxidation of primary alcohols to carboxylic acids.Synthesis202053610231024
    [Google Scholar]
  150. DenlingerK.L. CarrP. WaddellD.C. MackJ. MackA. A recyclable, metal-free mechanochemical approach for the oxidation of alcohols to carboxylic acids.Molecules202025236410.3390/molecules2502036431963148
    [Google Scholar]
  151. YazdaniE. HeydariA. Acceptorless dehydrogenative oxidation of primary alcohols to carboxylic acids and reduction of nitroarenes via hydrogen borrowing catalyzed by a novel nanomagnetic silver catalyst.J. Organomet. Chem.202092412145310.1016/j.jorganchem.2020.121453
    [Google Scholar]
  152. ChengA.D. ZongM.H. LuG.H. LiN. Solvent‐promoted oxidation of aromatic alcohols/aldehydes to carboxylic acids by a laccase‐tempo system: Efficient access to 2,5‐furandicarboxylic acid and 5‐methyl‐2‐pyrazinecarboxylic acid.Adv. Sustain. Syst.202156200029710.1002/adsu.202000297
    [Google Scholar]
  153. TanW.Y. LuY. ZhaoJ.F. ChenW. ZhangH. Oxidation of primary alcohols and aldehydes to carboxylic acids via hydrogen atom transfer.Org. Lett.2021231766486653
    [Google Scholar]
  154. JiaM.Z. CuiJ.W. RaoC.H. ChenY.R. YaoX.R. ZhangJ. Switchable ROS species regulation facilitates the selective oxidation of benzyl alcohols enabled by an organic photocatalyst.ACS Sustain. Chem. Eng.202210299591959910.1021/acssuschemeng.2c02771
    [Google Scholar]
  155. GrecoR. Tiburcio-FortesE. FernandezA. MariniC. Vidal-MoyaA. Oliver-MeseguerJ. ArmentanoD. PardoE. Ferrando-SoriaJ. Leyva-PérezA. MOF‐stabilized perfluorinated palladium cages catalyze the additive‐free aerobic oxidation of aliphatic alcohols to acids.Chemistry2022287e20210378110.1002/chem.20210378134929061
    [Google Scholar]
  156. JoshiH. PaulD. SathyamoorthiS. Oxidations of alcohols, aldehydes, and diols using nabr and selectfluor.J. Org. Chem.20238815112401125210.1021/acs.joc.3c0130737490704
    [Google Scholar]
  157. QiuJ. XuY. SuS. GaoY. YuP. RuanZ. LiaoK. Auto machine learning assisted preparation of carboxylic acid by TEMPO‐catalyzed primary alcohol oxidation.Chin. J. Chem.202341214315010.1002/cjoc.202200555
    [Google Scholar]
  158. WeiX.Z. Wondu DagnawF. LiuJ. MaL. Highly selective photocatalytic oxidation of alcohols under the application of novel metal organic frameworks (MOFs) based catalytic system.J. Colloid Interface Sci.2023629Pt A13614310.1016/j.jcis.2022.08.11936063631
    [Google Scholar]
  159. YanY. ZhongJ. WangR. YanS. ZouZ. Trivalent nickel-catalyzing electroconversion of alcohols to carboxylic acids.J. Am. Chem. Soc.202414674814482110.1021/jacs.3c1315538323566
    [Google Scholar]
  160. QiuZ. LiuX. YuJ. ZhaoY. ZhaoG.R. LiS. LiuK. DuL. MaL. Efficient conversion of aromatic and phenylpropanoid alcohols to acids by the cascade biocatalysis of alcohol and aldehyde dehydrogenases.Synth. Syst. Biotechnol.20249218719510.1016/j.synbio.2024.01.00838385148
    [Google Scholar]
/content/journals/coc/10.2174/0113852728336586240910065821
Loading
/content/journals/coc/10.2174/0113852728336586240910065821
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test