Skip to content
2000
Volume 29, Issue 4
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Concerning polycyclic heterocyclic compounds, fused triazolopyrimidines and their substituted analogs have been studied recently from a chemical and biological point of view. Triazolopyrimidines have eight different positional isomers based on their structural arrangement and nitrogen atom positions. The present review concerns synthesizing 1,2,4-triazolo[4,3-c]pyrimidines and 1,2,4-triazolo[1,5-c]pyrimidines fused with a five-membered ring containing one heteroatom. The 1,2,4-triazolo[4,3-c]pyrimidines can be prepared by closing the triazole ring on the 4-hydrazinopyrimidine ring, and the 1,2,4-triazolo[1,5-c]pyrimidines can be prepared by closing the triazole ring on the 4-iminopyrimidine-3-amine ring. The transformation of 1,2,4-triazolo[4,3-c]pyrimidine to the more thermodynamically stable isomer triazolo[1,5-c]pyrimidine derivatives Dimroth rearrangement under different reaction conditions is also discussed. Moreover, the biological activity of both series is presented.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728331504240820050800
2024-09-20
2025-01-18
Loading full text...

Full text loading...

References

  1. KabiA.K. GujjarappaR. GargA. RoyA. SahooA. GuptaS. MalakarC.C. Overview on medicinal impacts of 1,2,4-triazole derivatives. Tailored Functional Materials.SingaporeSpringer Nature2022617910.1007/978‑981‑19‑2572‑6_5
    [Google Scholar]
  2. KumarS. MalakarC.C. SinghV. Cu(II)‐catalysed azide‐alkyne cycloaddition reaction towards synthesis of β‐carboline C1‐tethered 1,2,3‐triazole derivatives.ChemistrySelect20216164005401010.1002/slct.202100002
    [Google Scholar]
  3. KabiA.K. SravaniS. GujjarappaR. GargA. VodnalaN. TyagiU. KaldhiD. SinghV. GuptaS. MalakarC.C. An overview on biological activities of 1,2,3-triazole derivatives. Nanostructured Biomaterials.SingaporeSpringer Nature202210.1007/978‑981‑16‑8399‑2_11
    [Google Scholar]
  4. NemallapudiB.R. GudaD.R. UmmadiN. AvulaB. ZyryanovG.V. ReddyC.S. GundalaS. New methods for synthesis of 1,2,3-triazoles: A review.Polycycl. Aromat. Compd.20224263874389210.1080/10406638.2020.1866038
    [Google Scholar]
  5. BelayY. MullerA. MokoenaF.S. AdeyinkaA.S. MotadiL.R. OyebamijiA.K. 1,2,3-triazole and chiral Schiff base hybrids as potential anticancer agents: DFT, molecular docking and ADME studies.Sci. Rep.2024141695110.1038/s41598‑024‑57689‑538521876
    [Google Scholar]
  6. AshramM. HabashnehA.Y. BardaweelS. TahaM.O. A Click Synthesis, molecular docking and biological evaluation of 1,2,3-triazoles-benzoxazepine hybrid as potential anticancer agents.Med. Chem. Res.202332227128710.1007/s00044‑022‑03001‑x
    [Google Scholar]
  7. GaoF. WangT. XiaoJ. HuangG. Antibacterial activity study of 1,2,4-triazole derivatives.Eur. J. Med. Chem.201917327428110.1016/j.ejmech.2019.04.04331009913
    [Google Scholar]
  8. ZhangB. Comprehensive review on the anti-bacterial activity of 1,2,3-triazole hybrids.Eur. J. Med. Chem.201916835737210.1016/j.ejmech.2019.02.05530826511
    [Google Scholar]
  9. XuZ. 1,2,3-triazole-containing hybrids with potential antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA).Eur. J. Med. Chem.202020611268610.1016/j.ejmech.2020.11268632795773
    [Google Scholar]
