Skip to content
2000
Volume 29, Issue 3
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

In this study, we developed a facile Co (II) and Cu (II)-porphyrin catalytic system for dehydrogenative coupling reaction of benzyl alcohol with acetophenone derivatives for quinoline synthesis and intramolecular cyclisation of Betti base for naphthoxazine synthesis. Functionalized porphyrins containing ester and quinoline ring (CoTPPBenzo(NPh)) and (CuTPPBenzo(NPh)) were synthesized and confirmed various analytical techniques. These cobalt (II) and copper (II) porphyrins were tested for the synthesis of quinolines and naphthoxazines a dehydrogenative coupling reaction. These cobalt and copper porphyrins showed excellent catalytic activity with broad substrate scope. Additionally, a series of controlled experiments were performed to support this work.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728311349240823045810
2024-09-11
2024-11-19
Loading full text...

Full text loading...

References

  1. SengeM.O. FazekasM. NotarasE.G.A. BlauW.J. ZawadzkaM. LocosO.B. Ni MhuircheartaighE.M. Nonlinear optical properties of porphyrins.Adv. Mater.200719192737277410.1002/adma.200601850
    [Google Scholar]
  2. LinV.S.Y. DiMagnoS.G. TherienM.J. Highly conjugated, acetylenyl bridged porphyrins: New models for light-harvesting antenna systems.Science199426451621105111110.1126/science.8178169 8178169
    [Google Scholar]
  3. SilversS.J. TulinskyA. The crystal and molecular structure of triclinic tetraphenylporphyrin.J. Am. Chem. Soc.196789133331333710.1021/ja00989a036 6042769
    [Google Scholar]
  4. SakthinathanS. KubendhiranS. ChenS.M. ManibalanK. GovindasamyM. TamizhduraiP. HuangS.T. Reduced graphene oxide non‐covalent functionalized with zinc tetra phenyl porphyrin nanocomposite for electrochemical detection of dopamine in human serum and rat brain samples.Electroanalysis20162892126213510.1002/elan.201600085
    [Google Scholar]
  5. SakthinathanS. LeeH.F. ChenS.M. TamizhduraiP. Electrocatalytic oxidation of dopamine based on non-covalent functionalization of manganese tetraphenylporphyrin/reduced graphene oxide nanocomposite.J. Colloid Interface Sci.201646812012710.1016/j.jcis.2016.01.014 26835582
    [Google Scholar]
  6. SakthinathanS. KubendhiranS. ChenS.M. TamizhduraiP. Reduced graphene oxide/gold tetraphenyl porphyrin (RGO/Au–TPP) nanocomposite as an ultrasensitive amperometric sensor for environmentally toxic hydrazine.RSC Advances2016661563755638310.1039/C6RA09129F
    [Google Scholar]
  7. RayatiS. RuzbahaniS.E. NejabatF. A comparative study of catalytic activity of Fe, Mn and Cu porphyrins immobilized on mesoporous MCM-41 in oxidation of sulphides.Macroheterocycles2017101576110.6060/mhc170186r
    [Google Scholar]
  8. OtteM. KuijpersP.F. TroeppnerO. Ivanović-BurmazovićI. ReekJ.N.H. de BruinB. Encapsulated cobalt-porphyrin as a catalyst for size-selective radical-type cyclopropanation reactions.Chemistry201420174880488410.1002/chem.201400055 24664657
    [Google Scholar]
  9. JiangY. SuT. QinZ. HuangG. A zinc sulfide-supported iron tetrakis (4-carboxyl phenyl) porphyrin catalyst for aerobic oxidation of cyclohexane.RSC Advances2015531247882479410.1039/C4RA15991H
    [Google Scholar]
  10. IrrgangT. KempeR. 3d-metal catalyzed N- and C-alkylation reactions via borrowing hydrogen or hydrogen autotransfer.Chem. Rev.201911942524254910.1021/acs.chemrev.8b00306 30457320
    [Google Scholar]
  11. AligL. FritzM. SchneiderS. First-row transition metal (de)hydro-genation catalysis based on functional pincer ligands.Chem. Rev.201911942681275110.1021/acs.chemrev.8b00555 30596420
