Skip to content
2000
Volume 29, Issue 3
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Chitosan (CS) is a natural polymer obtained by removing acetyl groups from chitin through alkaline hydrolysis. It possesses biodegradable properties and exhibits immunological, antibacterial, and wound-healing activities. This polysaccharide has undergone modification through radiation-induced graft copolymerization to broaden its application scope. The potential applications of CS can be expanded by introducing side chains through grafting. This article aims to review the innovative alternatives of gamma-graft-copolymerized CS and, for the first time, comprehensively examines the current applications of CS derivatives in dye removal, metal adsorption, antibacterial interventions, biomedical practices, drug delivery systems, and tissue engineering.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728317918240710112955
2024-07-22
2024-11-19
Loading full text...

Full text loading...

References

  1. NovikovV.Y. DerkachS.R. KonovalovaI.N. DolgopyatovaN.V. KuchinaY.A. Mechanism of heterogeneous alkaline deacetylation of chitin: A review.Polymers (Basel)2023157172910.3390/polym15071729 37050343
    [Google Scholar]
  2. AliG. SharmaM. SalamaE.S. LingZ. LiX. Applications of chitin and chitosan as natural biopolymer: Potential sources, pretreatments, and degradation pathways.Biomass Convers. Biorefin.20241444567458110.1007/s13399‑022‑02684‑x
    [Google Scholar]
  3. XuC. XingR. LiuS. QinY. LiK. YuH. LiP. In vivo immunological activity of chitosan-derived nanoparticles.Int. J. Biol. Macromol.2024262Pt 213010510.1016/j.ijbiomac.2024.130105 38346623
    [Google Scholar]
  4. SalamM.A. DasT.R. PaulS.I. IslamF. BaidyaA. RahmanM.L. ShahaD.C. MazumderS.K. Dietary chitosan positively influences the immunity and reproductive performances of mature silver barb (Barbonymus gonionotus).Aquacult. Rep.20243610215510.1016/j.aqrep.2024.102155
    [Google Scholar]
  5. YangX. LanW. SunX. Antibacterial and antioxidant properties of phenolic acid grafted chitosan and its application in food preservation: A review.Food Chem.202342813678810.1016/j.foodchem.2023.136788 37467692
    [Google Scholar]
  6. KhubievO.M. EgorovA.R. KirichukA.A. KhrustalevV.N. TskhovrebovA.G. KritchenkovA.S. Chitosan-based antibacterial films for biomedical and food applications.Int. J. Mol. Sci.202324131073810.3390/ijms241310738 37445916
    [Google Scholar]
  7. JiangA. PatelR. PadhanB. PalimkarS. GalgaliP. AdhikariA. VargaI. PatelM. Chitosan based biodegradable composite for antibacterial food packaging application.Polymers (Basel)20231510223510.3390/polym15102235 37242810
    [Google Scholar]
  8. PrasathkumarM. GeorgeA. SadhasivamS. Influence of chitosan and hydroxyethyl cellulose modifications towards the design of cross-linked double networks hydrogel for diabetic wound healing.Int. J. Biol. Macromol.2024265Pt 113085110.1016/j.ijbiomac.2024.130851 38484821
    [Google Scholar]
  9. ChenZ. YuanM. LiH. LiL. LuoB. LuL. XiangQ. DingS. Succinylated chitosan derivative restore HUVEC cells function damaged by TNF-α and high glucose in vitro and enhanced wound healing.Int. J. Biol. Macromol.2024265Pt 213082510.1016/j.ijbiomac.2024.130825 38492705
    [Google Scholar]