  10. StrzeleckaM. ŚwiątekP. 1,2,4-triazoles as important antibacterial agents.Pharmaceuticals (Basel)202114322410.3390/ph1403022433799936
    [Google Scholar]
  11. SharmaK. TittalR.K. LalK. MathpatiR.S. D, G.V. Fluorescent 7-azaindole N -linked 1,2,3-triazole: Synthesis and study of antimicrobial, molecular docking, ADME and DFT properties.New J. Chem.202347199077908610.1039/D3NJ00223C
    [Google Scholar]
  12. ZhangS. XuZ. GaoC. RenQ.C. ChangL. LvZ.S. FengL.S. Triazole derivatives and their anti-tubercular activity.Eur. J. Med. Chem.201713850151310.1016/j.ejmech.2017.06.05128692915
    [Google Scholar]
  13. SharmaA. AgrahariA.K. RajkhowaS. TiwariV.K. Emerging impact of triazoles as anti-tubercular agent.Eur. J. Med. Chem.202223811445410.1016/j.ejmech.2022.11445435597009
    [Google Scholar]
  14. El MalahT. FaragH. AwadH.M. AbdelrahmanM.T. ShamroukhA.H. Design and click synthesis of novel 1-substituted-4-(3,4-dimethoxyphenyl)-1H-1,2,3-triazole hybrids for anticancer evaluation and molecular docking.Polycycl. Aromat. Compd.20234387547756410.1080/10406638.2022.2137205
    [Google Scholar]
  15. El MalahT. El-MageidR.E-S.A. ShamroukhA.H. RashadA.E. El-RashedyA.A. AwadH.M. Abdel-MegeidF.M.E. HegabM.I. Click synthesis, anticancer and molecular docking evaluation of some hexahydro-6H-indolo[2,3-b]quinoxalines incorporated triazole moiety.J. Mol. Struct.2024130313757310.1016/j.molstruc.2024.137573
    [Google Scholar]
  16. FengL.S. ZhengM.J. ZhaoF. LiuD. 1,2,3‐triazole hybrids with anti‐HIV‐1 activity.Arch. Pharm. (Weinheim)20213541200016310.1002/ardp.20200016332960467
    [Google Scholar]
  17. AgouramN. 1,2,3-triazole derivatives as antiviral agents.Med. Chem. Res.20233224582472
    [Google Scholar]
  18. HelwaA. RyadN. YoussefA. OmarY. AttiaK. El EtrawyA.A. Review: Pyrimidine derivatives as anticancer agents.J. Pharmaceut. Sci. Drug Manuf.202411546810.21608/jpsdm.2024.257501.1010
    [Google Scholar]
  19. El-DydamonyN.M. AbdelnabyR.M. AbdelhadyR. AliO. FahmyM.I. R Fakhr Eldeen, R.; Helwa, A.A. Pyrimidine-5-carbonitrile based potential anticancer agents as apoptosis inducers through PI3K/AKT axis inhibition in leukaemia K562.J. Enzyme Inhib. Med. Chem.202237189591110.1080/14756366.2022.205102235345960
    [Google Scholar]
  20. RedaN. ElshewyA. EL-Askary, H.I.; Mohamed, K.O.; Helwa, A.A. Design, synthesis, and biological evaluation of new pyrimidine-5-carbonitrile derivatives as novel anti-cancer, dual EGFR WT/COX-2 inhibitors with docking studies.RSC Advances20231346322963232010.1039/D3RA06088H37928843
    [Google Scholar]
  21. BhatiD. ShuklaP. ShuklaP. DeviB.N.L. PrasanthiS. ChopadeP.D. K, V.R.; Kundu, H.; Bhatt, P. Fused and substituted pyrimidine derivatives as potent anticancer agents.Biochem. Cell. Arch.202424174975810.51470/bca.2024.24.1.749
    [Google Scholar]
  22. KantankarA. Jayaprakash RaoY. MallikarjunG. HemasriY. KethiriR.R. Rational design, synthesis, biological evaluation and molecular docking studies of chromone-pyrimidine derivatives as potent anti-cancer agents.J. Mol. Struct.2021123913050210.1016/j.molstruc.2021.130502
    [Google Scholar]
  23. ElumalaiK. ShanmugamA. DevarajiM. SrinivasanS. Synthesis and molecular docking of pyrimidine derivatives as antibacterial agents.Carbon Resources Conv.20247310022210.1016/j.crcon.2024.100222
    [Google Scholar]