    [Google Scholar]
  12. TrincadoM. BöskenJ. GrützmacherH. Homogeneously catalyzed acceptorless dehydrogenation of alcohols: A progress report.Coord. Chem. Rev.202144321396710.1016/j.ccr.2021.213967
    [Google Scholar]
  13. HofmannN. HultzschK.C. Borrowing hydrogen and acceptorless dehydrogenative coupling in the multicomponent synthesis of N‐heterocycles: A comparison between base and noble metal catalysis.Eur. J. Org. Chem.20212021466206622310.1002/ejoc.202100695
    [Google Scholar]
  14. MondalA. SharmaR. PalD. SrimaniD. Recent progress in the synthesis of heterocycles through base metal‐catalyzed acceptorless dehydrogenative and borrowing hydrogen approach.Eur. J. Org. Chem.20212021263690372010.1002/ejoc.202100517
    [Google Scholar]
  15. WaibaS. MajiB. Manganese catalyzed acceptorless dehydrogenative coupling reactions.ChemCatChem20201271891190210.1002/cctc.201902180
    [Google Scholar]
  16. BeraK. MukherjeeA. Nickel-catalyzed sustainable synthesis of N-heterocycles through dehydrogenative coupling of alcohols.Tetrahedron Lett.20218115332610.1016/j.tetlet.2021.153326
    [Google Scholar]
  17. FilonenkoG.A. van PuttenR. HensenE.J.M. PidkoE.A. Catalytic (de)hydrogenation promoted by non-precious metals - Co, Fe and Mn: Recent advances in an emerging field.Chem. Soc. Rev.20184741459148310.1039/C7CS00334J 29334388
    [Google Scholar]
  18. MukherjeeA. MilsteinD. Homogeneous catalysis by cobalt and manganese pincer complexes.ACS Catal.2018812114351146910.1021/acscatal.8b02869
    [Google Scholar]
  19. GulyaevaE.S. OsipovaE.S. BuhaibehR. CanacY. SortaisJ.B. ValyaevD.A. Towards ligand simplification in manganese-catalyzed hydrogenation and hydrosilylation processes.Coord. Chem. Rev.202245821442110.1016/j.ccr.2022.214421
    [Google Scholar]
  20. RotellaD.P. Heterocycles in drug discovery: Properties and preparation.Adv. Heterocycl. Chem.202113414918310.1016/bs.aihch.2020.10.002
    [Google Scholar]
  21. McAteerC.H. BalasubramanianM. MuruganR. Pyridines and their benzo derivatives: Applications.Comprehensive Heterocyclic Chemistry III.Elsevier200830933610.1016/B978‑008044992‑0.00606‑4
    [Google Scholar]
  22. d’IschiaM. NapolitanoA. PezzellaA. Pyrroles and their benzo derivatives: Pyrroles and their benzo derivatives: Applications.Comprehensive Heterocyclic Chemistry III.Elsevier2008353388
    [Google Scholar]
  23. GomezP.G. PabonH.P. CarvajalM.A. RinconJ.M. Synthesis of four benzoxazines and determination of their spectrum of antibacterial activity. Rev. Colomb. Cienc. Quim.-.Farm.1985815
    [Google Scholar]
  24. WaisserK. GregorJ. KubicováL. KlimešováV. KunešJ. MacháčekM. KaustováJ. New groups of antimycobacterial agents: 6-chloro-3-phenyl-4-thioxo-2-1,3-benzoxazine-2(3)-ones and 6-chloro-3-phenyl-2-1,3-benzoxazine-2,4(3)-dithiones.Eur. J. Med. Chem.2000357-873374110.1016/S0223‑5234(00)00174‑4 10960190
    [Google Scholar]
  25. BouazizZ. RiondelJ. MeyA. BerlionM. VillardJ. FillionH. Synthesis of some naphthoxazine carbolactone derivatives with in vitro cytotoxic and antifungal activities.Eur. J. Med. Chem.199126446947210.1016/0223‑5234(91)90109‑Z
    [Google Scholar]
  26. Arthington-SkaggsB.A. MotleyM. WarnockD.W. MorrisonC.J. Comparative evaluation of PASCO and national committee for clinical laboratory standards M27-A broth microdilution methods for antifungal drug susceptibility testing of yeasts.J. Clin. Microbiol.20003862254226010.1128/JCM.38.6.2254‑2260.2000 10834985
    [Google Scholar]
