Skip to content
2000
Volume 29, Issue 4
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Di--butyl peroxide (DTBP) is one of the most widely used organic peroxides in a variety of oxidative transformations. The main factors contributing to the increasing use of DTBP are its affordability, minimal environmental impact, great effectiveness, and capacity to substitute scarce or dangerous heavy metal oxidants. We have reviewed critically and succinctly the noteworthy applications of DTBP in heterocyclic ring constructions from 2014 onwards in this decennial update. The main components of this evaluation are the pros and cons of its use, the scope of a synthetic organic transformation, and mechanistic logistics.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728322422240816060345
2024-09-09
2025-01-18
Loading full text...

Full text loading...

References

  1. RajanBabu,T.V. SimpkinsNigel S. 1,1-Di-tert-butyl Peroxide.In: e-EROS encyclopedia of reagents for organic synthesis; John Wiley & Sons200510.1002/047084289X.rd066.pub2
    [Google Scholar]
  2. PritchardH.O. ClothierP.Q.E. Anaerobic operation of an internal combustion engine.J. Chem. Soc. Chem. Commun.198620201529153010.1039/c39860001529
    [Google Scholar]
  3. KachotP.K. VyasD.K. ChavdaS.K. Effect of di-tert butyl peroxide on diesel engine performance fuelled by biodiesel blends.Int. J. Environ. Clim. Change20241419711910.9734/ijecc/2024/v14i13813
    [Google Scholar]
  4. MaiaD.L.H. FernandesF.A.N. Production of castor oil maleate using di-tert-butyl peroxide as free radical catalyst.Braz. J. Chem. Eng.201835269970810.1590/0104‑6632.20180352s20160125
    [Google Scholar]
  5. VaralaR. SeemaV. Recent applications of TEMPO in organic synthesis and catalysis.SynOpen20237340841310.1055/a‑2155‑2950
    [Google Scholar]
  6. VaralaR. SeemaV. AlamM.M. DubasiN. VummadiR.D. IBX in organic synthesis: A septennial review.Curr. Org. Synth.202421560766410.2174/011570179426325223092407403537861006
    [Google Scholar]
  7. AlamM.M. HussienM. BollikollaH.B. SeemaV. DubasiN. AmanullahM. VaralaR. Applications of phenyliodine(III) diacetate in heterocyclic ring formations: An update from 2015 to date.J. Heterocycl. Chem.20236081326135510.1002/jhet.4627
    [Google Scholar]
  8. AlamM.M. SeemaV. DubasiN. KurraM. VaralaR. Applications of polymethylhydrosiloxane (PMHS) in organic synthesis- Covering up to march 2022.Mini Rev. Org. Chem.202320770873410.2174/1570193X20666221021104906
    [Google Scholar]
  9. VittalS. Mujahid AlamM. HussienM. AmanullahM. PisalP.M. RaviV. Applications of phenyliodine(III)diacetate in C-H functionalization and hetero-hetero bond formations: A septennial update.ChemistrySelect202381e20220424010.1002/slct.202204240
    [Google Scholar]
  10. VaralaR. SeemaV. DubasiN. Phenyliodine(III)diacetate (PIDA): Applications in organic synthesis.Organics20234114010.3390/org4010001
    [Google Scholar]
  11. AlamM.M. BollikollaH.B. AmanullahM. HusseinM. VaralaR. Phenyliodine(III)diacetate (PIDA): Applications in rearrangement/migration reactions.Curr. Org. Chem.20232729310710.2174/1385272827666230330105241
    [Google Scholar]
  12. VaralaR. DubasiN. SeemaV. KotraV. Sodium periodate (NaIO4) in organic synthesis.SynOpen20237454855410.1055/a‑2183‑3678
    [Google Scholar]
  13. VaralaR. SeemaV. AlamM.M. AmanullahM. DubasiN. Dess-Martin periodinane (DMP) in organic synthesis-A septennial update (2015-till Date).Curr. Org. Chem.202327171504153010.2174/0113852728262311231012060626
    [Google Scholar]