  24. RadwanM.A.A. AlshubramyM.A. Abdel-MotaalM. HemdanB.A. El-KadyD.S. Synthesis, molecular docking and antimicrobial activity of new fused pyrimidine and pyridine derivatives.Bioorg. Chem.20209610351610.1016/j.bioorg.2019.10351631991322
    [Google Scholar]
  25. ParveenM. AzeemM. KhanA.A. AslamA. FatimaS. SiddiquiM.A. AzimY. MinK. AlamM. One-pot synthesis of benzopyrano-pyrimidine derivatives catalyzed by P-toluene sulphonic acid and their nematicidal and molecular docking study.Catalysts202212553110.3390/catal12050531
    [Google Scholar]
  26. ShaabanO.G. IssaD.A.E. El-TombaryA.A. Abd El WahabS.M. Abdel WahabA.E. AbdelwahabI.A. Synthesis and molecular docking study of some 3,4-dihydrothieno[2,3-d]pyrimidine derivatives as potential antimicrobial agents.Bioorg. Chem.20198810293410.1016/j.bioorg.2019.10293431026720
    [Google Scholar]
  27. AhmedN.M. NofalS. AwadS.M. Synthesis, molecular modeling and biological evaluation of novel pyrimidine derivatives as anti-inflammatory agents.J. Pharm. Res. Int.202010496710.9734/jpri/2020/v32i2230771
    [Google Scholar]
  28. Abdel-AzizS.A. TaherE.S. LanP. El-KoussiN.A. SalemO.I.A. GomaaH.A.M. YoussifB.G.M. New pyrimidine/thiazole hybrids endowed with analgesic, anti‐inflammatory, and lower cardiotoxic activities: Design, synthesis, and COX‐2/sEH dual inhibition.Arch. Pharm. (Weinheim)20223557220002410.1002/ardp.20220002435429006
    [Google Scholar]
  29. Jeelan BashaN. ChandanaT.L. Synthesis and antiviral efficacy of pyrimidine analogs targeting viral pathways.ChemistrySelect2023819e20220500910.1002/slct.202205009
    [Google Scholar]
  30. KatouahH.A. GafferH.E. Gaffer, Synthesis and docking study of pyrimidine derivatives scaffold for anti-hypertension application.ChemistrySelect20194206250625510.1002/slct.201900799
    [Google Scholar]
  31. MohamedM.S. RashadA.E. ZakiM.E.A. FatahalaS.S. Synthesis and antimicrobial screening of some fused heterocyclic pyrroles.Acta Pharm.200555323724916375835
    [Google Scholar]
  32. El-ShershabyM.H. GhiatyA. BayoumiA.H. AhmedH.E.A. El-ZoghbiM.S. El-AdlK. AbulkhairH.S. 1,2,4-triazolo[4,3-c]quinazolines: A bioisosterism-guided approach towards the development of novel PCAF inhibitors with potential anticancer activity.New J. Chem.20214525111361115210.1039/D1NJ00710F
    [Google Scholar]
  33. AlesawyM.S. Al-KarmalawyA.A. ElkaeedE.B. AlswahM. BelalA. TaghourM.S. EissaI.H. Design and discovery of new 1,2,4‐triazolo[4,3‐c] quinazolines as potential DNA intercalators and topoisomerase II inhibitors.Arch. Pharm. (Weinheim)20213543200023710.1002/ardp.20200023733226150
    [Google Scholar]
  34. LiuC. FeiQ. PanN. WuW. Design, Synthesis, and Antifungal Activity of Novel 1,2,4-triazolo[4,3-c]trifluoromethylpyrimidine derivatives bearing the thioether moiety.Front Chem.20221093964410.3389/fchem.2022.93964435928214
    [Google Scholar]
  35. MohamedM.S. SayedA.I. KhedrM.A. SororS.H. Design, synthesis, assessment, and molecular docking of novel pyrrolopyrimidine (7-deazapurine) derivatives as non-nucleoside hepatitis C virus NS5B polymerase inhibitors.Bioorg. Med. Chem.20162492146215710.1016/j.bmc.2016.03.04627052365
    [Google Scholar]
  36. SayedA.I. MansourY.E. AliM.A. AlyO. KhoderZ.M. SaidA.M. FatahalaS.S. Abd El-HameedR.H. Novel pyrrolopyrimidine derivatives: Design, synthesis, molecular docking, molecular simulations and biological evaluations as antioxidant and anti-inflammatory agents.J. Enzyme Inhib. Med. Chem.20223711821183710.1080/14756366.2022.209054635762086
