Skip to content
2000
Volume 29, Issue 3
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Pyrano[3,2-]quinolone and pyrano[2,3-]quinoline, as promising molecules, have garnered more attention due to their interesting biological properties. This review dealt with the catalytic synthesis of the former candidates in the last 20 years. Multi-component reactions (MCRs) are synthetic routes that produce a single product from three or more reactants in a one-pot step procedure. We herein reported on the advantages of catalysis in synthesizing the target compounds using the MCR sequence. We also discussed the mechanism and explained the chosen catalyst's utility in the target molecules' selectivity. Finally, this recent review focuses on the biological applications of these molecules as anticancer, antimicrobial activities, anti-diabetic, anti-inflammatory, anti-Alzheimer, and antitubercular agents.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728331472240826071320
2024-09-05
2024-11-19
Loading full text...

Full text loading...

References

  1. Nishanth RaoR. JenaS. MukherjeeM. MaitiB. ChandaK. Green synthesis of biologically active heterocycles of medicinal importance: A review.Environ. Chem. Lett.20211943315335810.1007/s10311‑021‑01232‑9
    [Google Scholar]
  2. JampilekJ. Heterocycles in medicinal chemistry.Molecules20192421383910.3390/molecules24213839 31731387
    [Google Scholar]
  3. SinglaP. LuxamiV. PaulK. Triazine as a promising scaffold for its versatile biological behavior.Eur. J. Med. Chem.2015102395710.1016/j.ejmech.2015.07.037 26241876
    [Google Scholar]
  4. SinghD. KumarV. MalakarC.C. SinghV. Structural diversity attributed by aza-diels-alder reaction in synthesis of diverse quinoline scaffolds.Curr. Org. Chem.201923892095810.2174/1385272823666190423140805
    [Google Scholar]
  5. KumarV. ChaudharyS. MathurM. SwamiA.K. MalakarC.C. SinghV. A tandem approach towards diastereoselective synthesis of quinoline c‐3 tethered γ‐lactones.ChemistrySelect20183239940410.1002/slct.201702923
    [Google Scholar]
  6. GujjarappaR. VodnalaN. MalakarC.C. Comprehensive strategies for the synthesis of isoquinolines: Progress since 2008.Adv. Synth. Catal.2020362224896499010.1002/adsc.202000658
    [Google Scholar]
  7. KishoreP.S. GujjarappaR. PuttaV.P. PolinaS. SinghV. MalakarC.C. PujarP.P. Potassium tert‐butoxide‐mediated synthesis of 2‐aminoquinolines from alkylnitriles and 2‐aminobenzaldehyde derivatives.ChemistrySelect2022746e20220423810.1002/slct.202204238
    [Google Scholar]
  8. Satya KishoreP. GujjarappaR. Jagdishbhai PatelM. PolinaS. Kishore PuttaV.P.R. SinghV. MalakarC.C. Pralhad PujarP. A metal‐free] KOtBu‐mediated protocol towards the synthesis of quinolines, indenoquinolines and acridines.ChemistrySelect202494e20230489710.1002/slct.202304897
    [Google Scholar]
  9. KumarV. SinghD. GujjarappaR. MalakarC.C. SinghaV. Efficient approach towards the polysubstituted 4h-pyran hybrid quinolone derivatives and subsequent copper-catalyzed hydroxylation of haloarenes.Heterocycles2021102346547910.3987/COM‑20‑14383
    [Google Scholar]
  10. DeviN. GuptaA. GujjarappaR. MalakarC.C. SinghV. Synthesis of pyrazolo[4,3-c] quinolines and the cc bond cleavage during reductive cyclization.Heterocycles2021102470572210.3987/COM‑20‑14403
    [Google Scholar]
  11. KantK. BanerjeeS. PatelC.K. KalitaS. ReetuR. NaikP. AljaarN. MalakarC.C. Advances on catalytic approaches towards the synthesis of quinoline derivatives using povarov reaction.Heterocycl. Int. J. Rev. Commun. Heterocycl. Chem.2023106692596710.3987/REV‑23‑1004
    [Google Scholar]
  12. GrazianoG. StefanachiA. ContinoM. Prieto-DíazR. LigrestiA. KumarP. ScilimatiA. SoteloE. LeonettiF. Multicomponent reaction-assisted drug discovery: A time- and cost-effective green approach speeding up identification and optimization of anticancer drugs.Int. J. Mol. Sci.2023247658110.3390/ijms24076581 37047554
    [Google Scholar]
  13. ReddyT.R. ReddyG.R. ReddyL.S. MedaC.L. ParsaK.V. KumarK.S. LingappaY. PalM. Montmorillonite K-10 catalyzed green synthesis of 2,6-unsubstituted dihydropyridines as potential inhibitors of PDE4.Eur. J. Med. Chem.20136239540410.1016/j.ejmech.2012.12.052 23380174
    [Google Scholar]
  14. JohnS.E. GulatiS. ShankaraiahN. Recent advances in multi-component reactions and their mechanistic insights: A triennium review.Org. Chem. Front.20218154237428710.1039/D0QO01480J