  14. VaralaR. SeemaV. AmanullahM. RamanaiahS. AlamM.M. Recent advances in hypervalent iodine reagents and m-CPBA mediated oxidative transformations.Curr. Org. Chem.202428748950910.2174/0113852728296345240215111730
    [Google Scholar]
  15. VaralaR. SeemaV. HusseinM. IsmailM.A. AlamM.M. Metal-free oxidations with m-CPBA: An octennial update.Mini Rev. Org. Chem.20242110.2174/0118756298299464240402045438
    [Google Scholar]
  16. AlsibaeeA.M. Al-YousefH.M. Al-SalemH.S. Quinazolinones, the winning horse in drug discovery.Molecules202328397810.3390/molecules2803097836770645
    [Google Scholar]
  17. ZhaoD. WangT. LiJ.X. Metal-free oxidative synthesis of quinazolinones via dual amination of sp3 C-H bonds.Chem. Commun. 201450496471647410.1039/C4CC02648A24816567
    [Google Scholar]
  18. Raji ReddyC. NeeliveettilA. AjaykumarU. PunnaN. NeuvilleL. MassonG. Access to N-fused quinazolinones by radical-promoted cascade annulations of alkenyl N-cyanamides with aromatic aldehydes.J. Org. Chem.202489107115712410.1021/acs.joc.4c0049438691342
    [Google Scholar]
  19. ZouG. WangX. Visible-light induced di- and trifluoromethylation of Nbenzamides with fluorinated sulfones for the synthesis of CF2H/CF3- containing isoquinolinediones. Org. Biomol. Chem.201715418748875410.1039/c7ob02226c28991964
    [Google Scholar]
  20. KennedyS.H. SchaeffM.N. KlumppD.A. Superelectrophiles in synthesis: Preparation of aromatic imides.J. Org. Chem.20198421141331414010.1021/acs.joc.9b0143731571485
    [Google Scholar]
  21. LiL. ZhaoY.L. WangH. LiY.J. XuX. LiuQ. Base-catalyzed bicyclization of dialkyl glutaconates with cinnamoylacetamides: A synthetic strategy for isoquinolinedione derivatives.Chem. Commun.201450496458646010.1039/c3cc46931j24812656
    [Google Scholar]
  22. MaH. YuT. YouS. ZhangM.Z. DengC. Synthesis of nitro‐containing isoquinoline‐1,3‐diones with tert‐butyl nitrite.J. Heterocycl. Chem.202461233133510.1002/jhet.4762
    [Google Scholar]
  23. LiJ.Z. MeiL. CaiX.E. ZhangC.C. CaoT.T. HuangX.J. LiuY.L. WeiW-T. Transition-metal-free radical cyclization of 2-arylbenzoimi-dazoles with unactivated alkanes via C(sp3)-H functionalizations in aqueous media.Adv. Synth. Catal.2022364122080208510.1002/adsc.202200272
    [Google Scholar]
  24. LvK.H. ChenL. ZhaoK. YangJ.M. YanS.J. Cu-Catalyzed decarboxylative annulation of N-phenylglycines with maleimides: Synthesis of 1H-pyrrolo[3,4-c]quinoline-1,3(2H)-diones.J. Org. Chem.20238842358236610.1021/acs.joc.2c0275736753732
    [Google Scholar]
  25. ManfroniG. CannalireR. BarrecaM.L. Kaushik-BasuN. LeyssenP. WinquistJ. IraciN. ManvarD. PaeshuyseJ. GuhamazumderR. BasuA. SabatiniS. TabarriniO. DanielsonU.H. NeytsJ. CecchettiV. The versatile nature of the 6-aminoquinolone scaffold: Identification of submicromolar hepatitis C virus NS5B inhibitors.J. Med. Chem.20145751952196310.1021/jm401362f24131104
    [Google Scholar]
  26. ZhiY. GaoL.X. JinY. TangC.L. LiJ.Y. LiJ. LongY.Q. 4-Quinolone-3-carboxylic acids as cell-permeable inhibitors of protein tyrosine phosphatase 1B.Bioorg. Med. Chem.201422143670368310.1016/j.bmc.2014.05.02824906513
    [Google Scholar]
  27. MphahleleM.J. Synthesis of 2‐arylquinolin‐4(1 H)‐ones and their transformation to N‐alkylated and O‐alkylated derivatives.J. Heterocycl. Chem.201047111410.1002/jhet.279
    [Google Scholar]
  28. LeeS.B. JangY. AhnJ. ChunS. OhD.C. HongS. One-pot synthesis of 4-quinolone via iron-catalyzed oxidative coupling of alcohol and methyl arene.Org. Lett.202022218382838610.1021/acs.orglett.0c0301133058675