    [Google Scholar]
  37. MohamedM.S. HusseinW.M. McGearyR.P. VellaP. SchenkG. Abd El-hameed, R.H. Synthesis and kinetic testing of new inhibitors for a metallo-β-lactamase from Klebsiella pneumonia and Pseudomonas aeruginosa.Eur. J. Med. Chem.201146126075608210.1016/j.ejmech.2011.10.03022051063
    [Google Scholar]
  38. WangS.B. PiaoG.C. ZhangH.J. QuanZ.S. Synthesis of 5-alkoxythieno[2,3-e][1,2,4]triazolo[4,3-c]pyrimidine derivatives and evaluation of their anticonvulsant activities.Molecules20152046827684310.3390/molecules2004682725884556
    [Google Scholar]
  39. HegabM.I. HassanN.A. RashadA.E. FahmyA.A. Abdel-MegeidF.M.E. Synthesis, reactions, and antimicrobial activity of some fused Thieno[2,3- d]pyrimidine derivatives.Phosphorus Sulfur Silicon Relat. Elem.200718271535155610.1080/10426500701247151
    [Google Scholar]
  40. RashadA.E. HeikalO.A. El-NezhawyA.O.H. Abdel-MegeidF.M.E. Synthesis and isomerization of thienotriazolopyrimidine and thienotetrazolopyrimidine derivatives with potential anti-inflammatory activity.Heteroatom Chem.200516322623410.1002/hc.20114
    [Google Scholar]
  41. KhattabA.F. El-EssawyF.A. Formation of novel pyrido[3′,2′:4,5] thieno[2,3-e][1,2,4]triazolo[4,3-c]pyrimidines and their acyclic C-nucleo-sides analogues: Synthesis of 3-(Alditol-1-yl)pyridothienotriazolo-pyrimidines.J. Chem. Res.200520051173674010.3184/030823405774909298
    [Google Scholar]
  42. GaberH.M. ElgemeieG.E.H. OufS.A. SherifS.M. Heterocyclic synthesis with 4-hydrazinopyridothienopyrimidines: Synthesis of pyridothienotriazolopyrimidines and heterocyclylpyridothienopyrimidines with biological interest.Heteroatom Chem.200516429830710.1002/hc.20126
    [Google Scholar]
  43. SirakanyanS.N. SpinelliD. GeronikakiA. KartsevV.G. HakobyanE.K. StepanyanH.M. ZuppiroliL. HovakimyanA.A. New cyclopenta[4′,5′]pyrido[3′,2′:4,5]thieno[2,3-e][1,2,4]triazolo[4,3-c]pyrimidines and cyclopenta[4′,5′]pyrido[3′,2′:4,5]thieno[2,3-e][1,2,4] triazolo[1,5-c]pyrimi-dines: Synthesis and antimicrobial activities.Curr. Org. Chem.201721122710.2174/1385272821666170222102400
    [Google Scholar]
  44. ParonikyanE.G. DashyanS.S. Synthesis of cyclopenta[4′,5′]pyrido[3′,2′: 4,5]thieno[3,2-d]pyrimidine derivatives. Dimroth rearrangement of triazolopyrimidines.Russ. J. Gen. Chem.20188881623162810.1134/S1070363218080121
    [Google Scholar]
  45. SirakanyanS.N. HakobyanE.K. HovakimyanA.A. Synthesis of new sulfur-substituted pentacyclic 1,2,4-triazolopyrimidine derivatives.Russ. J. Org. Chem.201955330831310.1134/S1070428019030059
    [Google Scholar]
  46. SirakanyanS.N. KartsevV.G. HovakimyanA.A. NoravyanA.S. ShakhatuniA.A. New heterocyclic systems based on 5,6,7,8-tetrahydro-isoquinolines.Chem. Heterocycl. Compd.201348111676168310.1007/s10593‑013‑1192‑6
    [Google Scholar]
  47. BhuiyanM.D. RahmanK.M. HossainM.D. RahimA. HossainM.I. Abu NaserM. Synthesis and antimicrobial evaluation of some new thienopyrimidine derivatives.Acta Pharm.200656444145019839136
    [Google Scholar]
  48. MarzoukN.A. ShamroukhA.H. Al-SaadnyA.H. MickyJ.A. Isomerization, and antimicrobial evaluation of some indenothienopyrimidine derivatives.Am. J. Sci.20117362369
    [Google Scholar]