  10. BeramF.M. AliS.N. MesbahianG. PashizehF. KeshvadiM. MashayekhiF. KhodadadiB. BashiriZ. MoeinzadehA. RezaeiN. NamazifardS. Hossein-khannazerN. Tavakkoli YarakiM. 3D printing of alginate/chitosan-based scaffold empowered by tyrosol-loaded niosome for wound healing applications: In vitro and in vivo performances.ACS Appl. Bio Mater.2024731449146810.1021/acsabm.3c00814 38442406
    [Google Scholar]
  11. LiA. MaB. HuaS. PingR. DingL. TianB. ZhangX. Chitosan-based injectable hydrogel with multifunction for wound healing: A critical review.Carbohydr. Polym.202433312195210.1016/j.carbpol.2024.121952 38494217
    [Google Scholar]
  12. ThakurV.K. ThakurM.K. Recent advances in graft copolymerization and applications of chitosan: A review.ACS Sustain. Chem.& Eng.20142122637265210.1021/sc500634p
    [Google Scholar]
  13. ZhaoX. YiW. MuJ. QiuZ. KangY. WangZ. Development and performance evaluation of chitosan-graft-poly(N-vinyl pyrrolidone) as a dual-function inhibitor for hydrate decomposition and reformation.J. Mol. Liq.202440112462510.1016/j.molliq.2024.124625
    [Google Scholar]
  14. TemüzM.M. ÇataldaşE. Investigation of chitosan grafting and uptake properties of some metal ions by atomic absorption spectrophotometry.J. Macromol. Sci. Phys20242024231043810.1080/00222348.2024.2310438
    [Google Scholar]
  15. FengM. ZengX. LinQ. WangY. WeiH. YangS. WangG. ChenX. GuoM. YangX. HuJ. ZhangY. YangX. DuY. ZhaoY. Characterization of chitosan‐gallic acid graft copolymer for periodontal dressing hydrogel application.Adv. Healthc. Mater.2024137230287710.1002/adhm.202302877 38041691
    [Google Scholar]
  16. BarleanyD.R. Jayanudin; Utama, A.S.; Riyupi, U.; Alwan, H.; Lestari, R.S.D.; Pitaloka, A.B.; Yulvianti, M. Erizal, synthesis and characterization of chitosan/polyvinyl alcohol crosslinked poly(N-isopropylacrylamide) smart hydrogels via γ-radiation.Mater. Today Proc.2023871710.1016/j.matpr.2023.01.366
    [Google Scholar]
  17. Aim-OP. PamungkasN.S. NawongS. ThamrongsiripakN. ThongphanitS. Synchrotron Radiation Fourier Transform Infrared (SR-FTIR) spectroscopy in exploring crosslinked chitosan-rice husk bio-composites by gamma irradiation.J. Phys. Conf. Ser.20232431101206910.1088/1742‑6596/2431/1/012069
    [Google Scholar]
  18. ZaghloolR.A. AliH.E. Awadallah - F, A.; Aboulfotouh, M.E. Electrochemical study of carboxylated chitosan-graft-poly(Vinyl-2-Pyrrolidone) films for supercapacitor applications. Polymer-Plastics Technol.Mater.202362182450246710.1080/25740881.2023.2263077
    [Google Scholar]
  19. SattiA.J. Heterogeneous radioinduced graft copolymerization of caprolactone in nanochitosan.Radiat. Phys. Chem.202321211119710.1016/j.radphyschem.2023.111197
    [Google Scholar]
  20. EmaraA.M. ElsharmaE.M. AbdelmonemI.M. Adsorption of radioactive cesium using synthesized chitosan-g-poly(acrylic acid/N-vinylcaprolactam) by γ-irradiation.Radiat. Phys. Chem.202320811089210.1016/j.radphyschem.2023.110892
    [Google Scholar]
  21. ShigenoY. KondoK. TakemotoK. Functional monomers and polymers. 90 radiation-induced graft polymerization of styrene onto chitin and chitosan.J. Macromol. Sci. Chem.198217457158310.1080/00222338208062409
    [Google Scholar]
  22. PengfeiL. MaolinZ. JilanW. Study on radiation-induced grafting of styrene onto chitin and chitosan.Radiat. Phys. Chem.200161214915310.1016/S0969‑806X(00)00389‑3
    [Google Scholar]