    [Google Scholar]
  29. KhetmalisY.M. ShivaniM. MurugesanS. Chandra SekharK.V.G. Oxindole and its derivatives: A review on recent progress in biological activities.Biomed. Pharmacother.202114111184210.1016/j.biopha.2021.11184234174506
    [Google Scholar]
  30. MondalB. RoyB. Di-tert-butyl peroxide (DTBP) promoted dehydrogenative coupling: an expedient and metal-free synthesis of oxindoles via intramolecular C(sp2)–H and C(sp3)–H bond activation.RSC Advances2015585691196912310.1039/C5RA09055E
    [Google Scholar]
  31. BrittonR. GouverneurV. LinJ.H. MeanwellM. NiC. PupoG. XiaoJ.C. HuJ. Contemporary synthetic strategies in organofluorine chemistry.Nat. Rev. Methods Primers2021114710.1038/s43586‑021‑00042‑1
    [Google Scholar]
  32. TangS. LiZ.H. WangM.W. LiZ.P. ShengR.L. Metal-free cascade cyclization of alkenes toward perfluorinated oxindoles.Org. Biomol. Chem.201513185285528810.1039/C5OB00454C25858623
    [Google Scholar]
  33. StuderA. CurranD.P. Catalysis of radical reactions: A radical chemistry perspective.Angew. Chem. Int. Ed.20165515810210.1002/anie.20150509026459814
    [Google Scholar]
  34. DuanX.Y. YangX.L. JiaP.P. ZhangM. HanB. Hydrazonyl radical-participated tandem reaction: A strategy for the synthesis of pyrazoline-functionalized oxindoles.Org. Lett.201517246022602510.1021/acs.orglett.5b0300326641278
    [Google Scholar]
  35. WuB. YoshikaiN. Recent developments in synthetic methods for benzo[b]heteroles.Org. Biomol. Chem.201614245402541610.1039/C6OB00219F26892101
    [Google Scholar]
  36. LiJ. ZhangW.W. WeiX.J. HaoW.J. LiG. TuS.J. JiangB. Synthesis of tribenzo[b,e,g]phosphindole oxides via radical bicyclization cascades of o-arylalkynylanilines.Org. Lett.201719174512451510.1021/acs.orglett.7b0207128832169
    [Google Scholar]
  37. DhanyaT.M. Anjali KrishnaG. SavithaD.P. ShantyA.A. DivyaK.M. PriyaS.K. MohananP.V. A review on the synthesis and biological relevance of benzo[ b]thiophene derivatives.Phosphorus Sulfur Silicon Relat. Elem.2023198428329910.1080/10426507.2022.2145476
    [Google Scholar]
  38. YangD. WangH. YanK. ZhangM. WeiW. LiuY. TianL. Facile access to benzothiophenes through metal-free iodine-catalyzed intermolecular cyclization of thiophenols and alkynes.Synlett201526131890189410.1055/s‑0034‑1378841
    [Google Scholar]
  39. KeriR.S. PatilM.R. PatilS.A. BudagumpiS. A comprehensive review in current developments of benzothiazole-based molecules in medicinal chemistry.Eur. J. Med. Chem.20158920725110.1016/j.ejmech.2014.10.05925462241
    [Google Scholar]
  40. YadavK.P. RahmanM.A. NishadS. MauryaS.K. AnasM. MujahidM. Synthesis and biological activities of benzothiazole derivatives: A review.Intelligent Pharmacy20231312213210.1016/j.ipha.2023.06.001
    [Google Scholar]
  41. LuoK. YangW.C. WeiK. LiuY. WangJ.K. Wu, L. -tert-butyl peroxide-mediated radical C(sp2/sp3)-S bond cleavage and group-transfer cyclization.Org. Lett.201921197851785610.1021/acs.orglett.9b0283731524412
    [Google Scholar]
  42. SoniS. SahibaN. TeliS. TeliP. AgarwalL.K. AgarwalS. Advances in the synthetic strategies of benzoxazoles using 2-aminophenol as a precursor: An up-to-date review.RSC Advances20231334240932411110.1039/D3RA03871H37577091
    [Google Scholar]
  43. SafaeiM. ForoughiM.M. EbrahimpoorN. JahaniS. OmidiA. KhatamiM. A review on metal-organic frameworks: Synthesis and applications.Trends Analyt. Chem.201911840142510.1016/j.trac.2019.06.007
    [Google Scholar]
