Skip to content
2000
Volume 29, Issue 4
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Palladium-catalyzed reactions are widely used for creating carbon-carbon and carbon-heteroatom bonds, with the Heck reaction being particularly valuable for forming rings of various sizes, including medium-sized rings. Recent reports have shown the synthetic potential of intramolecular Heck reactions for assembling rings of seven or more members. While the regioselectivity of this cyclization is often unpredictable in the absence of directing groups, the reductive Heck cyclization strategy can help minimize this issue. Nickel catalysts are also valuable due to their abundance and environmentally friendly nature, playing a pivotal role in producing biologically significant carbocycles and heterocycles. The use of both Pd(0) and Ni(0) catalysts, with or without chiral ligands, has been successful in forming five to nine-member ring heterocycles and carbocycles in a simple, cost-effective manner. This review provides a comprehensive survey of the literature from the past decade on the use of reductive Heck cyclization methodology, including mechanistic details as needed.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728323915240816093254
2024-09-09
2025-01-18
Loading full text...

Full text loading...

References

  1. FujiwaraY. MoritaniI. DannoS. AsanoR. TeranishiS. Aromatic substitution of olefins. VI. Arylation of olefins with palladium(II) acetate.J. Am. Chem. Soc.196991257166716910.1021/ja01053a04727462934
    [Google Scholar]
  2. MizorokiT. MoriK. OzakiA. Arylation of olefin with aryl iodide catalyzedby palladium.Bull. Chem. Soc. Jpn.197144258110.1246/bcsj.44.581
    [Google Scholar]
  3. HeckR.F. NolleyJ.P.Jr Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides.J. Org. Chem.197237142320232210.1021/jo00979a024
    [Google Scholar]
  4. HeckR.F. Palladium-catalyzed reactions of organic halides with olefins.Acc. Chem. Res.197912414615110.1021/ar50136a006
    [Google Scholar]
  5. CabriW. CandianiI. Recent developments and new perspectives in the Heck reaction.Acc. Chem. Res.19952812710.1021/ar00049a001
    [Google Scholar]
  6. BeletskayaI.P. CheprakovA.V. The heck reaction as a sharpening stone of palladium catalysis.Chem. Rev.200010083009306610.1021/cr990304811749313
    [Google Scholar]
  7. DounayA.B. OvermanL.E. The asymmetric intramolecular Heck reaction in natural product total synthesis.Chem. Rev.200310382945296410.1021/cr020039h12914487
    [Google Scholar]
  8. Mc CartneyD. GuiryP.J. The asymmetric Heck and related reactions.Chem. Soc. Rev.201140105122515010.1039/c1cs15101k21677934
    [Google Scholar]
  9. Johansson SeechurnC.C.C. KitchingM.O. ColacotT.J. SnieckusV. Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 Nobel Prize.Angew. Chem. Int. Ed.201251215062508510.1002/anie.20110701722573393
    [Google Scholar]
  10. RaufW. BrownJ.M. Reactive intermediates in catalytic alkenylation; pathways for Mizoroki-heck, oxidative Heck and Fujiwara–Moritani reactions.Chem. Commun. (Camb.)201349768430844010.1039/c3cc44842h23949625
    [Google Scholar]
  11. HolmanR.W. CzakóB. Strategic applications of named reactions in organic synthesis: Background and detailed mechanisms (Kürti, László; Czakó, Barbara).J. Chem. Educ.200582121780178110.1021/ed082p1780.3
    [Google Scholar]
  12. NakamuraI. YamamotoY. Transition-metal-catalyzed reactions in heterocyclic synthesis.Chem. Rev.200410452127219810.1021/cr020095i15137788
    [Google Scholar]
  13. GulevichA.V. DudnikA.S. ChernyakN. GevorgyanV. Transition metal-mediated synthesis of monocyclic aromatic heterocycles.Chem. Rev.201311353084321310.1021/cr300333u23305185