  23. ShokriZ. SeidiF. SaebM.R. JinY. LiC. XiaoH. Elucidating the impact of enzymatic modifications on the structure, properties, and applications of cellulose, chitosan, starch and their derivatives: A review.Mater. Today Chem.20222410078010.1016/j.mtchem.2022.100780
    [Google Scholar]
  24. FujiokaM. OkadaH. KusakaY. NishiyamaS. NoguchiH. IshiiS. YoshidaY. Enzymatic synthesis of chitin‐ and chitosan‐graft‐aliphatic polyesters.Macromol. Rapid Commun.200425201776178010.1002/marc.200400288
    [Google Scholar]
  25. ChaoA. ShyuS-S. LinY-C. MiF-L. Enzymatic grafting of carboxyl groups on to chitosan-to confer on chitosan the property of a cationic dye adsorbent.Bioresour. Technol.200491215716210.1016/S0960‑8524(03)00171‑8 14592745
    [Google Scholar]
  26. KumarG. SmithP.J. PayneG.F. Enzymatic grafting of a natural product onto chitosan to confer water solubility under basic conditions.Biotechnol. Bioeng.199963215416510.1002/(SICI)1097‑0290(19990420)63:2<154::AID‑BIT4>3.0.CO;2‑R 10099592
    [Google Scholar]
  27. ChenT. KumarG. HarrisM.T. SmithP.J. PayneG.F. Enzymatic grafting of hexyloxyphenol onto chitosan to alter surface and rheological properties.Biotechnol. Bioeng.200070556457310.1002/1097‑0290(20001205)70:5<564::AID‑BIT11>3.0.CO;2‑W 11042553
    [Google Scholar]
  28. AljawishA. ChevalotI. JasniewskiJ. ScherJ. MunigliaL. Enzymatic synthesis of chitosan derivatives and their potential applications.J. Mol. Catal., B Enzym.2015112253910.1016/j.molcatb.2014.10.014
    [Google Scholar]
  29. YangF. ChenL. ZhaoD. GuoT. YuD. ZhangX. LiP. ChenJ. A novel water-soluble chitosan grafted with nerol: Synthesis, characterization and biological activity.Int. J. Biol. Macromol.202323212349810.1016/j.ijbiomac.2023.123498 36731699
    [Google Scholar]
  30. ZhangW. SunJ. LiQ. LiuC. NiuF. YueR. ZhangY. ZhuH. MaC. DengS. Free radical-mediated grafting of natural polysaccharides such as chitosan, starch, inulin, and pectin with some polyphenols: Synthesis, structural characterization, bioactivities, and applications-A review.Foods20231219368810.3390/foods12193688 37835341
    [Google Scholar]
  31. PiroonpanT. HuajaikaewE. KurantowiczN. PotiyarajP. PasanphanW. pH-responsive chitosan nanoparticles for controlled-release nitrogen fertilizer: Template-tampering free radical graft copolymerization under energetic radiation study.Eur. Polym. J.202420311267010.1016/j.eurpolymj.2023.112670
    [Google Scholar]
  32. Mohamady HusseinM.A. OlmosJ.M. PierańskiM.K. GrinholcM. BuhlE.M. GunduzO. YoussefA.M. PereiraC.M. El-SherbinyI.M. MegahedM. Post grafted gallic acid to chitosan-Ag hybrid nanoparticles via free radical-induced grafting reactions.Int. J. Biol. Macromol.202323312339510.1016/j.ijbiomac.2023.123395 36702225
    [Google Scholar]
  33. ZhangD. WangJ. RenL. MengX. LuanB. ZhangY. A novel cationic-modified chitosan flocculant efficiently treats alkali‒surfactant‒polymer flooding-produced water.Polym. Bull.20238012128651287910.1007/s00289‑023‑04682‑z
    [Google Scholar]
  34. YuanY. WangZ. SuS. LinC. MiY. TanW. GuoZ. Self-assembled low molecular weight chitosan-based cationic micelle for improved water solubility, stability and sustained release of α-tocopherol.Food Chem.202342913688610.1016/j.foodchem.2023.136886 37499506
    [Google Scholar]
  35. GothwalA. LampteyR.N.L. SinghJ. Multifunctionalized cationic chitosan polymeric micelles polyplexed with pVGF for noninvasive delivery to the mouse brain through the intranasal route for developing therapeutics for Alzheimer’s disease.Mol. Pharm.20232063009301910.1021/acs.molpharmaceut.3c00031 37093958