  27. ChylińskaJ.B. UrbańskiT. MordarskiM. Dihydro-1,3-oxazine derivatives and their antitumor activity.J. Med. Chem.19636548448710.1021/jm00341a004 14173566
    [Google Scholar]
  28. BenameurL. BouazizZ. NeboisP. BartoliM.H. BoitardM. FillionH. Synthesis of furonaphth[1,3]oxazine and furo[1,3]oxazinoquinoline derivatives as precursors for an o-quinonemethide structure and potential antitumor agents.Chem. Pharm. Bull.199644360560810.1248/cpb.44.605 8882458
    [Google Scholar]
  29. MathewB.P. KumarA. SharmaS. ShuklaP.K. NathM. An eco-friendly synthesis and antimicrobial activities of dihydro-2H-benzo- and naphtho-1,3-oxazine derivatives.Eur. J. Med. Chem.20104541502150710.1016/j.ejmech.2009.12.058 20116901
    [Google Scholar]
  30. PetrlíkováE. WaisserK. DivišováH. HusákováP. VrabcováP. KunešJ. KolářK. StolaříkováJ. Highly active antimycobacterial derivatives of benzoxazine.Bioorg. Med. Chem.201018238178818710.1016/j.bmc.2010.10.017
    [Google Scholar]
  31. PedersenO.S. PedersenE.B. The flourishing syntheses of non-nucleoside reverse transcriptase inhibitors.Synthesis20002000447949510.1055/s‑2000‑6357
    [Google Scholar]
  32. CocuzzaA.J. ChidesterD.R. CordovaB.C. JeffreyS. ParsonsR.L. BachelerL.T. Erickson-ViitanenS. TrainorG.L. KoS.S. Synthesis and evaluation of efavirenz (Sustiva) analogues as HIV-1 reverse transcriptase inhibitors: Replacement of the cyclopropylacetylene side chain.Bioorg. Med. Chem. Lett.20011191177117910.1016/S0960‑894X(01)00192‑5 11354371
    [Google Scholar]
  33. JoyceJ.N. PresgravesS. RenishL. BorwegeS. OsredkarT. HagnerD. ReplogleM. PazSoldan, M.; Millan, M.J. Neuroprotective effects of the novel D3/D2 receptor agonist and antiparkinson agent, S32504, in vitro against 1-methyl-4-phenylpyridinium (MPP+) and in vivo against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): A comparison to ropinirole.Exp. Neurol.2003184139340710.1016/S0014‑4886(03)00353‑4 14637109
    [Google Scholar]
  34. ZhangP. TerefenkoE.A. FensomeA. ZhangZ. ZhuY. CohenJ. WinnekerR. WrobelJ. YardleyJ. Potent nonsteroidal progesterone receptor agonists: Synthesis and SAR study of 6-aryl benzoxazines.Bioorg. Med. Chem. Lett.200212578779010.1016/S0960‑894X(02)00025‑2 11859003
    [Google Scholar]
  35. ChelucciG. PorchedduA. Synthesis of quinolines via a metal‐catalyzed dehydrogenative N‐heterocyclization.Chem. Rec.201717220021610.1002/tcr.201600083 27524555
    [Google Scholar]
  36. HillM.D. Recent strategies for the synthesis of pyridine derivatives.Chemistry20101640120521206210.1002/chem.201001100 20827696
    [Google Scholar]
  37. HenryG.D. De novo synthesis of substituted pyridines.Tetrahedron200460296043606110.1016/j.tet.2004.04.043
    [Google Scholar]
  38. PrajapatiS.M. PatelK.D. VekariyaR.H. PanchalS.N. PatelH.D. Recent advances in the synthesis of quinolines: A review.RSC Advances2014447244632447610.1039/C4RA01814A
    [Google Scholar]
  39. BurkeW.J. 3,4-Dihydro-1,3,2H-Benzoxazines. Reaction of p-substituted phenols with N,N-dimethylolamines.J. Am. Chem. Soc.194971260961210.1021/ja01170a063
    [Google Scholar]
  40. BurkeW.J. KolbezenM.J. StephensC.W. Condensation of naphthols with formaldehyde and primary amines.J. Am. Chem. Soc.195274143601360510.1021/ja01134a039
    [Google Scholar]
  41. BurkeW.J. MurdockK.C. EcG. Condensation of hydroxyaromatic compounds with formaldehyde and primary aromatic amines.J. Am. Chem. Soc.19547661677167910.1021/ja01635a065
    [Google Scholar]
  42. BurkeW.J. ReynoldsR.J. Condensation of 2-Naphthol with acetaldehyde ammonia.J. Am. Chem. Soc.19547651291129310.1021/ja01634a027
    [Google Scholar]