    [Google Scholar]
  14. ZhangT. ShenH.C. XuJ.C. FanT. HanZ.Y. GongL.Z. Pd(II)-catalyzed asymmetric oxidative annulation of N-alkoxyheteroaryl amides and 1,3-dienes.Org. Lett.20192172048205110.1021/acs.orglett.9b0021630901225
    [Google Scholar]
  15. NewkomeG.R. RingsL. Eight-membered and larger rings.Prog. Heterocyclic Chem.1991331933010.1016/B978‑0‑08‑040589‑6.50022‑9
    [Google Scholar]
  16. QuirkeJ.M.E. Eight-Membered and Larger Rings Systems. Heterocyclic Chemistry.London, UKThe Royal Society of Chemistry’s Books1986455481
    [Google Scholar]
  17. IvkovicA. MatovicR. SaicicR.N. Ring-closing metathesis/fragmentation route to geometrically defined medium-ring cycloalkenes: total synthesis of (+/-)-periplanone C.Org. Lett.2004681221122410.1021/ol049875z15070302
    [Google Scholar]
  18. MestichelliP. ScottM.J. GallowayW.R.J.D. SelwynJ. ParkerJ.S. SpringD.R. Concise copper-catalyzed synthesis of tricyclic biaryl ether-linked aza-heterocyclic ring systems.Org. Lett.201315215448545110.1021/ol402525924134806
    [Google Scholar]
  19. ArnoldL.A. LuoW. GuyR.K. Synthesis of medium ring heterocycles using an intramolecular Heck reaction.Org. Lett.20046173005300710.1021/ol048788415330669
    [Google Scholar]
  20. IlluminatiG. MandoliniL. Ring closure reactions of bifunctional chain molecules.Acc. Chem. Res.19811449510210.1021/ar00064a001
    [Google Scholar]
  21. GalliC. MandoliniL. The role of ring strain on the ease of ring closure of bifunctional chain molecules.Eur. J. Org. Chem.20002000183117312510.1002/1099‑0690(200009)2000:18<3117::AID‑EJOC3117>3.0.CO;2‑5
    [Google Scholar]
  22. MichautA. RodriguezJ. Selective construction of carbocyclic eight-membered rings by ring-closing metathesis of acyclic precursors.Angew. Chem. Int. Ed.200645355740575010.1002/anie.20060078716881022
    [Google Scholar]
  23. GrosoE. SchindlerC. Recent advances in the application of ring-closing metathesis for the synthesis of unsaturated nitrogen heterocycles.Synthesis20195151100111410.1055/s‑0037‑161165131983781
    [Google Scholar]
  24. NaitoT. Heterocycle synthesis via radical reactions.Pure Appl. Chem.200880471772610.1351/pac200880040717
    [Google Scholar]
  25. ChattopadhyayP. Pada MajhiT. AchariB. Advances in the synthesis and biological perspectives of benzannulated medium ring heterocycles.Heterocycles20077151011105210.3987/REV‑07‑612
    [Google Scholar]
  26. YangZ. ZalesskyI. EptonR.G. WhitwoodA.C. LynamJ.M. UnsworthW.P. Ring expansion strategies for the synthesis of medium sized ring and macrocyclic sulfonamides.Angew. Chem. Int. Ed.20236213e20221717810.1002/anie.202217178
    [Google Scholar]
  27. ChouryM. Basilio LopesA. BlondG. GuleaM. Synthesis of medium-sized heterocycles by transition-metal-catalyzed intramolecular cyclization.Molecules202025143147317510.3390/molecules2514314732660105
    [Google Scholar]
  28. MajumdarK.C. Regioselective formation of medium-ring heterocycles of biological relevance by intramolecular cyclization.RSC Advances2011171152117010.1039/c1ra00494h
    [Google Scholar]
  29. SharmaA. AppukkuttanP. Van der EyckenE. Microwave-assisted synthesis of medium-sized heterocycles.Chem. Commun. (Camb.)201248111623163710.1039/C1CC15238F22031184
    [Google Scholar]
  30. OxtobyL.J. GurakJ.A.Jr WisniewskiS.R. EastgateM.D. EngleK.M. Palladium-catalyzed reductive heck coupling of alkenes.Trends Chem.20191657258710.1016/j.trechm.2019.05.00732542234
    [Google Scholar]
  31. GhoshT. Reductive heck reaction: an emerging alternative in natural product synthesis.ChemistrySelect20194164747475510.1002/slct.201804029