    [Google Scholar]
  36. CeleZ.E.D. MatsheW. MdlaloseL. SetshediK. MalatjiK. MkhwanaziN.P. NtombelaT. BalogunM. Cationic chitosan derivatives for the inactivation of HIV-1 and SARS-CoV-2 enveloped viruses.ACS Omega2023835317143172410.1021/acsomega.3c02143 37692209
    [Google Scholar]
  37. HaleemA. WuF. UllahM. SaeedT. LiH. PanJ. Chitosan functionalization with vinyl monomers via ultraviolet illumination under cryogenic conditions for efficient palladium recovery from waste electronic materials.Separ. Purif. Tech.202432912521310.1016/j.seppur.2023.125213
    [Google Scholar]
  38. WangJ. XuW. ZhangW. DaJ. LiuL. HuangX. YangC. ZhanY. JinH. LiY. ZhangB. UV cross-linked injectable non-swelling dihydrocaffeic acid grafted chitosan hydrogel for promoting wound healing.Carbohydr. Polym.202331412092610.1016/j.carbpol.2023.120926 37173025
    [Google Scholar]
  39. MostafaK. Fabrication of poly(AA)-chitosan nanoparticles graft copolymer via microwave irradiation system for enhancing water solubility and antimicrobial properties.Pigm. Resin Technol.202352443143810.1108/PRT‑12‑2021‑0137
    [Google Scholar]
  40. JayakumarR. PrabaharanM. ReisR.L. ManoJ.F. Graft copolymerized chitosan-present status and applications.Carbohydr. Polym.200562214215810.1016/j.carbpol.2005.07.017
    [Google Scholar]
  41. CasimiroM.H. GilM.H. LealJ.P. Suitability of gamma irradiated chitosan based membranes as matrix in drug release system.Int. J. Pharm.20103951-214214610.1016/j.ijpharm.2010.05.034 20562002
    [Google Scholar]
  42. CasimiroM.H. LancastreJ.J.H. RodriguesA.P. GomesS.R. RodriguesG. FerreiraL.M. Chitosan-based matrices prepared by gamma irradiation for tissue regeneration: Structural properties vs. preparation method.Top. Curr. Chem. (Cham)20173751510.1007/s41061‑016‑0092‑5 27995526
    [Google Scholar]
  43. YadavD. DuttaJ. A systematic review on recent development of chitosan/alginate-based polyelectrolyte complexes for wastewater treatment.Int. J. Environ. Sci. Technol.20242133381340610.1007/s13762‑023‑05244‑6
    [Google Scholar]
  44. SaiyadM. ShahN. JoshipuraM. DwivediA. PillaiS. Modified biopolymers in wastewater treatment: A review.Mater. Today Proc.202410.1016/j.matpr.2024.01.031
    [Google Scholar]
  45. SinghA. MittalA. BenjakulS. Chitosan, chitooligosaccharides and their polyphenol conjugates: Preparation, bioactivities, functionalities and applications in food systems.Food Rev. Int.20233942297231910.1080/87559129.2021.1950176
    [Google Scholar]
  46. ChenY. LiuY. DongQ. XuC. DengS. KangY. FanM. LiL. Application of functionalized chitosan in food: A review.Int. J. Biol. Macromol.202323512371610.1016/j.ijbiomac.2023.123716 36801297
    [Google Scholar]
  47. KumarD. GiharS. ShrivashM.K. KumarP. KunduP.P. A review on the synthesis of graft copolymers of chitosan and their potential applications.Int. J. Biol. Macromol.20201632097211210.1016/j.ijbiomac.2020.09.060 32949625
    [Google Scholar]
  48. BegumR. SinghS. PrajapatiB. SumithraM. PatelR.J. Advanced targeted drug delivery of bioactive agents fortified with graft chitosan in management of cancer: A review.Curr. Med. Chem.202431131 38415441
    [Google Scholar]
  49. LvS. ZhangS. ZuoJ. LiangS. YangJ. WangJ. WeiD. Progress in preparation and properties of chitosan-based hydrogels.Int. J. Biol. Macromol.2023242Pt 212491510.1016/j.ijbiomac.2023.124915 37211080