    [Google Scholar]
  15. ReddyT.R. ReddyL.S. ReddyG.R. YarbagiK. LingappaY. RambabuD. KrishnaG.R. ReddyC.M. KumarK.S. PalM. Construction of a quinoline ring via a 3-component reaction in water: Crystal structure analysis and H-bonding patterns of a 2-aryl quinoline.Green Chem.2012147187010.1039/c2gc35256g
    [Google Scholar]
  16. AlyA.A. RamadanM. Abuo-RahmaG.E. ElshaierY.A. ElbastawesyM.A. BrownA.B. BräseS. Quinolones as prospective drugs: Their syntheses and biological applications.Adv. Heterocycl. Chem.202113514719610.1016/bs.aihch.2020.08.001
    [Google Scholar]
  17. ElshaierY.A. AlyA.A. El-AzizM.A. FathyH.M. BrownA.B. RamadanM. A review on the synthesis of heteroannulated quinolones and their biological activities.Mol. Divers.20222642341237010.1007/s11030‑021‑10332‑1 34698911
    [Google Scholar]
  18. RamadanM. Abd El-AzizM. ElshaierY.A. YoussifB.G. BrownA.B. FathyH.M. AlyA.A. Design and synthesis of new pyranoquinolinone heteroannulated to triazolopyrimidine of potential apoptotic antiproliferative activity.Bioorg. Chem.202010510439210.1016/j.bioorg.2020.104392 33137557
    [Google Scholar]
  19. El-AgrodyA.M. Abd-RabbohH.S. Al-GhamdiA.M. Synthesis, antitumor activity, and structure-activity relationship of some 4h-pyrano[3,2-h]quinoline and 7h-pyrimido[4′,5′:6,5]pyrano[3,2-h]quinoline derivatives.Med. Chem. Res.20132231339135510.1007/s00044‑012‑0142‑7
    [Google Scholar]
  20. CairnsH. CoxD. GouldK.J. IngallA.H. SuschitzkyJ.L. New antiallergic pyrano[3,2-g]quinoline-2,8-dicarboxylic acids with potential for the topical treatment of asthma.J. Med. Chem.198528121832184210.1021/jm00150a014 2999403
    [Google Scholar]
  21. WatpadeR. BholayA. TocheR. Synthesis of new pyrano‐fused quinolines as antibacterial and antimicrobial agents.J. Heterocycl. Chem.20175463434343910.1002/jhet.2966
    [Google Scholar]
  22. ShamsuddinM.A. AliA.H. ZakariaN.H. MohammatM.F. HamzahA.S. ShaameriZ. LamK.W. Mark-LeeW.F. AgustarH.K. Mohd Abd RazakM.R. LatipJ. HassanN.I. Synthesis, molecular docking, and antimalarial activity of hybrid 4-aminoquinoline-pyrano[2,3-c]pyrazole derivatives.Pharmaceuticals20211411117410.3390/ph14111174 34832956
    [Google Scholar]
  23. NesterovaI.N. AlekseevaL.M. AndreevaN.I. GolovinaS.M. GranikV.G. Synthesis and study the pharmacological activity of derivatives of 5-dimethylaminopyrano[3,2-c]quinolin-2-ones.Pharm. Chem. J.199529211111410.1007/BF02226521
    [Google Scholar]
  24. ChenI.S. TsaiI.W. TengC.M. ChenJ.J. ChangY.L. KoF.N. LuM.C. PezzutoJ.M. Pyranoquinoline alkaloids from Zanthoxylum simulans.Phytochemistry199746352552910.1016/S0031‑9422(97)00280‑X
    [Google Scholar]
  25. MadkourH. MahmoudM.R. SakrA. HabashyM. Synthesis and antibacterial activity of new 4 h -pyrano[3,2-h]quinolines and fused derivatives.Sci. Pharm.2001691335210.3797/scipharm.aut‑01‑05
    [Google Scholar]
  26. SolimanH.N. YahiaI.S. Synthesis and technical analysis of 6-butyl-3-[(4-chlorophenyl)diazenyl]-4-hydroxy-2h-pyrano[3,2-c]-quinoline-2,5(6h)-dione as a new organic semiconductor: Structural, optical and electronic properties.Dyes Pigments202017610819910.1016/j.dyepig.2020.108199
    [Google Scholar]
  27. ChenJ.J. ChenP.H. LiaoC.H. HuangS.Y. ChenI.S. New phenylpropenoids, bis(1-phenylethyl)phenols, bisquinolinone alkaloid, and anti-inflammatory constituents from Zanthoxylum integrifoliolum.J. Nat. Prod.20077091444144810.1021/np070186g 17822293
    [Google Scholar]
  28. CantrellC.L. SchraderK.K. MamonovL.K. SitpaevaG.T. KustovaT.S. DunbarC. WedgeD.E. Isolation and identification of antifungal and antialgal alkaloids from Haplophyllum sieversii.J. Agric. Food Chem.200553207741774810.1021/jf051478v 16190626
    [Google Scholar]
  29. UpadhyayK.D. DodiaN.M. KhuntR.C. ChaniaraR.S. ShahA.K. Evaluation and in vivo efficacy study of pyrano[3,2‐c]quinoline analogues as TNF‐α inhibitors.Chem. Biol. Drug Des.20199431647165510.1111/cbdd.13566 31112006
    [Google Scholar]
  30. ZamanA. AhmadI. PervaizM. AhmadS. KiranS. KhanM.A. GulzarT. KamalT. A novel synthetic approach for the synthesis of pyrano[3,2-c] quinolone-3carbaldehydes by using modified Vilsmeier Haack reaction, as potent antimicrobial agents.J. Mol. Struct.2019118022723610.1016/j.molstruc.2018.11.030
    [Google Scholar]
  31. KumariP. NarayanaC. DubeyS. GuptaA. SagarR. Stereoselective synthesis of natural product inspired carbohydrate fused pyrano[3,2-c]quinolones as antiproliferative agents.Org. Biomol. Chem.201816122049205910.1039/C7OB03186F 29411817