  43. DobereinerG.E. CrabtreeR.H. Dehydrogenation as a substrate-activating strategy in homogeneous transition-metal catalysis.Chem. Rev.2010110268170310.1021/cr900202j 19938813
    [Google Scholar]
  44. GuillenaG. RamónD.J. YusM. Hydrogen autotransfer in the N-alkylation of amines and related compounds using alcohols and amines as electrophiles.Chem. Rev.201011031611164110.1021/cr9002159 19928825
    [Google Scholar]
  45. GunanathanC. MilsteinD. Applications of acceptorless dehydrogenation and related transformations in chemical synthesis.Science20133416143122971210.1126/science.1229712 23869021
    [Google Scholar]
  46. Bruneau-VoisineA. WangD. DorcetV. RoisnelT. DarcelC. SortaisJ.B. Mono-N-methylation of anilines with methanol catalyzed by a manganese pincer-complex.J. Catal.2017347576210.1016/j.jcat.2017.01.004
    [Google Scholar]
  47. HaoZ. ZhouX. MaZ. ZhangC. HanZ. LinJ. LuG.L. Dehydrogenative synthesis of quinolines and quinazolines via ligand-free cobalt-catalyzed cyclization of 2-aminoaryl alcohols with ketones or nitriles.J. Org. Chem.20228719125961260710.1021/acs.joc.2c00734 36162131
    [Google Scholar]
  48. FertigR. IrrgangT. FreitagF. ZanderJ. KempeR. Manganese-catalyzed and base-switchable synthesis of amines or imines via borrowing hydrogen or dehydrogenative condensation.ACS Catal.2018898525853010.1021/acscatal.8b02530
    [Google Scholar]
  49. SheeS. GanguliK. JanaK. KunduS. Cobalt complex catalyzed atom-economical synthesis of quinoxaline, quinoline and 2-alkylaminoquinoline derivatives.Chem. Commun.201854506883688610.1039/C8CC02366B 29790492
    [Google Scholar]
  50. SinghA. MajiA. JoshiM. ChoudhuryA.R. GhoshK. Cobalt complex catalyzed atom-economical synthesis of quinoxaline, quinoline and 2-alkylaminoquinoline derivatives.Dalton Trans.2021508567858710.1039/D0DT03748F 34075925
    [Google Scholar]
  51. MishraS. PrakashC. TripathiB.P. Role of aurone ligands in microwave enhanced Mn(II) and Co(II) catalyzed dehydrogenative coupling reaction: An efficient ligand for the synthesis of quinoline, pyridine, and pyrrole.J. Heterocycl. Chem.202461340742010.1002/jhet.4769
    [Google Scholar]
  52. DebM.L. DeyS.S. BentoI. BarrosM.T. MaycockC.D. Copper-catalyzed regioselective intramolecular oxidative α-functionalization of tertiary amines: An efficient synthesis of dihydro-1,3-oxazines.Angew. Chem. Int. Ed.201352379791979510.1002/anie.201304654 23893574
    [Google Scholar]
  53. CaselliA. GalloE. RagainiF. RicattoF. AbbiatiG. CeniniS. Chiral porphyrin complexes of cobalt(II) and ruthenium(II) in catalytic cyclopropanation and amination reactions.Inorg. Chim. Acta200635992924293210.1016/j.ica.2005.11.020
    [Google Scholar]
  54. WangH. ZhouC.Y. CheC.M. Cobalt‐porphyrin‐catalyzed intramolecular buchner reaction and arene cyclopropanation of in situ generated alkyl diazomethanes.Adv. Synth. Catal.2017359132253225810.1002/adsc.201700205
    [Google Scholar]
  55. AziziK. AkramiS. MadsenR. Manganese(III) porphyrin‐catalyzed dehydrogenation of alcohols to form imines, tertiary amines and quinolines.Chemistry201925256439644610.1002/chem.201900737 30883993
    [Google Scholar]
  56. JaquinodL. KhouryR.G. SheaK.M. SmithK.M. Regioselective syntheses and structural characterizations of 2,3-dibromo-and 2,3,7,8,12,13-hexabromo-5,10,15,20-tetraphenylporphyrins.Tetrahedron19995546131511315810.1016/S0040‑4020(99)00811‑X
    [Google Scholar]
  57. SerraV.I.V. PiresS.M.G. AlonsoC.M.A. NevesM.G.P.M.S. ToméA.C. CavaleiroJ.A.S. Meso-tetraarylporphyrins bearing nitro or amino groups: Synthetic strategies and reactivity profiles.Top. Heterocycl. Chem.201333357810.1007/7081_2013_101