    [Google Scholar]
  32. StandleyE.A. JamisonT.F. Simplifying nickel (0) catalysis: an air-stable nickel precatalyst for the internally selective benzylation of terminal alkenes.J. Am. Chem. Soc.201313541585159210.1021/ja311671823316879
    [Google Scholar]
  33. TaskerS.Z. StandleyE.A. JamisonT.F. Recent advances in homogeneous nickel catalysis.Nature2014509750029930910.1038/nature1327424828188
    [Google Scholar]
  34. WangZ.X. ChaiZ.Y. Palladium(II) and nickel(ii) complexes bearing N,N,O‐chelate ligands: syntheses, characterization and catalysis in heck and kumada coupling reactions.Eur. J. Inorg. Chem.20072007284492449910.1002/ejic.200700347
    [Google Scholar]
  35. LinP.S. JeganmohanM. ChengC.H. Nickel-catalyzed Mizoroki-heck- versus Michael-type addition of organoboronic acids to α,β-unsaturated alkenes through fine-tuning of ligands.Chem. Asian J.20072111409141610.1002/asia.20070012817849401
    [Google Scholar]
  36. KwiatkowskiM.R. AlexanianE.J. Nickel‐catalyzed mizoroki–Heck‐type reactions of unactivated alkyl bromides.Angew. Chem. Int. Ed.20185751168571686010.1002/anie.20181075730358060
    [Google Scholar]
  37. MedinaJ.M. MorenoJ. RacineS. DuS. GargN.K. Mizoroki–heck cyclizations of amide derivatives for the introduction of quaternary centers.Angew. Chem. Int. Ed.201756236567657110.1002/anie.20170317428467029
    [Google Scholar]
  38. NirmalaM. ArruriS. VaddamanuM. KarupnaswamyR. MannarsamyM. AdinarayanaM. GanesanP. Highly active homoleptic nickel(II) bis-N-heterocyclic carbene catalyst for Suzuki–miyaura and Heck cross-coupling reactions.Polyhedron201915812513410.1016/j.poly.2018.10.028
    [Google Scholar]
  39. LangerP. ParpartS. MardiyanZ. EhlersP. PetrosyanA. MkrtchyanA. SaghyanA. Synthesis of optically pure (s,e)-2-amino-5-arylpent-4-enoic acids by heck reactions of nickel complexes.Synlett201829679379810.1055/s‑0037‑1609094
    [Google Scholar]
  40. WuZ.C. YangQ. ChenM. LiuL. TaoT.X. A highly active nickel-fibre complex as a catalyst for the Heck reaction.J. Chem. Res.201640316416610.3184/174751916X14547740527373
    [Google Scholar]
  41. MatsubaraR. GutierrezA.C. JamisonT.F. Nickel-catalyzed Heck-type reactions of benzyl chlorides and simple olefins.J. Am. Chem. Soc.201113347190201902310.1021/ja209235d22066899
    [Google Scholar]
  42. ReznikovA.N. AshatkinaM.A. VostruhinaS.Y. KlimochkinY.N. Red-uctive Heck cyclization of cage containing compounds: Convenient access to adamantyl-substituted indolines and spiro-homoadamantane-oxindole.Tetrahedron Lett.202311615432215432610.1016/j.tetlet.2022.154322
    [Google Scholar]
  43. ZhangH. XuB. ZhouL. ZhangZ.M. ZhangJ. Polymer-supported chiral palladium-based complexes as efficient heterogeneous catalysts for asymmetric reductive Heck reaction.Green Synth. Catal.20245210210710.1016/j.gresc.2023.04.002
    [Google Scholar]
  44. ZhangZ.M. XuB. QianY. WuL. WuY. ZhouL. LiuY. ZhangJ. Palladium‐catalyzed enantioselective reductive Heck reactions: convenient access to 3,3‐disubstituted 2,3‐dihydrobenzofuran.Angew. Chem. Int. Ed.20185732103731037710.1002/anie.20180637229923656
    [Google Scholar]
  45. QinX. LeeM.W.Y. ZhouJ.S. Nickel‐catalyzed asymmetric reductive Heck cyclization of aryl halides to afford indolines.Angew. Chem. Int. Ed.20175641127231272610.1002/anie.20170713428805280
    [Google Scholar]
  46. KongW. WangQ. ZhuJ. Water as a hydride source in palladium‐catalyzed enantioselective reductive heck reactions.Angew. Chem. Int. Ed.201756143987399110.1002/anie.20170019528272769
    [Google Scholar]