    [Google Scholar]
  32. Shwu-JenW. Ih-ShengC. Alkaloids from Zanthoxylum simulans.Phytochemistry19933461659166110.1016/S0031‑9422(00)90870‑7
    [Google Scholar]
  33. SaeedA.M. AbdouI.M. SalemA.A. GhattasM.A. AtatrehN. AlNeyadiS.S. Anti-cancer activity and molecular docking of some pyrano[3,2 8209;c]quinoline analogues.Open J. Med. Chem.202010111410.4236/ojmc.2020.101001
    [Google Scholar]
  34. ZhuJ. WangQ. WangM. Multicomponent reactions in organic synthesis.WeinheimWiley201411210.1002/9783527678174
    [Google Scholar]
  35. HeberD. BerghausT. Synthesis of 5 H‐[1]benzopyrano[4,3‐b]pyridin‐5‐ones containing an azacannabinoidal structure.J. Heterocycl. Chem.19943161353135910.1002/jhet.5570310610
    [Google Scholar]
  36. ButenschönI. MöllerK. HänselW. Angular methoxy-substituted furo- and pyranoquinolinones as blockers of the voltage-gated potassium channel Kv1.3.J. Med. Chem.20014481249125610.1021/jm001007u 11312924
    [Google Scholar]
  37. LeeY.R. KweonH.I. KohW.S. MinK.R. KimY. LeeS.H. One-pot preparation of pyranoquinolinones by ytterbium(iii) trifluoromethanesulfonate-catalyzed reactions: Efficient synthesis of flindersine, n-methylflindersine, and zanthosimuline natural products.Synthesis20012001121851185510.1055/s‑2001‑17516
    [Google Scholar]
  38. McLaughlinM.J. HsungR.P. Total syntheses of pyranoquinoline alkaloids: Simulenoline, huajiaosimuline, and (+/-)-7-demethoxyzanthodioline.J. Org. Chem.20016631049105310.1021/jo001368h 11430073
    [Google Scholar]
  39. Venkatesh KumarN. RajendranS.P. A one-pot synthesis of 4-methylpyrano[3,2-c]quinolin-2,5[6h]-diones.Heterocycl. Commun.2004104-528929410.1515/HC.2004.10.4‑5.289
    [Google Scholar]
  40. KappeT. The ‘pyrono route’ to 4-hydroxy-2-quinolones and 4-hydroxy-2-pyridones.Farmaco199954530931510.1016/S0014‑827X(99)00030‑0
    [Google Scholar]
  41. JungE.J. LeeY.R. LeeH.J. Iodine-catalyzed one-pot synthesis of 2h-pyrans by domino knoevenagel/6π-electrocylization.Bull. Korean Chem. Soc.200930112833283610.5012/bkcs.2009.30.11.2833
    [Google Scholar]
  42. LeeY.R. KimD.H. ShimJ.J. KimS.K. ParkJ.H. ChaJ.S. LeeC.S. One-pot synthesis of 2 h-pyrans by indium(iii) chloride-catalyzed reactions.efficient synthesis of pyranocoumarins, pyranophenalenones, and pyranoquinolinones.Bull. Korean Chem. Soc.2002237998100210.5012/bkcs.2002.23.7.998
    [Google Scholar]
  43. BagdiA.K. HajraA. Brønsted acidic ionic liquid catalyzed tandem reaction of 4-hydroxy-1-methyl-2-quinolone with chalcone: Regioselective synthesis of pyrano[3,2-c]quinolin-2-ones.RSC Advances2014444232872329110.1039/C4RA03221G
    [Google Scholar]
  44. IsakaM. TanticharoenM. KongsaereeP. ThebtaranonthY. Structures of cordypyridones A-D, antimalarial N-hydroxy- and N-methoxy-2-pyridones from the insect pathogenic fungus Cordyceps nipponica.J. Org. Chem.200166144803480810.1021/jo0100906 11442408
    [Google Scholar]
  45. HassaninH.M. IbrahimM.A. AlnamerY.A. Synthesis and antimicrobial activity of some novel 4-hydroxyquinolin-2(1H)-ones and pyrano[3,2-c] quinolinones from 3-(1-ethy1-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-3-oxopropanoic acid.Turk. J. Chem.201236568269910.3906/kim‑1111‑14
    [Google Scholar]
  46. FoudaA.M. YoussefA.M. AfifiT.H. MoraA. El-AgrodyA.M. Cell cycle arrest and induction of apoptosis of newly synthesized pyranoquinoline derivatives under microwave irradiation.Med. Chem. Res.201928566868010.1007/s00044‑019‑02325‑5
    [Google Scholar]
  47. JadhavC.K. NipateA.S. ChateA.V. GillC.H. β‐Cyclodextrin: An efficient supramolecular catalyst for the synthesis of pyranoquinolines derivatives under ultrasonic irradiation in water.Polycycl. Aromat. Compd.20224274224423910.1080/10406638.2021.1886125
    [Google Scholar]
  48. JungE.J. ParkB.H. LeeY.R. Environmentally benign, one-pot synthesis of pyrans by domino Knoevenagel/6π-electrocyclization in water and application to natural products.Green Chem.201012112003201110.1039/c0gc00265h
    [Google Scholar]
  49. VahediM.M. AsghariS. TajbakhshM. MohseniM. KhalilpourA. One-pot three-component synthesis of novel pyrano[3,2-e]pyrazolo[1,5-a]pyrimidines and investigation of their biological activities.J. Mol. Struct.2023128413544610.1016/j.molstruc.2023.135446
    [Google Scholar]