    [Google Scholar]
  50. KankariyaY. ChatterjeeB. Biomedical application of chitosan and chitosan derivatives: A comprehensive review.Curr. Pharm. Des.202329171311132510.2174/1381612829666230524153002 37226781
    [Google Scholar]
  51. VijayasriK. TiwariA. Chemical and radiation grafted chitosan for the mitigation of arsenic from contaminated water.J. Dispers. Sci. Technol.202041796797910.1080/01932691.2019.1614035
    [Google Scholar]
  52. SosnikA. ImperialeJ.C. Vázquez-GonzálezB. RaskinM.M. Muñoz-MuñozF. BurilloG. CedilloG. BucioE. Mucoadhesive thermo-responsive chitosan-g-poly(N-isopropylacrylamide) polymeric micelles via a one-pot gamma-radiation-assisted pathway.Colloids Surf. B Biointerfaces201513690090710.1016/j.colsurfb.2015.10.036 26551867
    [Google Scholar]
  53. RamaprasadA.T. RaoV. SanjeevG. RamananiS.P. SabharwalS. Grafting of polyaniline onto the radiation crosslinked chitosan.Synth. Met.200915919-201983199010.1016/j.synthmet.2009.07.006
    [Google Scholar]
  54. NisarS. PanditA.H. NadeemM. PanditA.H. RizviM.M.A. RattanS. γ-Radiation induced L-glutamic acid grafted highly porous, pH-responsive chitosan hydrogel beads: A smart and biocompatible vehicle for controlled anti-cancer drug delivery.Int. J. Biol. Macromol.2021182375010.1016/j.ijbiomac.2021.03.134 33775765
    [Google Scholar]
  55. GhobashyM.M. ElbarbaryA.M. HegazyD.E. Gamma radiation synthesis of a novel amphiphilic terpolymer hydrogel pH-responsive based chitosan for colon cancer drug delivery.Carbohydr. Polym.202126311797510.1016/j.carbpol.2021.117975 33858572
    [Google Scholar]
  56. GadY.H. Preparation and characterization of poly(2-acrylamido-2-methylpropane-sulfonic acid)/Chitosan hydrogel using gamma irradiation and its application in wastewater treatment.Radiat. Phys. Chem.20087791101110710.1016/j.radphyschem.2008.05.002
    [Google Scholar]
  57. LiY. LiuL. ShenX. FangY. Preparation of chitosan/poly(butyl acrylate) hybrid materials by radiation-induced graft copolymerization based on phthaloylchitosan.Radiat. Phys. Chem.200574529730110.1016/j.radphyschem.2005.03.005
    [Google Scholar]
  58. SinghD.K. RayA.R. Graft copolymerization of 2‐hydroxyethylmeth-acrylate onto chitosan films and their blood compatibility.J. Appl. Polym. Sci.19945381115112110.1002/app.1994.070530814
    [Google Scholar]
  59. IslasL. BurilloG. OrtegaA. Graft copolymerization of 2-hydroxyethyl methacrylate onto chitosan using radiation technique for release of diclofenac.Macromol. Res.201826869069510.1007/s13233‑018‑6100‑6
    [Google Scholar]
  60. CasimiroM.H. BotelhoM.L. LealJ.P. GilM.H. Study on chemical, UV and gamma radiation-induced grafting of 2-hydroxyethyl methacrylate onto chitosan.Radiat. Phys. Chem.200572673173510.1016/j.radphyschem.2004.04.029
    [Google Scholar]
  61. JaafarN.K. LepitA. AiniN.A. AliA.M.M. SaatA. YahyaM.Z.A. Radiation-Induced graft copolymerization base polymer electrolytes 2012 IEEE Symposium on Business, Engineering and Industrial Applications201256356710.1109/ISBEIA.2012.6422950
    [Google Scholar]
  62. DergunovS.A. NamI.K. MaimakovT.P. NurkeevaZ.S. ShaikhutdinovE.M. MunG.A. Study on radiation‐induced grafting of hydrophilic monomers onto chitosan.J. Appl. Polym. Sci.2008110155856310.1002/app.28618
    [Google Scholar]