  44. GanguK.K. JonnalagaddaS.B. A review on metal-organic frameworks as congenial heterogeneous catalysts for potential organic transformations.Front Chem.2021974761510.3389/fchem.2021.74761534976945
    [Google Scholar]
  45. SudikA.C. CôtéA.P. YaghiO.M. Metal-organic frameworks based on trigonal prismatic building blocks and the new “acs” topology.Inorg. Chem.20054492998300010.1021/ic050064g15847400
    [Google Scholar]
  46. DoanS.H. TranC.B. CaoA.L.N. LeN.T.H. PhanN.T.S. A new pathway to 2-arylbenzoxazoles and 2-arylbenzothiazoles via one-pot oxidative cyclization reactions under iron-organic framework catalysis.Catal. Lett.201914982053206310.1007/s10562‑019‑02747‑1
    [Google Scholar]
  47. PratapR. RamV.J. Natural and synthetic chromenes, fused chromenes, and versatility of dihydrobenzo[h]chromenes in organic synthesis.Chem. Rev.201411420104761052610.1021/cr500075s25303539
    [Google Scholar]
  48. FukuyamaT. NakashimaN. OkadaT. RyuI. Free-radical-mediated [2+2+1] cycloaddition of acetylenes, amidines, and CO leading to five-membered α,β-unsaturated lactams.J. Am. Chem. Soc.201313531006100810.1021/ja312654q23305378
    [Google Scholar]
  49. DengG.B. WangZ.Q. XiaJ.D. QianP.C. SongR.J. HuM. GongL.B. LiJ.H. Tandem cyclizations of 1,6-enynes with arylsulfonyl chlorides by using visible-light photoredox catalysis.Angew. Chem. Int. Ed.20135251535153810.1002/anie.20120838023288810
    [Google Scholar]
  50. LvL. LiZ. Iron-catalyzed radical [2+2+2] annulation of benzene-linked 1,7-enynes with aldehydes: Fused pyran compounds.Org. Lett.20161892264226710.1021/acs.orglett.6b0090227074431
    [Google Scholar]
  51. DiRoccoD.A. DykstraK. KrskaS. VachalP. ConwayD.V. TudgeM. Late-stage functionalization of biologically active heterocycles through photoredox catalysis.Angew. Chem. Int. Ed.201453194802480610.1002/anie.20140202324677697
    [Google Scholar]
  52. GuiJ. ZhouQ. PanC.M. YabeY. BurnsA.C. CollinsM.R. OrnelasM.A. IshiharaY. BaranP.S. C-H methylation of heteroarenes inspired by radical SAM methyl transferase.J. Am. Chem. Soc.2014136134853485610.1021/ja500783824611732
    [Google Scholar]
  53. DaiQ. YuJ-T. FengX. JiangY. YangH. ChengJ. Di-tert-butyl peroxide-promoted sequential methylation and intramolecular aromatization of isonitriles.Adv. Synth. Catal.2014356163341334610.1002/adsc.201400660
    [Google Scholar]
  54. DucD.X. Recent progress in the synthesis of furan.Mini Rev. Org. Chem.201916542245210.2174/1570193X15666180608084557
    [Google Scholar]
  55. MannaS. AntonchickA.P. Copper(I)-Catalyzed radical addition of acetophenones to alkynes in furan synthesis.Org. Lett.201517174300430310.1021/acs.orglett.5b0211426277912
    [Google Scholar]
  56. SuwinskiJ. SzczepankiewiczW. Comprehensive Heterocyclic Chemistry III; Katritzky, A.R.; Ramsden, C.A.; Scriven, E.F.V.; Taylor, R.J.K., Eds.; Elsevier: Amsterdam, 20085447459
    [Google Scholar]
  57. WangL. CaoJ. ChenQ. HeM. One-pot synthesis of 2,5-diaryl 1,3,4-oxadiazoles via di-tert-butyl peroxide promoted N-acylation of aryl tetrazoles with aldehydes.J. Org. Chem.20158094743474810.1021/acs.joc.5b0020725860162
    [Google Scholar]
  58. WuX. ZhaoY. ZhangG. GeH. Copper-catalyzed site-selective intramolecular amidation of unactivated C(sp3)-H bonds.Angew. Chem. Int. Ed.201453143706371010.1002/anie.20131126324590659
    [Google Scholar]
  59. VaralaR. Scope of selective heterocycles from organic and pharmaceutical perspective.United KingdomIntechOpen201616810.5772/60890
    [Google Scholar]