  50. ShabanlooA. Ghorbani-VagheiR. AlaviniaS. One-pot synthesis of pyranoquinoline derivatives using a new nanomagnetic catalyst supported on functionalized 4-aminopyridine (ap) silica.Org. Prep. Proced. Int.202052540240910.1080/00304948.2020.1779566
    [Google Scholar]
  51. NagaiahK. SreenuD. RaoR.S. VashishtaG. YadavJ.S. Phosphomolybdic acid-catalyzed efficient one-pot three-component aza-Diels-Alder reactions under solvent-free conditions: A facile synthesis of trans-fused pyrano-and furanotetrahydroquinolines.Tetrahedron Lett.200647264409441310.1016/j.tetlet.2006.04.085
    [Google Scholar]
  52. MulwadV.V. SuryanarayanV. Synthesis of some pyranoquinolone derivatives.Indian J. Heterocycl. Chem.199654281286
    [Google Scholar]
  53. UppalJ. MirP.A. ChawlaA. KumarN. KaurG. BediP.M. BhandariD.D. Pyranoquinolone derivatives: A potent multi‐targeted pharmacological scaffold.J. Heterocycl. Chem.202360336939110.1002/jhet.4581
    [Google Scholar]
  54. ArboledaA.D. MorenoL.M. AboniaR. Synthetic approaches for pyranoquinolines: A concise review.Curr. Org. Chem.202428859563510.2174/0113852728288581240125112724
    [Google Scholar]
  55. KadamK.R. WaghmareA.S. MuradeV.D. GuravS.S. WankhedeD.S. KambleV.T. Silica bonded bis(hydrogensulphato)benzene as a new, sustainable catalytic material for an efficient and aqueous based synthesis of 5-oxo-4 h-pyrano[3,2-c]quinolone scaffolds.Polycycl. Aromat. Compd.20234332524253910.1080/10406638.2022.2052120
    [Google Scholar]
  56. AnyaegbuC.E. ZhangH. XiaoJ. TaoM. MaN. ZhangW. Tertiary amine-bisquaternary ammonium functionalized polyacrylonitrile fiber for catalytic synthesis of pyran-annulated heterocycles.React. Funct. Polym.202217210520110.1016/j.reactfunctpolym.2022.105201
    [Google Scholar]
  57. KaminwarN.S. TekaleS.U. PokalwarR.U. KótaiL. PawarR.P. An efficient and rapid synthesis of 1,4-dihydropyrano[2,3-c]pyran and 1,4-dihydropyrano[2,3-c]quinoline derivatives using copper nanoparticles grafted on carbon microspheres.Polycycl. Aromat. Compd.20224274635464310.1080/10406638.2021.1950194
    [Google Scholar]
  58. VereshchaginA.N. ElinsonM.N. NasybullinR.F. RyzhkovF.V. BobrovskyS.I. BushmarinovI.S. EgorovM.P. One‐pot ‘on‐solvent’ multicomponent protocol for the synthesis of medicinally relevant 4h‐pyrano[3,2‐ c]quinoline scaffold.Helv. Chim. Acta20159881104111410.1002/hlca.201500026
    [Google Scholar]
  59. ElinsonM.N. NasybullinR.F. NikishinG.I. Electrocatalytic fast and efficient multicomponent approach to medicinally relevant pyrano[3,2-c]quinolone scaffold.J. Electrochem. Soc.20131607G3053G305710.1149/2.009307jes
    [Google Scholar]
  60. BaghbanianS.M. RezaeiN. TashakkorianH. Nanozeolite clinoptilolite as a highly efficient heterogeneous catalyst for the synthesis of various 2-amino-4H-chromene derivatives in aqueous media.Green Chem.20131512344610.1039/c3gc41302k
    [Google Scholar]
  61. MansourA.M. El-TaweelF.M. Abu El-EneinR.A. El-MenyawyE.M. Structural, optical, electrical and photoelectrical properties of 2-amino-4-(5-bromothiophen-2-yl)-5,6-dihydro-6-methyl-5-oxo-4h-pyrano[3,2-c] quinoline-3-carbonitrile films.J. Electron. Mater.201746126957696410.1007/s11664‑017‑5739‑7
    [Google Scholar]
  62. Khaleghi-AbbasabadiM. AzarifarD. Magnetic Fe3O4-supported sulfonic acid-functionalized graphene oxide (Fe3O4@GO-naphthalene-SO3H): A novel and recyclable nanocatalyst for green one-pot synthesis of 5-oxo-dihydropyrano[3,2-c]chromenes and 2-amino-3-cyano-1,4,5,6-tetrahydro-pyrano[3,2-c]quinolin-5-ones.Res. Chem. Intermed.20194542095211810.1007/s11164‑018‑03722‑y
    [Google Scholar]
  63. KassaeeM.Z. MotamediE. MajdiM. Magnetic Fe3O4-graphene oxide/polystyrene: Fabrication and characterization of a promising nanocomposite.Chem. Eng. J.2011172154054910.1016/j.cej.2011.05.093
    [Google Scholar]
  64. TashrifiZ. Rad-MoghadamK. MehrdadM. Catalytic performance of a new Brønsted acidic oligo(ionic liquid) in efficient synthesis of pyrano[3,2-c]quinolines and pyrano[2,3-d]pyrimidines.J. Mol. Liq.201724827828510.1016/j.molliq.2017.10.065
    [Google Scholar]
  65. Abbaspour-GilandehE. AzimiS.C. Rad-MoghadamK. Mohammadi-BarkchaiA.A. Green, efficient, and rapid procedure for the synthesis of pyrano[3,2-c]quinoline and pyrano[3,2-c]pyridone derivatives catalyzed by [BMIm]Cl..Iran. J. Catal.2013311520
    [Google Scholar]
  66. YaoM.J. GuanZ. HeY.H. Simple, catalyst-free, one-pot procedure for the synthesis of 2-amino-3-cyano-1,4,5,6-tetrahydropyrano[3,2-c]quinolin-5-one derivatives.Synth. Commun.201343152073207810.1080/00397911.2012.686647