    [Google Scholar]
  58. CrossleyM.J. SheehanC.S. KhouryT. ReimersJ.R. SinticP.J. Construction of building blocks for extended porphyrin arrays by nitration of porphyrin-2,3-diones and quinoxalino[2,3-b]porphyrins.New J. Chem.200832234035210.1039/B712643C
    [Google Scholar]
  59. PereiraA.M.V.M. AlonsoC.M.A. NevesM.G.P.M.S. ToméA.C. Silva,] A.M.S.; Paz, F.A.A.; Cavaleiro, J.A.S. A new synthetic approach to] N-arylquinolino[2,3,4-at]porphyrins from β-arylaminoporphyrins.J. Org. Chem.200873187353735610.1021/jo800975c 18722409
    [Google Scholar]
  60. SheaK.M. JaquinodL. KhouryR.G. SmithK.M. Dodecasubstituted metallochlorins (metallodihydroporphyrins).Chem. Commun.1998775976010.1039/a708766g
    [Google Scholar]
  61. DeshpandeR. JiangL. SchmidtG. RakovanJ. WangX. WheelerK. WangH. A concise approach to the synthesis of opp-dibenzoporphyrins through the Heck reaction.Org. Lett.200911194251425310.1021/ol901615f 19775180
    [Google Scholar]
  62. XiL.Y. ZhangR.Y. ZhangL. ChenS.Y. YuX.Q. An efficient synthesis of quinolines via copper-catalyzed C–N cleavage.Org. Biomol. Chem.201513133924393010.1039/C5OB00075K 25712024
    [Google Scholar]
  63. XuJ-X. PanN-L. ChenJ-X. ZhaoJ-W. Visible-light-mediated oxidative cyclization of 2 aminobenzyl alcohols and secondary alcohols enabled by an organic photocatalyst.J. Org. Chem.202186107471075410.1021/acs.joc.1c01386
    [Google Scholar]
  64. YuJ. Synthesis of quinolines by N-deformylation and aromatization via solvent-free, high-speed ball milling.Synth. Commun.20134336137410.1080/00397911.2011.599103
    [Google Scholar]
  65. MahatoS. MukherjeeA. SantraS. ZyryanovG.V. MajeeA. Facile synthesis of substituted quinolines by iron(III)-catalyzed cascade reaction between anilines, aldehydes and nitroalkanes.Org. Biomol. Chem.201917347907791710.1039/C9OB01294J 31414692
    [Google Scholar]
  66. HuW. ZhangY. ZhuH. YeD. WangD. Unsymmetrical triazolyl-naphthyridinyl-pyridine bridged highly active copper complexes supported on reduced graphene oxide and their application in water.Green Chem.201921195345535110.1039/C9GC02086A
    [Google Scholar]
  67. MajiA. GuptaS. MajiM. KunduS. Well-defined phosphine-free manganese(II)-complex-catalyzed synthesis of quinolines, pyrroles, and pyridines.J. Org. Chem.202287138351836710.1021/acs.joc.2c00167 35726206
    [Google Scholar]
  68. ShiD. RongL. ShiC. ZhuangQ. WangX. TuS. HuH. Low-valent titanium reagent-promoted intramolecular reductive coupling reactions of ketomalononitriles: A facile synthesis of benzo[4,5]indene, acridine and quinoline derivatives.Synthesis20052005571772410.1055/s‑2005‑861820
    [Google Scholar]
  69. DebM. BaruahP. BorpatraP. SaikiaP. Iodine/hydrogen peroxide promoted intramolecular oxidative C-O bond formation in ethanol at room temperature: A green approach to 1,3-oxazines.Synlett201628446146610.1055/s‑0036‑1589717
    [Google Scholar]
  70. AlsharifM.A. AhmedN. Issa AlahmdiM. MukhtarS. ParveenH. ObaidR.J. AlmalkiA.S.A. Divergent synthesis of fused Benzo-xanthene and oxazine derivatives via Cu-catalyst.J. Saudi Chem. Soc.202226610156810.1016/j.jscs.2022.101568
    [Google Scholar]
/content/journals/coc/10.2174/0113852728311349240823045810
Loading
/content/journals/coc/10.2174/0113852728311349240823045810
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s web site along with the published article.


  • Article Type:
    Research Article
Keyword(s): Catalyst; dehydrogenative coupling; naphthoxazine; porphyrins; quinoline; substrate scope
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test