  47. YangF. JinY. WangC. Nickel-catalyzed asymmetric intramolecular reductive heck reaction of unactivated alkenes.Org. Lett.201921176989699410.1021/acs.orglett.9b0257731461297
    [Google Scholar]
  48. RobertsS.M. SantoroM.G. SickleE.S. The emergence of the cyclopentenone prostaglandins as important, biologically active compounds.J. Chem. Soc., Perkin Trans. 120022002151735174210.1039/b110043m
    [Google Scholar]
  49. WeidlerM. RetherJ. AnkeT. ErkelG. SternerO. New bioactive cycl-opentenone derivatives as inhibitors of the IL-6 dependent signal transduction.J. Antibiot. (Tokyo)200154867968110.7164/antibiotics.54.67911592504
    [Google Scholar]
  50. ShiH. YuS. LiuD. Van OfwegenL. ProkschP. LinW. Sinularones A-I, new cyclopentenone and butenolide derivatives from a marine soft coral Sinularia sp. and their antifouling activity.Mar. Drugs20121061331134410.3390/md1006133122822376
    [Google Scholar]
  51. ShirinyanV.Z. MarkosyanA.I. BaryshnikovaM.A. YaminovaL.V. L’vovA.G. GabrielyanS.A. Synthesis and antiproliferative activity evaluation of aryl(hetaryl)cyclopentenone analogs of combretastatin A-4.Pharm. Chem. J.2018511086787210.1007/s11094‑018‑1706‑8
    [Google Scholar]
  52. PiersE. ChongJ.M. Regioselective addition of trimethylstannylcopper–dimethyl sulphide to 1-alkynes: synthesis of ω-substituted 2-(trimethylstannyl)-1-alkenes.J. Chem. Soc. Chem. Commun.19839351793493510.1039/C39830000934
    [Google Scholar]
  53. MehtaG. SrikrishnaA. Synthesis of polyquinane natural products: An update.Chem. Rev.199797367172010.1021/cr940365011848885
    [Google Scholar]
  54. HudlickyT. PriceJ.D. Anionic approaches to the construction of cyclopentanoids.Chem. Rev.19898971467148610.1021/cr00097a004
    [Google Scholar]
  55. SchoreN.E. Transition metal-mediated cycloaddition reactions of alkynes in organic synthesis.Chem. Rev.19888871081111910.1021/cr00089a006
    [Google Scholar]
  56. TrostB.M. Centenary lecture. Cyclopentanoids: A challenge for new methodology.Chem. Soc. Rev.198211214117010.1039/cs9821100141
    [Google Scholar]
  57. NegishiE. CopéretC. MaS. LiouS.Y. LiuF. Cyclic carbopalladation. a versatile synthetic methodology for the construction of cyclic organic compounds.Chem. Rev.199696136539410.1021/cr950020x11848757
    [Google Scholar]
  58. DongM. TongX. Access to cyclopentenone via Pd(0)-catalyzed reductive cyclization of (Z)-5-Iodo-4-pentenenitrile.Org. Lett.202426135035410.1021/acs.orglett.3c0399938153094
    [Google Scholar]
  59. PatelV.K.D. SenJ. PatelC.N. Antimicrobial and antifungal screening of indanone acetic acid derivatives.J. Chem. Pharm. Res.2010225056
    [Google Scholar]
  60. ParveenN. SekarG. Palladium nanoparticles‐catalyzed synthesis of indanone derivatives via intramolecular reductive Heck reaction.Adv. Synth. Catal.2019361194581459510.1002/adsc.201900752
    [Google Scholar]
  61. QinX. Yao LeeM.W. Zhou, J.S. Asymmetric hydroarylation of enones via nickel-catalyzed 5- endo-trig cyclization.Org. Lett.201921155990599410.1021/acs.orglett.9b0213031339044
    [Google Scholar]
  62. SaleemM. KimH.J. AliM.S. LeeY.S. An update on bioactive plant lignans.Nat. Prod. Rep.200522669671610.1039/b514045p16311631
    [Google Scholar]
  63. AdlercreutzH. Lignans and human health.Crit. Rev. Clin. Lab. Sci.2007445-648352510.1080/1040836070161294217943494
    [Google Scholar]
  64. XuW.H. ZhaoP. WangM. LiangQ. Naturally occurring furofuran lignans: structural diversity and biological activities.Nat. Prod. Res.20193391357137310.1080/14786419.2018.147446729768037
    [Google Scholar]