  49. BhuiyanM.M.H. RahmanK.M.M. HossainM.I. NaserM.A. ShumiW. Fused Pyrimidines. Part III: Synthesis and antimicrobial activity of some furopyrimidines and imidazopyrazolopyrimidine.J. Appl. Sci. Res.20051218222
    [Google Scholar]
  50. Raghu PrasadM. PrashanthJ. ShilpaK. Pran KishoreD. Synthesis and antibacterial activity of some novel triazolothienopyrimidines.Chem. Pharm. Bull. (Tokyo)200755455756010.1248/cpb.55.55717409547
    [Google Scholar]
  51. SolimanR. HabibN.S. El-TombaryA.A. El-HawashS.A.M. ShaabanO.G. Synthesis of tetrahydrobenzothieno[2,3-d]pyrimidine and tetrahydrobenzothieno[3,2-e][1,2,4]triazolo[4,3-c]pyrimidine derivatives as potential antimicrobial agents.Sci. Pharm.20097775577310.3797/scipharm.0904‑17
    [Google Scholar]
  52. KandeelM.M. RefaatH.M. KassabA.E. ShahinI.G. AbdelghanyT.M. Synthesis, anticancer activity and effects on cell cycle profile and apoptosis of novel thieno[2,3-d]pyrimidine and thieno[3,2-e] triazolo[4,3-c]pyrimidine derivatives.Eur. J. Med. Chem.20159062063210.1016/j.ejmech.2014.12.00925499930
    [Google Scholar]
  53. Abdel-HamidM.A.M. ElkazakA.M. SeadM.H. MohamedO.F. Synthesis of some new pyrazolylfuropyrimidinethiones and triazolofuropyrimidinethiones.Eur. J. Chem.20123327327810.5155/eurjchem.3.3.273‑278.605
    [Google Scholar]
  54. Hassan HilmyK.M. KhalifaM.M.A. Allah HawataM.A. AboAlzeen KeshkR.M. El-TorgmanA.A. Synthesis of new pyrrolo[2,3-d]pyrimidine derivatives as antibacterial and antifungal agents.Eur. J. Med. Chem.201045115243525010.1016/j.ejmech.2010.08.04320828885
    [Google Scholar]
  55. RiadJ. MohamedM. FatahalaS. Mansour, design and synthesis of some n-4-substituted pyrrolopyrimidines with promising anticancer effects.Egypt. J. Chem.20236613112010.21608/ejchem.2023.223535.8273
    [Google Scholar]
  56. KhalilO.M. KamalA.M. BuaS. El Sayed TebaH. NissanY.M. SupuranC.T. Pyrrolo and pyrrolopyrimidine sulfonamides act as cytotoxic agents in hypoxia via inhibition of transmembrane carbonic anhydrases.Eur. J. Med. Chem.202018811202110.1016/j.ejmech.2019.11202131901743
    [Google Scholar]
  57. Abdel-FattahB. KandeelM.M. Abdel-HakeemM. FahmyZ.M. Synthesis of certain fused thienopyrimidines of biological interest.J. Chin. Chem. Soc. (Taipei)200653240341210.1002/jccs.200600051
    [Google Scholar]
  58. PrakashO. KumarR. KumarR. tyagi, P.; Kuhad, R.C. Organoiodine(III) mediated synthesis of 3,9-diaryl- and 3,9-difuryl-bis-1,2,4-triazolo[4,3-a][4,3-c]pyrimidines as antibacterial agents.Eur. J. Med. Chem.200742686887210.1016/j.ejmech.2006.11.01917222483
    [Google Scholar]
  59. JoeB.S. SonH.Y. SongY.H. A mild and efficient synthesis of new 3-phenylthienotriazolopyrimidine derivatives using iodobenzene diacetate.Heterocycles200875123091309710.3987/COM‑08‑11465
    [Google Scholar]
  60. GuetzoyanL.J. SpoonerR.A. LordJ.M. RobertsL.M. ClarksonG.J. Simple oxidation of pyrimidinylhydrazones to triazolopyrimidines and their inhibition of Shiga toxin trafficking.Eur. J. Med. Chem.201045127528310.1016/j.ejmech.2009.10.00719883956
    [Google Scholar]
  61. SonH.Y. SongY.H. A convenient synthesis of new 3,7-diphenylthieno[3,2-e]bis[1,2,4] triazolo[4,3-a:4′,3′-c]pyrimidine derivatives by oxidative cyclization using alumina-supported calcium hypochlorite.Bull. Korean Chem. Soc.20103182242224610.5012/bkcs.2010.31.8.2242
    [Google Scholar]