    [Google Scholar]
  67. LeiM. MaL. HuL. A green, efficient, and rapid procedure for the synthesis of 2-amino-3-cyano-1,4,5,6-tetrahydropyrano[3,2-c]quinolin-5-one derivatives catalyzed by ammonium acetate.Tetrahedron Lett.201152202597260010.1016/j.tetlet.2011.03.061
    [Google Scholar]
  68. WangX. ZengZ. ShiD. WeiX. ZongZ. One‐step synthesis of 2‐amino‐3‐cyano‐4‐aryl‐1,4,5,6‐tetrahydropyrano[3,2‐c]quinolin‐5‐one derivatives using kf-al 2 o 3 as catalyst.Synth. Commun.200434163021302710.1081/SCC‑200026662
    [Google Scholar]
  69. PengY. SongG. HuangF. An efficient and recyclable catalytic system for one-pot synthesis of 4h-pyrans.Monatsh. Chem.2005136572773110.1007/s00706‑004‑0270‑y
    [Google Scholar]
  70. KhalafyJ. ArlanF.M. ChalanchiS.S. One‐pot, Three‐component Synthesis of a New Series of 2‐Amino‐4‐aroyl‐5‐oxo‐5,6‐dihydro‐2H‐pyrano[3,2‐ c]quinoline‐3‐carbonitrile in the Presence of SBA‐15 as a nanocatalyst.J. Heterocycl. Chem.201855114915310.1002/jhet.3017
    [Google Scholar]
  71. AlyA.A. El-NabyH.A.A. AhmedE.K. ShakerR.M. GedamyS.A. NiegerM. BräseS. El-HaleemL.E.A. Facile synthesis of new pyrano[3,2-c]quinolones via the reaction of quinolin-2-ones with ethene-1,2,3,4-tetracarbonitrile.Monatsh. Chem.2022153327728410.1007/s00706‑022‑02903‑1
    [Google Scholar]
  72. AsghariS. RamezaniS. MohseniM. Synthesis and antibacterial activity of ethyl 2-amino-6-methyl-5-oxo-4-aryl-5,6-dihydro-4h-pyrano[3,2-c]quino-line-3-carboxylate.Chin. Chem. Lett.201425343143410.1016/j.cclet.2013.12.010
    [Google Scholar]
  73. NadarajV. Thamarai SelviS. Pricilla BaiH. MohanS. Daniel ThangaduraiT. Microwave solvent-free condition synthesis and pharmacological evaluation of pyrano[3,2-c]quinolines.Med. Chem. Res.201221102902291010.1007/s00044‑011‑9810‑2
    [Google Scholar]
  74. Poursattar MarjaniA. KhalafyJ. FarajollahiA. Synthesis of ethyl 2‐amino‐4‐benzoyl‐5‐oxo‐5,6‐dihydro‐4h‐pyrano[3,2‐c]quinoline‐3‐carboxyla-tes by a one‐pot, three‐component reaction in the presence of TPAB.J. Heterocycl. Chem.201956126827410.1002/jhet.3404
    [Google Scholar]
  75. RadiniI.A. El-GogaryS.R. MostafaM.S. AlnageiB. MudarbishM. DashS. Ecofriendly and simple synthesis of pyrano[3,2-c]quinolone in water via an efficient one-pot three-component reaction.Eur. J. Chem.201891444810.5155/eurjchem.9.1.44‑48.1679
    [Google Scholar]
  76. BhupathiR. MadhuB. DeviB.R. ReddyC.V. DubeyP.K. DBU acetate mediated: One‐pot multi component syntheses of dihydropyrano[3,2‐c]quinolones.J. Heterocycl. Chem.20165361911191610.1002/jhet.2506
    [Google Scholar]
  77. HanL. HuX. ZhouZ. Diammonium hydrogen phosphate as a recyclable catalyst for the rapid and green synthesis of 2-amino-1,4,5,6-tetrahydropyrano[3,2-c]-quinolin-5-one derivatives.Polycycl. Aromat. Compd.2017371738010.1080/10406638.2015.1099551
    [Google Scholar]
  78. BalalaieS. AbdolmohammadiS. BijanzadehH.R. AmaniA.M. Diammonium hydrogen phosphate as a versatile and efficient catalyst for the one-pot synthesis of pyrano[2,3-d]pyrimidinone derivatives in aqueous media.Mol. Divers.2008122859110.1007/s11030‑008‑9079‑7 18512127
    [Google Scholar]
  79. BalalaieS. BararjanianM. HekmatS. SalehiP. Novel, efficient, and green procedure for the knoevenagel condensation catalyzed by diammonium hydrogen phosphate in water.Synth. Commun.200636172549255710.1080/00397910600781471
    [Google Scholar]
  80. ElagameyA. El-TaweelF. KhalilM. Studies on 2(1H)-quinolone derivatives: Synthetic access to pyrano[3,2-c]quinoline and 3-substituted quinoline derivatives. Sci J.Damietta Facul. Sci.201211334110.21608/sjdfs.2012.194258
    [Google Scholar]
  81. GunasekaranP. PrasannaP. PerumalS. AlmansourA.I. ZnCl2-catalyzed three-component domino reactions for the synthesis of pyrano[3,2-c]quinolin-5(6 H)-ones.Tetrahedron Lett.201354253248325210.1016/j.tetlet.2013.04.022
    [Google Scholar]
  82. Abbaspour-GilandehE. Aghaei-HashjinM. JahanshahiP. Hoseininezhad-NaminM.S. One-pot synthesis of pyrano[3,2-c]quinoline-2,5-dione derivatives by Fe3O4@SiO2-SO3H as an efficient and reusable solid acid catalyst.Monatsh. Chem.2017148473173810.1007/s00706‑016‑1788‑5
    [Google Scholar]
  83. Abbaspour-GilandehE. AzimiS.C. The green synthesis of pyrano[3,2-c] quinoline-2,5-dione derivatives catalyzed by acidic ionic liquid under ultrasound irradiation.Iran. Chem. Commun20153218231
    [Google Scholar]