  65. SenB. RoyS. GaraiS. RoyS. AnoopA. HajraS. Stereochemistry of the benzylidene γ-butyrolactone dictates the reductive Heck cyclization mode in the asymmetric synthesis of aryltetralin lignans: a detailed experimental and theoretical study.J. Org. Chem.20228763910392110.1021/acs.joc.1c0217435130698
    [Google Scholar]
  66. WileyP.F. ElrodD.W. HouserD.J. RichardF.A. Structure-activity relationships of nogalamycin analogs.J. Med. Chem.198225556056710.1021/jm00347a0167086843
    [Google Scholar]
  67. JoyceR.P. ParvezM. WeinrebS.M. An approach to the aryl-C-glycoside DEF-ring system of nogalamycin.Tetrahedron Lett.198627404885488810.1016/S0040‑4039(00)85088‑1
    [Google Scholar]
  68. VateleJ.M. Synthetic studies on nogalamycin: Stereospecific C-5 alkylations of a sugar derivative via claisen rearrangement and a new route to 1,1,4-trialkoxybuta-1,3-dienes.Tetrahedron198642164443445010.1016/S0040‑4020(01)87284‑7
    [Google Scholar]
  69. SmithT.H. WuH.Y. Synthetic approaches to nogalamycin-related anthracyclines. An approach to a Western synthon.J. Org. Chem.198752163566357310.1021/jo00392a013
    [Google Scholar]
  70. BatesM.A. SammesP.G. ThomsonG.A. Synthesis of the C-glycoside fragment of nogalamycin and some nogalamycin precursors.J. Chem. Soc., Perkin Trans. 119881113037304510.1039/p19880003037
    [Google Scholar]
  71. KawasakiM. MatsudaF. TerashimaS. Synthetic studies on nogalamycin congeners [1]1 chiral synthesis of the def-ring system of nogalamycin.Tetrahedron198844185695571110.1016/S0040‑4020(01)81431‑9
    [Google Scholar]
  72. PengR. VanNieuwenhzeM.S. Construction of the DEF-benzoxocin ring system of nogalamycin and menogaril via a reductive heck cyclization.J. Org. Chem.201984117318010.1021/acs.joc.8b0257530525623
    [Google Scholar]
  73. WuS.C. YoonD. ChinJ. van KirkK. SeethalaR. GollaR. HeB. HarrityT. KunselmanL.K. MorganN.N. PonticielloR.P. TaylorJ.R. ZeboR. HarperT.W. LiW. WangM. ZhangL. SleczkaB.G. NayeemA. SheriffS. CamacD.M. MorinP.E. EverlofJ.G. LiY.X. FerraroC.A. KieltykaK. ShouW. VathM.B. ZvyagaT.A. GordonD.A. RoblJ.A. Discovery of 3-hydroxy-4-cyano-isoquinolines as novel, potent, and selective inhibitors of human 11β-hydroxydehydrogenase 1 (11β-HSD1).Bioorg. Med. Chem. Lett.201121226693669810.1016/j.bmcl.2011.09.05821983444
    [Google Scholar]
  74. TimáriG. SoósT. HajósG. MessmerA. NacsaJ. MolnárJ. Synthesis of novel ellipticine analogues and their inhibition of Moloney leukaemia reverse transcriptase.Bioorg. Med. Chem. Lett.19966232831283610.1016/S0960‑894X(96)00521‑5
    [Google Scholar]
  75. KashiwadaY. AoshimaA. IkeshiroY. ChenY.P. FurukawaH. ItoigawaM. FujiokaT. MihashiK. CosentinoL.M. Morris-NatschkeS.L. LeeK.H. Anti-HIV benzylisoquinoline alkaloids and flavonoids from the leaves of Nelumbo nucifera, and structure–activity correlations with related alkaloids.Bioorg. Med. Chem.200513244344810.1016/j.bmc.2004.10.02015598565
    [Google Scholar]
  76. GaoY. ZongR. CampbellA. KulaN.S. BaldessariniR.J. NeumeyerJ.L. Synthesis and dopamine agonist and antagonist effects of (R)-(-)- and (S)-(+)-11-hydroxy-N-n-propylnoraporphine.J. Med. Chem.19883171392139610.1021/jm00402a0243385732
    [Google Scholar]
  77. XuX. FengH. Van der EyckenE.V. Microwave-assisted palladium-catalyzed reductive cyclization/ring-opening/aromatization cascade of oxazolidines to isoquinolines.Org. Lett.202123166578658210.1021/acs.orglett.1c0241634379418
    [Google Scholar]
  78. WegnerG. Electronic Materials: the Oligomer Approach.WeinheimWiley-VCH1998127
    [Google Scholar]
  79. Organic Light-Emitting Diodes—Synthesis Properties, and Applications.WeinheimWiley-VCH2006426
    [Google Scholar]