  62. SoleimanyM. LariJ. VahediH. ImanpourM. New facile route to synthesize furo[3,2-e][1,2,4]triazolo[4,3-c]pyrimidine and furo[3,2-e][1,2,4] triazolo[1,5-c]pyrimidine derivatives.Synth. Commun.201444233375338310.1080/00397911.2014.943344
    [Google Scholar]
  63. PrabhakarV. Babu KondraS. MaddulaS.R. ParandhamaG. LathaJ. Synthesis, Structural elucidation of novel thieno[2,3-d]pyrimidine core unit containing 1,2,4-triazoles and thiophenes as potent antimicrobial activity.Organic Chem: Curr Res201653100016910.4172/2161‑0401.1000169
    [Google Scholar]
  64. RoopaD.L. ShyamsunderK. KarunakarP. RajabatharJ.R. VenkatesuluA. KarnanM. KiranK.S. SelvarajM. BasavarajaiahS.M. Naphtho[2,1-b]furan derived triazole-pyrimidines as highly potential InhA and Cytochrome c peroxidase inhibitors: Synthesis, DFT calculations, drug-likeness profile, molecular docking and dynamic studies.J. Mol. Struct.2023128713568510.1016/j.molstruc.2023.135685
    [Google Scholar]
  65. TolanH.E.M. ShamroukhA.H. RashadA.E. HegabM.I. Synthesis, reactions and antimicrobial activity of some 10,10-dimethyl-chromeno[4′,3′:4,5]thieno[2,3-d]pyrimidin-4-ones.Pharma Chem.20179913
    [Google Scholar]
  66. KhademiZ. NikoofarK. Applications of alkyl orthoesters as valuable substrates in organic transformations, focusing on reaction media.RSC Advances20201051303143039710.1039/D0RA05276K35559005
    [Google Scholar]
  67. MohamedM.S. Abd El-HameedR.H. SayedA.I. SororS.H. Novel antiviral compounds against gastroenteric viral infections.Arch. Pharm. (Weinheim)2015348319420510.1002/ardp.20140038725704120
    [Google Scholar]
  68. NagamatsuT. AhmedS. HossionA-G.M.L. OhnoS. Synthesis of thieno[3,2-e][1,2,4]triazolo[1,5-c]pyrimidin-5(6h)-ones via their[1,2,4]triazolo[4,3-c]pyrimidine compounds as new ring systems by dimroth-type rearrangement.Heterocycles20077377779310.3987/COM‑07‑S(U)58
    [Google Scholar]
  69. HassanN.A. Syntheses of Furo[3,2-e][1,2,4]triazolo[1,5-c]pyrimidines and Furo[2`,3`: 5,6]-pyrimido[3,4-b][2,3-e]indolo[1,2,4]triazine as a new ring system.Molecules20005682683410.3390/50600826
    [Google Scholar]
  70. MalothuN. JojulaM. KakiV.R. AdidalaR.R. AkkinepallyR.R. Synthesis, in vitro antibacterial and antimycobacterial activity and docking study of thieno[3,2-e][1,2,4]triazolo[1,5-c]pyrimidines.Antiinfect. Agents20222011010.2174/2211352520666220317141315
    [Google Scholar]
  71. ShakerR.M. Synthesis of new furo[2,3-d]pyrimidines and furo[3,2-e][1,2,4]triazolo[1,5-c]pyrimidines.ARKIVOC2006200614687710.3998/ark.5550190.0007.e10
    [Google Scholar]
  72. RashadA.E. ShamroukhA.H. HegabM.I. AwadH.M. Synthesis of some biologically active pyrazoles and c-nucleosides.Acta Chim. Slov.200552429434
    [Google Scholar]
  73. ShamroukhA.H. ZakiM.E.A. MorsyE.M.H. Abdel-MottiF.M. Abdel-MegeidF.M.E. Synthesis, isomerization, and antimicrobial evaluation of some pyrazolopyranotriazolopyrimidine derivatives.Arch. Pharm. (Weinheim)2007340734535110.1002/ardp.20070000717610300
    [Google Scholar]
  74. RashadA. ShamroukhA. Abdel-MegeidR. AliH. Synthesis and isomerization of some novel pyrazolopyrimidine and pyrazolotriazolopyrimidine derivatives.Molecules20141955459546910.3390/molecules1905545924776812
    [Google Scholar]
  75. MillerG.W. RoseF.L. Synthesis of s-triazolopyrimidine derivatives.J. Chem. Soc.196456425644