  84. Youseftabar-MiriL. AkbariF. GhraghsaharF. Eggshell: A green and efficient heterogeneous catalyst for the synthesis of pyrano[3,2-c]quinoline derivatives.Iran. J. Catal.2014428589
    [Google Scholar]
  85. DuB.X. LiY.L. LinW. HuM.H. HuangZ.B. ShiD-Q. Proline-catalysed three-component cascade reaction for the facile synthesis of 3,4-dihydro-2h-pyrano[3,2c]quinolin-2,5(6h)-dione derivatives.J. Chem. Res.2013372959810.3184/174751912X13569668034930
    [Google Scholar]
  86. Rad-MoghadamK. AzimiS.C. Abbaspour-GilandehE. Synthesis of novel pyrano[3,2-c]quinoline-2,5-diones using an acidic ionic liquid catalyst.Tetrahedron Lett.201354354633463610.1016/j.tetlet.2013.06.050
    [Google Scholar]
  87. KrishnanJ. MathewS. JayaprakashP.A. SasidharB.S. MayadeviT.S. SureshE. NairV. Sequential n‐heterocyclic carbene‐catalyzed reactions of enals and cyclic aryldiene‐1,3‐diones: Synthesis of tricyclic chromenones and related compounds.Asian J. Org. Chem.20165121447145110.1002/ajoc.201600419
    [Google Scholar]
  88. El-SherefE.M. AlyA.A. MouradA.F. BrownA.B. BräseS. BakheetM.E. Synthesis of pyrano[3,2-c]quinoline-4-carboxylates and 2-(4-oxo-1,4-dihydroquinolin-3-yl)fumarates.Chem. Pap.201872118119010.1007/s11696‑017‑0269‑6
    [Google Scholar]
  89. PoronikY.M. KlajnJ. BorzęckaW. GrykoD.T. The Niementowski reaction of anthranilic acid with ethyl acetoacetate revisited: A new access to pyrano[3,2-c]quinoline-2,5-dione.Arkivoc20162017271110.3998/ark.5550190.p009.584
    [Google Scholar]
  90. AboníaR. CuervoP. HursthouseM.B. CoboJ. GlidewellC. 1-(6-Amino-1,3-benzodioxol-5-yl)-3-(2-oxo-1,2-dihydroquinolin-3-yl)prop-2-enone: A sheet built by π-stacking of hydrogen-bonded chains of rings.Acta Crystallogr.2010661o44o4610.1107/S0108270109053554 20048423
    [Google Scholar]
  91. GaoW.T. HouW.D. ZhengM.R. TangL.J. Clean and convenient one-pot synthesis of 4-hydroxycoumarin and 4-hydroxy-2-quinolinone derivatives.Synth. Commun.201040573273810.1080/00397910903013713
    [Google Scholar]
  92. KappeT. AignerR. HohengassnerP. StadlbauerW. Syntheses of 3-Acyl-4-hydroxy-2(1H)quinolones.J. Prakt. Chem. Chem.-Zeitung1994336759660110.1002/prac.19943360707
    [Google Scholar]
  93. IsmailM.M. MohamedH.M. Synthesis and cyclization reactions with quinolinyl keto esters. II. synthesis of novel 3-diazolylquinolinones and their enzymic activity.Chem. Pap.2005592117126
    [Google Scholar]
  94. El-MansyM.A. IsmailM.M. Structural, conformational, optical, and non-linear optical behavior of ethyl (6-ethyl 5,6-dihydro 4,5-dioxo 4Hpyrano[3,2-c] quinolin-3yl) 2-oxoacetate (EPQOA): Comparative theoretical and experimental studies.Opt. Quantum Electron.202153210310.1007/s11082‑021‑02749‑7
    [Google Scholar]
  95. HassaninH.M. Abdel-KaderD. Synthesis of some novel heteroannulated pyrano[3,2‐c]quinoline‐2,5(6h)‐diones.J. Heterocycl. Chem.20185571685169410.1002/jhet.3205
    [Google Scholar]
  96. SalnikovaT.V. SabitovA.A. DmitrievM.V. MaslivetsA.N. RubinM. Substrate-dependent regiodivergent three-component condensation of H-pyrrole-2,3-diones, malononitrile and 4-hydroxyquinolin-2(H)-ones.Tetrahedron20218813212910.1016/j.tet.2021.132129
    [Google Scholar]
  97. ElinsonM.N. VereshchaginA.N. RyzhkovF.V. AnisinaY.E. “Solvent-free” and “on-solvent” multicomponent reaction of isatins, malononitrile, and bicyclic CH-acids: Fast and efficient way to medicinal privileged spirooxindole scaffold.Arkivoc20182018427628510.24820/ark.5550190.p010.640
    [Google Scholar]
  98. Asghari-HajiF. Rad-MoghadamK. MahmoodiN.O. TonekaboniT. RahimiN. Cobalt ferrite encapsulated in a zwitterionic chitosan derived shell: An efficient nano‐magnetic catalyst for three‐component syntheses of pyrano[3,2‐c]quinolines and spiro‐oxindoles.Appl. Organomet. Chem.20173112e389110.1002/aoc.3891
    [Google Scholar]
  99. AlyA.A. El-SherefE.M. MouradA.F. BrownA.B. BräseS. BakheetM.E. NiegerM. Synthesis of spiro[indoline-3,4′-pyrano[3,2-c]quinolone]-3′-carbonitriles.Monatsh. Chem.2018149363564410.1007/s00706‑017‑2078‑6
    [Google Scholar]
  100. GholizadehS. RadmoghadamK. Ultrasound-assisted the three-component synthesis of spiro[4H-pyrano[3,2-c]quinolin-4,3′-indoline]-2′,5(6H)-diones in water.Orient. J. Chem.20132941637164110.13005/ojc/290450
    [Google Scholar]
  101. KupwadeR.V. KulkarniA.M. LadU.P. Multicomponent synthesis of pyrano (3, 2-c) quinolone fused spirochromenes.Polycycl. Aromat. Compd.202343138439510.1080/10406638.2021.2015398