  80. MoniL. DenißenM. ValentiniG. MüllerT.J.J. RivaR. Diversity-oriented synthesis of intensively blue emissive 3-hydroxyisoquinolines by sequential Ugi four-component reaction/reductive Heck cyclization.Chemistry201521275376210.1002/chem.20140420925369792
    [Google Scholar]
  81. YangN. DongM. TongX. Pd(0)-catalyzed intramolecular reductive heck reaction of vinyl iodide and oxime ether: enantioselective synthesis of cyclic allylic n-alkoxy amine.Org. Lett.202224122457246110.1021/acs.orglett.2c0082335319217
    [Google Scholar]
  82. HumphreysP.G. BamboroughP. ChungC. CraggsP.D. GordonL. GrandiP. HayhowT.G. HussainJ. JonesK.L. LindonM. MichonA.M. RenauxJ.F. SucklingC.J. ToughD.F. PrinjhaR.K. Discovery of a potent, cell penetrant, and selective p300/CBP-associated factor (PCAF)/general control nonderepressible 5(GCN5) bromodomain chemical probe.J. Med. Chem.201760269570910.1021/acs.jmedchem.6b0156628002667
    [Google Scholar]
  83. ImaedaY. TokuharaH. FukaseY. KanagawaR. KajimotoY. KusumotoK. KondoM. SnellG. BehnkeC.A. KuroitaT. Discovery of TAK-272: a novel, potent, and orally active renin inhibitor.ACS Med. Chem. Lett.201671093393810.1021/acsmedchemlett.6b0025127774132
    [Google Scholar]
  84. MartinezA. GilC. Privileged scaffolds in medicinal chemistry. In: RSC Drug Discovery Series.RSC publishing2016231261
    [Google Scholar]
  85. BenoB.R. YeungK.S. BartbergerM.D. PenningtonL.D. MeanwellN.A. A survey of the role of noncovalent sulfur interactions in drug design.J. Med. Chem.201558114383443810.1021/jm501853m25734370
    [Google Scholar]
  86. MotherwellW.B. MorenoR.B. PavlakosI. ArendorfJ.R.T. ArifT. TizzardG.J. ColesS.J. AlievA.E. Noncovalent interactions of π systems with sulfur: The atomic chameleon of molecular recognition.Angew. Chem.201813051207121210.1002/ange.201708485
    [Google Scholar]
  87. LopesA. B. WagnerP. GuliaM. Synthesis of benzimidazole-fused medium-sized n,sheterocycles via palladium-catalyzed cyclizations.. Eur J. O. C.201961316137010.1002/ejoc.201801686
    [Google Scholar]
  88. Janatian GhazviniH. MüllerT.J.J. RomingerF. BalalaieS. Highly substituted medium-sized ring-fused azocinoquinoline scaffolds by post-ugi-4CR reductive carbopalladation cyclization.J. Org. Chem.20198417107401074810.1021/acs.joc.9b0126931359755
    [Google Scholar]
  89. PeshkovA.A. PeshkovV.A. PereshivkoO.P. Van der EyckenE.V. Diversification of the 3-benzazepine scaffold applying ugi/reductive heck sequence.Tetrahedron201571233863387110.1016/j.tet.2015.04.022
    [Google Scholar]
  90. KametaniT. FukumotoK. Synthesis of benzazepine alkaloids and related compounds.Heterocycles1975311931100410.3987/R‑1975‑11‑0931
    [Google Scholar]
  91. KawaseM. SaitoS. MotohashiN. Chemistry and biological activity of new 3-benzazepines.Int. J. Antimicrob. Agents200014319320110.1016/S0924‑8579(99)00155‑710773487
    [Google Scholar]
  92. DonetsP.A. PhD Dissertation, University of Leuven (KU Leuven),2011
    [Google Scholar]
  93. PeshkovV.A. PhD Dissertation, University of Leuven (KU Leuven),2013
    [Google Scholar]
  94. HarrisonB. CrewsP. The structure and probable biogenesis of helianane, a heterocyclic sesquiterpene, from the indo-pacific sponge Haliclona? fascigera.J. Org. Chem.19976282646264810.1021/jo962175q11671613
    [Google Scholar]
  95. ArnoneA. NasiniG. PanzeriW. PavaO.V. MalpezziL. Acremine G, dimeric metabolite from cultures of Acremonium byssoides A20.J. Nat. Prod.200871114614910.1021/np070413e18154270
    [Google Scholar]
  96. MacíasF.A. VarelaR.M. TorresA. MolinilloJ.M.G. FronczekF.R. Novel sesquiterpene from bioactive fractions of cultivar sunflowers.Tetrahedron Lett.199334121999200210.1016/S0040‑4039(00)91986‑5
    [Google Scholar]