  60. Nozawa-KumadaK. KadokawaJ. KameyamaT. KondoY. Copper-catalyzed sp3 C-H aminative cyclization of 2-alkyl-N-arylbenzamides: An approach for the synthesis of N-Aryl-isoindolinones.Org. Lett.201517184479448110.1021/acs.orglett.5b0223526348773
    [Google Scholar]
  61. WeiH. LiB. WangN. MaY. YuJ. WangX. SuJ. LiuD. Development and application of indolines in pharmaceuticals.ChemistryOpen2023122e20220023510.1002/open.20220023536722823
    [Google Scholar]
  62. SilvaT.S. RodriguesM.T.Jr SantosH. ZeolyL.A. AlmeidaW.P. BarcelosR.C. GomesR.C. FernandesF.S. CoelhoF. Recent advances in indoline synthesis.Tetrahedron201975142063209710.1016/j.tet.2019.02.006
    [Google Scholar]
  63. LongJ. CaoX. ZhuL. QiuR. AuC.T. YinS.F. IwasakiT. KambeN. Intramolecular, site-selective, iodine-mediated, amination of unactivated (sp3)C-H bonds for the synthesis of indoline derivatives.Org. Lett.201719112793279610.1021/acs.orglett.7b0084628508641
    [Google Scholar]
  64. ShenC. ZhangP. SunQ. BaiS. HorT.S.A. LiuX. Recent advances in C–S bond formation via C–H bond functionalization and decarboxylation.Chem. Soc. Rev.201544129131410.1039/C4CS00239C25309983
    [Google Scholar]
  65. XiangJ.C. WangM. ChengY. WuA.X. Molecular iodine-mediated chemoselective synthesis of multisubstituted pyridines through catabolism and reconstruction behavior of natural amino acids.Org. Lett.2016181242710.1021/acs.orglett.5b0303726653580
    [Google Scholar]
  66. LiuH. DuanT. ZhangZ. XieC. MaC. One-Pot Synthesis of Pyrrolo[1,2-α]quinoxaline derivatives via a copper-catalyzed aerobic oxidative domino reaction.Org. Lett.201517122932293510.1021/acs.orglett.5b0116726052923
    [Google Scholar]
  67. XuK. WangZ. ZhangJ. YuL. TanJ. Cobalt-catalyzed decarboxylative acetoxylation of amino acids and arylacetic acids.Org. Lett.201517184476447810.1021/acs.orglett.5b0214226332283
    [Google Scholar]
  68. Ramana ReddyM. DarapaneniC.M. PatilR.D. KumariH. Recent synthetic methodologies for imidazo[1,5- a ]pyridines and related heterocycles. Org. Biomol. Chem., 202220173440346810.1039/d2ob00386d35394477
    [Google Scholar]
  69. WangH. XuW. XinL. LiuW. WangZ. XuK. Synthesis of 1,3-disubstituted imidazo[1,5-a]pyridines from amino acids via catalytic decarboxylative intramolecular cyclization.J. Org. Chem.20168193681368710.1021/acs.joc.6b0034327045422
    [Google Scholar]
  70. KulkarniM.R. GaikwadN.D. Recent advances in synthesis of 3,4-dihydroisoquinolin-1(2H)-one.ChemistrySelect20205278157818410.1002/slct.202002131
    [Google Scholar]
  71. PatilS.A. PatilR. PatilS.A. Recent developments in biological activities of indanones.Eur. J. Med. Chem.201713818219810.1016/j.ejmech.2017.06.03228667874
    [Google Scholar]
  72. XuZ.Q. WangC. LiL. DuanL. LiY.M. Construction of 3,4-dihydroisoquinolinones and indanones via DTBP-promoted oxidative coupling of N-allylbenzamides with aromatic aldehydes.J. Org. Chem.201883179718972810.1021/acs.joc.8b0124230106573
    [Google Scholar]
  73. BoströmJ. BrownD.G. YoungR.J. KeserüG.M. Expanding the medicinal chemistry synthetic toolbox.Nat. Rev. Drug Discov.2018171070972710.1038/nrd.2018.11630140018
    [Google Scholar]
  74. SanthoshkumarR. ChengC.H. Reaching green: Heterocycle synthesis by transition metal-catalyzed C-H functionalization in sustainable medium.Chemistry201925409366938410.1002/chem.20190102631116458
    [Google Scholar]
  75. LiG. MeanwellN.A. KrystalM.R. LangleyD.R. NaiduB.N. SivaprakasamP. LewisH. KishK. KhanJ.A. NgA. TrainorG.L. CianciC. DickerI.B. WalkerM.A. LinZ. ProtackT. DiscottoL. JenkinsS. GerritzS.W. PendriA. Discovery and optimization of novel pyrazolopyrimidines as potent and orally bioavailable allosteric HIV-1 integrase inhibitors.J. Med. Chem.20206352620263710.1021/acs.jmedchem.9b0168132081010