    [Google Scholar]
  102. CoreyE.J. Name reactions for carbocyclic ring formations.John Wiley2010
    [Google Scholar]
  103. RechacV.L. CirujanoF.G. CormaA. Llabrés i XamenaF.X. Diastereoselective synthesis of pyranoquinolines on zirconium‐containing uio‐66 metal‐organic frameworks.Eur. J. Inorg. Chem.20162016274512451610.1002/ejic.201600372
    [Google Scholar]
  104. DeStefanoM.R. IslamogluT. GaribayS.J. HuppJ.T. FarhaO.K. Room-temperature synthesis of UIO-66 and thermal modulation of densities of defect sites.Chem. Mater.20172931357136110.1021/acs.chemmater.6b05115
    [Google Scholar]
  105. LiuR.H. YuX. HuL. YuN.F. Simple and practical synthesis of pyrano-and furano[3,2-]-quinoline derivatives under non-Lewis acid catalysis.Chin. Chem. Lett.20122391027103010.1016/j.cclet.2012.06.035
    [Google Scholar]
  106. PalaniappanS. RajenderB. A novel polyaniline‐silver nitrate‐p‐toluenesulfonic acid salt as recyclable catalyst in the stereoselective synthesis of β‐amino ketones: “One‐pot” synthesis in water medium.Adv. Synth. Catal.201035214-152507251410.1002/adsc.201000346
    [Google Scholar]
  107. PalaniappanS. RajenderB. UmashankarM. Controllable stereoselective synthesis of cis or trans pyrano and furano tetrahydroquinolines: Polyaniline-p-toluenesulfonate salt catalyzed one-pot aza-diels-alder reactions.J. Mol. Catal. Chem.2012352707410.1016/j.molcata.2011.10.014
    [Google Scholar]
  108. VinuA. ChauhanS. ManeG. AnandC. DhawaleD. ReddyB. ZaidiS. Al-DeyabS. BalasubramanianV. MoriT. Low-temperature synthesis of pyrano-and furo[3,2-c]quinolines via povarov reaction using a highly ordered 3d nanoporous catalyst with a high acidity.Synlett201223152237224010.1055/s‑0031‑1290452
    [Google Scholar]
  109. KantevariS. YempalaT. SurineniG. SridharB. YogeeswariP. SriramD. Synthesis and antitubercular evaluation of novel dibenzo[b,d]furan and 9-methyl-9h-carbazole derived hexahydro-2h-pyrano[3,2-c]quinolines via povarov reaction.Eur. J. Med. Chem.201146104827483310.1016/j.ejmech.2011.06.014 21723649
    [Google Scholar]
  110. YuY. ZhouJ. YaoZ. XuF. ShenQ. Stereoselective synthesis of pyrano[3,2-c]-and furano[3,2-c]quinolines: Gadolinium chloride catalyzed one-pot Aza-Diels-Alder reactions.Heteroatom Chem.201021535135410.1002/hc.20612
    [Google Scholar]
  111. YaoL. XuF. ShenQ. Controllable stereoselective synthesis of pyrano[3,2-c]quinolines by lanthanide halides catalyzed aza-diels-alder reactions.Chin. Sci. Bull.201055364108411110.1007/s11434‑010‑4230‑0
    [Google Scholar]
  112. GharpureS.J. VishwakarmaD.S. Lewis acid catalyzed intramolecular [4+2] cycloaddition of in situ generated aza‐quinone methides for the stereoselective synthesis of furo/pyrano[3,2‐c]tetrahydroquinolines.Eur. J. Org. Chem.20202020446887689110.1002/ejoc.201901598
    [Google Scholar]
  113. KawadeR.K. HupleD.B. LinR.J. LiuR.S. Cu-catalyzed oxidative povarov reactions between N-alkyl N-methylanilines and saturated oxa-and thiacycles.Chem. Commun.201551306625662810.1039/C5CC01287B 25777971
    [Google Scholar]
  114. ReddyB.V. GrewalH. Iodine-catalyzed formation of Aza-dienes: a novel synthesis of angularly fused hexahydropyrano-and furo[3,2-c]quinoline derivatives.Tetrahedron Lett.201152776176310.1016/j.tetlet.2010.12.003
    [Google Scholar]
  115. UpadhyayK.D. DodiaN.M. KhuntR.C. ChaniaraR.S. ShahA.K. Synthesis and biological screening of pyrano[3,2-c]quinoline analogues as anti-inflammatory and anticancer agents.ACS Med. Chem. Lett.20189328328810.1021/acsmedchemlett.7b00545 29541375
    [Google Scholar]
  116. SaeedA.M. AlNeyadiS.S. AbdouI.M. Anticancer activity of novel Schiff bases and azo dyes derived from 3-amino-4-hydroxy-2H-pyrano[3,2-c]quinoline-2,5(6H)-dione.Heterocycl. Commun.202026119220510.1515/hc‑2020‑0116
    [Google Scholar]
  117. AlyA.A. El-SherefE.M. BakheetM.E. MouradM.A. BräseS. IbrahimM.A. NiegerM. GarvalovB.K. DalbyK.N. KaoudT.S. Design, synthesis and biological evaluation of fused naphthofuro[3,2-c] quinoline-6,7,12-triones and pyrano[3,2-c]quinoline-6,7,8,13-tetraones derivatives as ERK inhibitors with efficacy in BRAF-mutant melanoma.Bioorg. Chem.20198229030510.1016/j.bioorg.2018.10.044 30396063
    [Google Scholar]
  118. Abdel-KaderD. AbassM. Synthesis of some oxazolo and oxazinopyrano[3,2‐c]quinolines and their antitumor activity.J. Heterocycl. Chem.20205762480248810.1002/jhet.3963
    [Google Scholar]