    [Google Scholar]
  76. MillerG.W. RoseF.L. Studies on s-triazolo[2,3-c]pyrimidine derivatives.J. Chem. Soc.196533693372
    [Google Scholar]
  77. MohamedM.S. KamelR. FatahalaS.S. New condensed pyrroles of potential biological interest.Eur. J. Med. Chem.20114673022302910.1016/j.ejmech.2011.04.03421549457
    [Google Scholar]
  78. RashadA.E. ShamroukhA.H. Abdel-MegeidR.E. SayedH.H. Abdel-WahedN.A. Studies on the reactivity of (9-methyl-5,6-dihydrona-phtho[1′,2′:4,5]thieno[2,3-d]pyrimidin-11-yl)hydrazine towards some reagents for biological evaluation.Sci. Pharm.201078111210.3797/scipharm.0910‑1121179366
    [Google Scholar]
  79. SirakanyanS.N. GeronikakiA. SpinelliD. HovakimyanA.A. NoravyanA.S. Synthesis and structure of condensed triazolo- and tetrazolopyrimidines.Tetrahedron20136949106371064310.1016/j.tet.2013.10.015
    [Google Scholar]
  80. BaraldiP.G. SaponaroG. Aghazadeh TabriziM. BaraldiS. RomagnoliR. MoormanA.R. VaraniK. BoreaP.A. PretiD. Pyrrolo- and pyrazolo-[3,4-e][1,2,4]triazolo[1,5-c]pyrimidines as adenosine receptor antagonists.Bioorg. Med. Chem.20122021046105910.1016/j.bmc.2011.11.03722204739
    [Google Scholar]
  81. SonH.Y. SongY.H. A convenient synthesis of new 2-phenylthieno[3,2-e][1,2,4]triazolo[1,5-c]pyrimidine derivatives by dimroth rearrangement.J Korean Chem Soc201054335035310.5012/jkcs.2010.54.3.350
    [Google Scholar]
  82. JabliD. DridiK. El EfritM.L. A convenient synthesis of new 2-cyanomethylthieno[3,2-e][1,2,4]- triazolo[1,5-c]pyrimidine derivatives.Lett. Org. Chem.201411640340810.2174/1570178611666140311005612
    [Google Scholar]
  83. Abu El-AzmF.S.M. AliA.T. HekalM.H. Facile synthesis and anticancer activity of novel 4-aminothieno[2,3-d]pyrimidines and triazolothienopyrimidines.Org. Prep. Proced. Int.201951650752010.1080/00304948.2019.1666635
    [Google Scholar]
  84. HoY.W. ChouS.L. Thioxopyrimidine in heterocyclic synthesis ii: novel synthesis of some triazoles and triazepine derivatives with a pyrimido[3,2:4,5]thieno[2,3-d]pyrimidine skeleton.J. Chem.20132013696579
    [Google Scholar]
  85. JabliD. MiladR. AbderrabbaM. EfritM.L. Synthesis, antibacterial activity and DFT calculation of naphtopyrano, furo and pyrazolo[3,2,e][1,2,4]triazolo[1,5-c]pyrimidine derivatives.Chemistry Africa20192459761310.1007/s42250‑019‑00081‑y
    [Google Scholar]
  86. Abd El-MageedM.M.A. EissaA.A.M. FaragA.E.S. OsmanE.E.A. Design and synthesis of novel furan, furo[2,3-d]pyrimidine and furo[3,2-e][1,2,4]triazolo[1,5-c]pyrimidine derivatives as potential VEGFR-2 inhibitors.Bioorg. Chem.202111610533610.1016/j.bioorg.2021.10533634530235
    [Google Scholar]
  87. JahanbakhshiA. FarahiM. Immobilized sulfonic acid functionalized ionic liquid on magnetic cellulose as a novel catalyst for the synthesis of triazolo[4,3-a]pyrimidines.Arab. J. Chem.2022151210431110.1016/j.arabjc.2022.104311
    [Google Scholar]
  88. SheltonC. McNeilM. AllenR. FlintL. RussellD. BerubeB. KorkegianA. OvechkinaY. ParishT. Triazolopyrimidines target aerobic respiration in Mycobacterium tuberculosis.Antimicrob. Agents Chemother.2022664e02041e2110.1128/aac.02041‑2135262374
    [Google Scholar]
  89. Ben HassenM. MsalbiD. JismyB. ElghaliF. AifaS. AllouchiH. AbarbriM. ChabchoubF. Three component one-pot synthesis and antiproliferative activity of new [1,2,4]triazolo[4,3-a]pyrimidines.Molecules2023289391710.3390/molecules2809391737175327