    [Google Scholar]
  76. GaoQ. SunZ. XiaQ. LiR. WangW. MaS. ChaiY. WuM. HuW. Ábrányi-BaloghP. KeserűG.M. HanX. Vinylation of α-aminoazoles with triethylamine: A general strategy to construct azolo[1,5-a]pyrimidines with a nonsubstituted ethylidene fragment.Org. Lett.20212372664266910.1021/acs.orglett.1c0057133733786
    [Google Scholar]
  77. CherukupalliS. KarpoormathR. ChandrasekaranB. HampannavarG.A. ThapliyalN. PalakolluV.N. An insight on synthetic and medicinal aspects of pyrazolo[1,5-a]pyrimidine scaffold.Eur. J. Med. Chem.201712629835210.1016/j.ejmech.2016.11.01927894044
    [Google Scholar]
  78. Arias-GómezA. GodoyA. PortillaJ. Functional pyrazolo[1,5-a]pyrimidines: Current approaches in synthetic transformations and uses as an antitumor scaffold.Molecules2021269270810.3390/molecules2609270834063043
    [Google Scholar]
  79. PhiloppesJ.N. KhedrM.A. HassanM.H.A. KamelG. LamieP.F. New pyrazolopyrimidine derivatives with anticancer activity: Design, synthesis, PIM-1 inhibition, molecular docking study and molecular dynamics.Bioorg. Chem.202010010394410.1016/j.bioorg.2020.10394432450389
    [Google Scholar]
  80. RenJ. DingS. LiX. BiR. ZhaoQ. An approach for the synthesis of pyrazolo[1,5-a]pyrimidines via Cu(II)-catalyzed [3+3] cyclization of saturated ketones with aminopyrazoles.J. Org. Chem.20218618127621277110.1021/acs.joc.1c0134334464147
    [Google Scholar]
  81. GaoQ. SunZ. WuM. GuoY. HanX. YanJ. HaM.N. LeQ.M. XuY. Di- tert -butyl peroxide as an effective two-carbon unit in oxidative radical cyclization toward 7-methylazolo[1,5-a]pyrimidines.Org. Chem. Front.20229113050305610.1039/D2QO00381C
    [Google Scholar]
  82. LeeS.H. Studies on the design and synthesis of new monocyclic β-lactams containing substructures of Penicillin G.Bull. Korean Chem. Soc.201435102990299410.5012/bkcs.2014.35.10.2990
    [Google Scholar]
  83. ChenM. BuurmaV. ShahM. FahimG. Evaluation of studies on extended versus standard infusion of beta-lactam antibiotics.Am. J. Health Syst. Pharm.201976181383139410.1093/ajhp/zxz15431505562
    [Google Scholar]
  84. GanZ. ZhangK. ShiP. ZhaoY. ZengR. Copper(i)-catalyzed radical carboamination reaction of 8-aminoquinoline-oriented buteneamides with chloroform: synthesis of-β-lactams.RSC Advances20211145280812808410.1039/d1ra05233k35480755
    [Google Scholar]
  85. ChenY.H. YangJ. LuZ.H. ZhaoK.H. XieQ.Y. YanS.J. Synthesis of benzo[ b][1,5]diazocin-6(5 H)-one derivatives via the Cu-catalysed oxidative cyclization of 2-aryl-1 H -indoles with 1,1-enediamines.Chem. Commun. (Camb.)20235991217122010.1039/D2CC06388C36629537
    [Google Scholar]
  86. ChenL. LiY.D. LvY. LuZ.H. YanS.J. Cu-Catalyzed decarboxylative annulation of N -substituted glycines with 3-formylchromones: synthesis of functionalized chromeno[2,3-b]pyrrol-4(1H)-ones.Chem. Commun. (Camb.)20225873101941019710.1039/D2CC03816A36000356
    [Google Scholar]
  87. LiuR.H. WangZ.Q. WeiB.Y. ZhangJ.W. ZhouB. HanB. Cu-Catalyzed aminoacyloxylation of unactivated alkenes of unsaturated hydrazones with manifold carboxylic acids toward ester-functionalized pyrazolines.Org. Lett.201820144183418610.1021/acs.orglett.8b0150729979047
    [Google Scholar]
/content/journals/coc/10.2174/0113852728322422240816060345
Loading
/content/journals/coc/10.2174/0113852728322422240816060345
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test