  119. HassanS.M. MorsyJ.M. HassaninH.M. OthmanE.S. Synthesis and cytotoxic evaluation of novel brominated N‐alkyl pyrano[3,2‐ c]quinolinones.J. Heterocycl. Chem.202158130531410.1002/jhet.4169
    [Google Scholar]
  120. RamadanM. A.M.M.Elshaier Y.; Aly, A.A.; Abdel-Aziz, M.; Fathy, H.M.; Brown, A.B.; Pridgen, J.R.; Dalby, K.N.; Kaoud, T.S. Development of 2′-aminospiro [pyrano[3,2-c]quinoline]-3′-carbonitrile derivatives as non-ATP competitive Src kinase inhibitors that suppress breast cancer cell migration and proliferation.Bioorg. Chem.202111610534410.1016/j.bioorg.2021.105344 34598088
    [Google Scholar]
  121. UpadhyayD.B. ValaR.M. PatelS.G. PatelP.J. ChiC. PatelH.M. Water mediated TBAB catalyzed synthesis of spiro-indoline-pyrano[3,2-c]quinolines as α-amylase inhibitor and in silico studies.J. Mol. Struct.2023127313430510.1016/j.molstruc.2022.134305
    [Google Scholar]
  122. SchiemannK. FinsingerD. ZenkeF. AmendtC. KnöchelT. BrugeD. BuchstallerH.P. EmdeU. StähleW. AnzaliS. The discovery and optimization of hexahydro-2H-pyrano[3,2-c]quinolines (HHPQs) as potent and selective inhibitors of the mitotic kinesin-5.Bioorg. Med. Chem. Lett.20102051491149510.1016/j.bmcl.2010.01.110 20149654
    [Google Scholar]
  123. PrasadP. ShobhashanaP.G. PatelM.P. An efficient synthesis of 4 H-pyrano quinolinone derivatives catalysed by a versatile organocatalyst tetra-n-butylammonium fluoride and their pharmacological screening.R. Soc. Open Sci.201741117076410.1098/rsos.170764 29291069
    [Google Scholar]
  124. BauerA.W. KirbyW.M.M. SherrisJ.C. TurckM. Antibiotic susceptibility testing by a standardized single disk method.Am. J. Clin. Pathol.196645449349610.1093/ajcp/45.4_ts.493
    [Google Scholar]
  125. MariahF.E. Synthesis and antimicrobial activities of pyrano[3,2-c]quinoline, pyrimido[5′,4′:5,6]pyrano[3,2-c]quinoline and [1,2,4]triazolo[2″,3″:1′,6′]pyrimido[5′,4′:5,6]pyrano[3,2-c]quinoline derivatives.J. Chem. Res.20092009958859210.3184/030823409X12509546260155
    [Google Scholar]
  126. Abd El-GhaniG.E. El-SayedM.A. El-DesokyE.S. Synthesis and biological evaluation of some novel hetroaryl quinolinone derivatives.J. Heterocycl. Chem.202259584785810.1002/jhet.4424
    [Google Scholar]
  127. MoynihanE. MackeyK. BlaskovichM.A. ReenF.J. McGlackenG. N-alkyl-2-quinolonopyrones demonstrate antimicrobial activity against eskape pathogens including Staphylococcus aureus.ACS Med. Chem. Lett.20221381358136210.1021/acsmedchemlett.2c00185 35978679
    [Google Scholar]
  128. CraigW.A. GudmundssonS. LorianV. Antibiotics in laboratory medicine.Clin. Infect. Dis.1996414577
    [Google Scholar]
  129. BhupathiR.S. MadhuB. ReddyC.V. DeviB.R. DubeyP.K. Ionic liquid mediated green synthesis of spirooxindoles from n‐methyl quinolones and their anti bacterial activity.J. Heterocycl. Chem.20175442326233210.1002/jhet.2821
    [Google Scholar]
  130. ArasakumarT. MathusaliniS. GopalanS. ShyamsivappanS. AtaA. MohanP.S. Biologically active perspective synthesis of heteroannulated 8-nitroquinolines with green chemistry approach.Bioorg. Med. Chem. Lett.20172771538154610.1016/j.bmcl.2017.02.042 28262524
    [Google Scholar]
  131. NikookarH. Mohammadi-KhanaposhtaniM. ImanparastS. FaramarziM.A. RanjbarP.R. MahdaviM. LarijaniB. Design, synthesis and in vitro α-glucosidase inhibition of novel dihydropyrano[3,2-c]quinoline derivatives as potential anti-diabetic agents.Bioorg. Chem.20187728028610.1016/j.bioorg.2018.01.025 29421703
    [Google Scholar]
  132. EsmailiS. EbadiA. KhazaeiA. GhorbaniH. FaramarziM.A. MojtabaviS. MahdaviM. NajafiZ. Novel pyrano[3,2-c]quinoline-1,2,3-triazole hybrids as potential anti-diabetic agents: in vitro α-glucosidase inhibition, kinetic, and molecular dynamics simulation.ACS Omega2023826234122342410.1021/acsomega.3c00133 37426262
    [Google Scholar]
  133. CampsP. FormosaX. GaldeanoC. Muñoz-TorreroD. RamírezL. GómezE. IsambertN. LavillaR. BadiaA. ClosM.V. BartoliniM. ManciniF. AndrisanoV. ArceM.P. Rodríguez-FrancoM.I. HuertasÓ. DafniT. LuqueF.J. Pyrano[3,2-c]quinoline-6-chlorotacrine hybrids as a novel family of acetylcholinesterase-and beta-amyloid-directed anti-Alzheimer compounds.J. Med. Chem.200952175365537910.1021/jm900859q 19663388
    [Google Scholar]
/content/journals/coc/10.2174/0113852728331472240826071320
Loading
/content/journals/coc/10.2174/0113852728331472240826071320
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test