    [Google Scholar]
  90. RagabS.S. IbrahimN.E. Abdel-AzizM.S. ElrashedyA.A. AllayehA.K. Synthesis, biological activity, and molecular dynamic studies of new triazolopyrimidine derivatives.Results Chem.2023610116310.1016/j.rechem.2023.101163
    [Google Scholar]
  91. NgJ.H. DolzhenkoA.V. One-pot synthesis of novel pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidines under microwave irradiation in a green solvent.Tetrahedron202314113352110.1016/j.tet.2023.133521
    [Google Scholar]
  92. FeitosaL.M. FrancaR.R.F. FerreiraM.L.G. AguiarA.C.C. de SouzaG.E. MalufS.E.C. de SouzaJ.O. ZapataL. DuarteD. MoraisI. NogueiraF. NonatoM.C. PinheiroL.C.S. GuidoR.V.C. BoechatN. BoechatN. Discovery of new piperaquine hybrid analogs linked by triazolopyrimidine and pyrazolopyrimidine scaffolds with antiplasmodial and transmission blocking activities.Eur. J. Med. Chem.202426711616310.1016/j.ejmech.2024.11616338290351
    [Google Scholar]
  93. KomkovA.V. MenchikovL.G. DmitrenokA.S. ZavarzinI.V. Synthesis of androstane derivatives fused with polyheterocycles at the D ring.Mendeleev Commun.202333678278310.1016/j.mencom.2023.10.014
    [Google Scholar]
  94. RamadanM. Abd El-AzizM. ElshaierY.A.M.M. YoussifB.G.M. BrownA.B. FathyH.M. AlyA.A. Design and synthesis of new pyranoquinolinone heteroannulated to triazolopyrimidine of potential apoptotic antiproliferative activity.Bioorg. Chem.202010510439210.1016/j.bioorg.2020.10439233137557
    [Google Scholar]
  95. LuoJ. NieH. HeL. ZhaoA. WangT. New library of pyrimido[5,4-e][1,2,4]triazolo[1,5-c]pyrimidine derivatives: Synthesis, herbicidal activity, and molecular docking study.J. Mol. Struct.2024130013724610.1016/j.molstruc.2023.137246
    [Google Scholar]
  96. LiZ. YuanY. WangP. ZhangZ. MaH. SunY. ZhangX. LiX. QiaoY. ZhangF. SuY. SongJ. XieZ. LiL. MaL. MaJ. ZhangZ. Design, synthesis and in vitro/in vivoanticancer activity of tranylcypromine-based triazolopyrimidine analogs as novel LSD1 inhibitors.Eur. J. Med. Chem.202325311532110.1016/j.ejmech.2023.11532137037137
    [Google Scholar]
  97. BatranR.Z. AhmedE.Y. NossierE.S. AwadH.M. Abdel LatifN.A. Anticancer activity of new triazolopyrimidine linked coumarin and quinolone hybrids: Synthesis, molecular modeling, TrkA, PI3K/AKT and EGFR inhibition.J. Mol. Struct.2024130513779010.1016/j.molstruc.2024.137790
    [Google Scholar]
  98. HassanM. BarsyM.A. El RadyE.A. Al-AyedA.S. FrempongM. SadekK.U. Application of the AZA‐WITTIG reaction for efficient synthesis of diversely substituted benzo[f]Chromeno[2,3‐d]pyrimidine and benzo[f]chromeno[2,3‐d][1,2,4]triazolopyrimidine derivatives.J. Heterocycl. Chem.202461454354910.1002/jhet.4784
    [Google Scholar]
  99. VlasovS.V. Synthesis and antimicrobial activity of 3-(thieno[3,2-e][1,2,4]triazolo[1,5- c]pyrimidin-2-yl)propanoic and butanoic acids.Pharma Chem.201572631
    [Google Scholar]
  100. MohamedM.S. SayedA.I. KhedrM.A. NofalS. SororS.H. Evaluation of novel pyrrolopyrimidine derivatives as antiviral against gastroenteric viral infections.Eur. J. Pharm. Sci.201912710211410.1016/j.ejps.2018.10.02230366078
    [Google Scholar]
/content/journals/coc/10.2174/0113852728331504240820050800
Loading
/content/journals/coc/10.2174/0113852728331504240820050800
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test