  97. SteglichW. Slime moulds (Myxomycetes) as a source of new biologically active metabolites.Pure Appl. Chem.198961328128810.1351/pac198961030281
    [Google Scholar]
  98. FuL. HuangX. LaiZ. HuY. LiuH. CaiX. A new 3-benzylchroman derivative from Sappan lignum (Caesalpinia sappan).Molecules20081381923193010.3390/molecules1308192318794793
    [Google Scholar]
  99. ChattopadhyayS.K. RoyS.P. GhoshD. BiswasG. Synthesis of] oxepine-, oxocine- and azepine-annulated carbazole derivatives by combined Claisen rearrangement and diene/enyne metathesis.Tetrahedron Lett.200647386895689810.1016/j.tetlet.2006.07.045
    [Google Scholar]
  100. GhoshT. Regioselective access of alkylidendibenzo[c,f]oxocine framework via cyclocarbopalladation/cross-coupling cascade reactions and reductive Heck strategy.New J. Chem.20174182927293310.1039/C6NJ03825E
    [Google Scholar]
  101. GhoshT. Nickel-catalyzed regioselective access to dibenzo[c,f]oxocine framework via reductive Heck reaction.Synth. Commun.201848111338134510.1080/00397911.2018.1445865
    [Google Scholar]
  102. MondalS. DebnathS. Regioselective and stereoselective synthesis of pyridine‐fused benzoxepine derivatives by intramolecular reductive heck cyclization. [1]J. Heterocycl. Chem.2016531808810.1002/jhet.2357
    [Google Scholar]
  103. CoreyE.J. CzakóB. KürtiL. Molecules and Medicine.Hoboken, NJJohn Wiley & Sons, Inc.2007245246
    [Google Scholar]
  104. MertenJ. HennigA. SchwabP. FröhlichR. TokalovS.V. GutzeitH.O. MetzP. A concise sultone route to highly oxygenated 1,10‐seco‐eudesmanolides - enantioselective total synthesis of the antileukemic sesquiterpene lactones(-)‐eriolanin and (-)‐eriolangin.Eur. J. Org. Chem.2006200651144116110.1002/ejoc.200500739
    [Google Scholar]
  105. Le FlohicA. MeyerC. CossyJ. Reactivity of unsaturated sultones synthesized from unsaturated alcohols by ring-closing metathesis. Application to the racemic synthesis of the originally proposed structure of mycothiazole.Tetrahedron200662389017903710.1016/j.tet.2006.07.010
    [Google Scholar]
  106. Le FlohicA. MeyerC. CossyJ. Total synthesis of (+/-)-mycothiazole and formal enantioselective approach.Org. Lett.20057233934210.1021/ol047603q15646992
    [Google Scholar]
  107. TogniA. VenanziL.M. LägeM. KrebsB. Nitrogen donors in organometallic chemistry and homogeneous catalysis.Angew. Chem. Int. Ed. Engl.199433549752610.1002/anie.199404971
    [Google Scholar]
  108. GrandaneA. TancM. ZalubovskisR. SupuranC.T. Synthesis of 6-tetrazolyl-substituted sulfocoumarins acting as highly potent and selective inhibitors of the tumor-associated carbonic anhydrase isoforms IX and XII.Bioorg. Med. Chem.20142251522152810.1016/j.bmc.2014.01.04324513186
    [Google Scholar]
  109. TarsK. VulloD. KazaksA. LeitansJ. LendsA. GrandaneA. ZalubovskisR. ScozzafavaA. SupuranC.T. Sulfocoumarins (1,2-benzoxathiine-2,2-dioxides): a class of potent and isoform-selective inhibitors of tumor-associated carbonic anhydrases.J. Med. Chem.201356129330010.1021/jm301625s23241068
    [Google Scholar]
  110. PostelD. Van NhienA.N. MarcoJ.L. Chemistry of sulfonate‐ and sulfonamide‐stabilized carbanions − The CSIC reactions.Eur. J. Org. Chem.20032003193713372610.1002/ejoc.200300170
    [Google Scholar]
  111. MondalS. DebnathS. DasB. Synthesis of seven-membered fused sultones by reductive Heck cyclization: an investigation for stereochemistry through DFT study.Tetrahedron201571347648610.1016/j.tet.2014.11.068
    [Google Scholar]
  112. SilvestriR. MarfèG. ArticoM. La ReginaG. LavecchiaA. NovellinoE. MorganteM. Di StefanoC. CatalanoG. FilomeniG. AbruzzeseE. CirioloM.R. RussoM.A. AmadoriS. CirilliR. La TorreF. Sinibaldi SalimeiP. Pyrrolo[1,2-b][1,2,5]benzothiadiazepines (PBTDs): A new class of agents with high apoptotic activity in chronic myelogenous leukemia K562 cells and in cells from patients at onset and who were imatinib-resistant.J. Med. Chem.200649195840584410.1021/jm060271616970408
    [Google Scholar]
  113. LebegueN. GalletS. FlouquetN. CaratoP. PfeifferB. RenardP. LéonceS. PierréA. ChavatteP. BerthelotP. Novel benzopyridothiadiazepines as potential active antitumor agents.J. Med. Chem.200548237363737310.1021/jm050389716279796
    [Google Scholar]
  114. JoardarS. DasS. ChakravortyS. Palladium-mediated reductive heck cyclization for the formation of tricyclic sultams.Synlett201426335936210.1055/s‑0034‑1379427
    [Google Scholar]
  115. ChakravortyS. KunduM. RoyB. MitraT. JoardarS. MajumdarM. Palladium-mediated reductive heck cyclization for the synthesis of fused retinoid derivatives.SynOpen202371586410.1055/a‑2022‑3227
    [Google Scholar]
  116. GudasL.J. SpornM.B. RobertsA.B. The Retinoids; Sporn, M.B.; Roberts, A.B. GoodmanD.S. New YorkRaven Press1996443520
    [Google Scholar]
  117. RobertsA.B. SpornM.B. The Retinoids; Sporn, M.B.; Roberts, A.B. GoodmanD.S. OrlandoAcademic Press198420928610.1016/B978‑0‑12‑658102‑7.50012‑9
    [Google Scholar]
  118. UmemiyaH. FukasawaH. EbisawaM. EyrollesL. KawachiE. EisenmannG. GronemeyerH. HashimotoY. ShudoK. KagechikaH. Regulation of retinoidal actions by diazepinylbenzoic acids. Retinoid synergists which activate the RXR-RAR heterodimers.J. Med. Chem.199740264222423410.1021/jm97043099435893
    [Google Scholar]
  119. LiY. HashimotoY. AgadirA. KagechikaH. ZhangX. Identification of a novel class of retinoic acid receptor beta-selective retinoid antagonists and their inhibitory effects on AP-1 activity and retinoic acid-induced apoptosis in human breast cancer cells.J. Biol. Chem.199927422153601536610.1074/jbc.274.22.1536010336422
    [Google Scholar]
  120. CrawleyS.L. FunkR.L. A synthetic approach to nomofungin/communesin B.Org. Lett.20035183169317110.1021/ol034407v12943379
    [Google Scholar]
  121. PompeoM.M. CheahJ.H. MovassaghiM. Total synthesis and anti-cancer activity of all known communesin alkaloids and related derivatives.J. Am. Chem. Soc.201914136144111442010.1021/jacs.9b0739731422662
    [Google Scholar]
  122. YamadaF. MakitaY. SuzukiT. SomeiM. A total and practical synthesis of ergot alkaloid, (.+-.)-aurantioclavine.Chem. Pharm. Bull. (Tokyo)19853352162216310.1248/cpb.33.2162
    [Google Scholar]
  123. NakanoS. HamadaY. NemotoT. Enantioselective formal synthesis of (−)-aurantioclavine using Pd-catalyzed cascade cyclization and organocatalytic asymmetric aziridination.Tetrahedron Lett.201859876076210.1016/j.tetlet.2018.01.033
    [Google Scholar]
  124. ZamanM. HasanM. PeshkovA.A. PuzykA. WangY. LimC.K. PereshivkoO.P. PeshkovV.A. Diversification of 4-bromo-1H-indole-3-carbaldehyde-derived Ugi adducts: Access to the azepino[3,4,5-cd]indoles and spiroindolines.Tetrahedron Lett.202313015476915477510.1016/j.tetlet.2023.154769
    [Google Scholar]
  125. WangB. GaoJ.K. SunS. ShenZ.L. YangY.F. LiangR.X. JiaY.X. Pd-catalyzed asymmetric intramolecular dearomatizing reductive heck reaction of indoles.Org. Lett.202426183739374310.1021/acs.orglett.4c0077538679883
    [Google Scholar]
/content/journals/coc/10.2174/0113852728323915240816093254
Loading
/content/journals/coc/10.2174/0113852728323915240816093254
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): catalytic cycle; heterocycles; medium size; nickel catalyst; palladium; Reductive heck
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test