  63. SinghD.K. RayA.R. Radiation-induced grafting of N,N-dimethylamino-ethylmethacrylate onto chitosan films.J. Appl. Polym. Sci.199766586987710.1002/(SICI)1097‑4628(19971031)66:5<869::AID‑APP7>3.0.CO;2‑T
    [Google Scholar]
  64. MontesJ.Á. OrtegaA. BurilloG. Dual-stimuli responsive copolymers based on N-vinylcaprolactam/chitosan.J. Radioanal. Nucl. Chem.201530321432150
    [Google Scholar]
  65. VanichvattanadechaC. SupapholP. NagasawaN. TamadaM. TokuraS. FuruikeT. TamuraH. RujiravanitR. Effect of gamma radiation on dilute aqueous solutions and thin films of N-succinyl chitosan.Polym. Degrad. Stabil.201095223424410.1016/j.polymdegradstab.2009.10.007
    [Google Scholar]
  66. KhanA. HuqT. KhanR.A. DussaultD. SalmieriS. LacroixM. Effect of gamma radiation on the mechanical and barrier properties of HEMA grafted chitosan-based films.Radiat. Phys. Chem.201281894194410.1016/j.radphyschem.2011.11.056
    [Google Scholar]
  67. SinghD.K. RayA.R. Characterization of grafted chitosan films.Carbohydr. Polym.1998362-325125510.1016/S0144‑8617(97)00260‑9
    [Google Scholar]
  68. AkterN. KhanR.A. SalmieriS. SharminN. DussaultD. LacroixM. Fabrication and mechanical characterization of biodegradable and synthetic polymeric films: Effect of gamma radiation.Radiat. Phys. Chem.201281899599810.1016/j.radphyschem.2011.10.029
    [Google Scholar]
  69. YuL. LiL. Wei’anZ. Yue’eF. A new hybrid nanocomposite prepared by graft copolymerization of butyl acrylate onto chitosan in the presence of organophilic montmorillonite.Radiat. Phys. Chem.200469646747110.1016/j.radphyschem.2003.10.012
    [Google Scholar]
  70. SharminN. KhanR.A. DussaultD. SalmieriS. AkterN. LacroixM. Effectiveness of silane monomer and gamma radiation on chitosan films and PCL-based composites.Radiat. Phys. Chem.201281893293510.1016/j.radphyschem.2011.12.047
    [Google Scholar]
  71. El-ArnaoutyM.B. EidM. Abdel GhaffarA.M. Abd El-WahabY. Electrical conductivity of chitosan/dimethyl amino ethyl methacrylate/metal composite prepared by gamma radiation.Polym. Sci. Ser. A20206271472110.1134/S0965545X20060012
    [Google Scholar]
  72. NasefS.M. KhozemyE.E. KamounE.A. El-GendiH. Gamma radiation-induced crosslinked composite membranes based on polyvinyl alcohol/chitosan/AgNO3/vitamin E for biomedical applications.Int. J. Biol. Macromol.201913787888510.1016/j.ijbiomac.2019.07.033 31284002
    [Google Scholar]
  73. KongkaoropthamP. PiroonpanT. HemvichianK. SuwanmalaP. RattanasakulthongW. PasanphanW. Poly(ethylene glycol) methyl ether methacrylate‐graft‐chitosan nanoparticles as a biobased nanofiller for a poly(lactic acid) blend: Radiation‐induced grafting and performance studies.J. Appl. Polym. Sci.2015132374252210.1002/app.42522
    [Google Scholar]
  74. WangJ.P. ChenY.Z. ZhangS.J. YuH.Q. A chitosan-based flocculant prepared with gamma-irradiation-induced grafting.Bioresour. Technol.20089993397340210.1016/j.biortech.2007.08.014 17888656
    [Google Scholar]
  75. WangJ.P. ChenY.Z. WangY. YuanS.J. ShengG.P. YuH.Q. A novel efficient cationic flocculant prepared through grafting two monomers onto chitosan induced by gamma radiation.RSC Advances20122249450010.1039/C1RA00473E
    [Google Scholar]
  76. WangJ.P. ChenY.Z. GeX.W. YuH.Q. Gamma radiation-induced grafting of a cationic monomer onto chitosan as a flocculant.Chemosphere20076691752175710.1016/j.chemosphere.2006.06.072 16904161
    [Google Scholar]
  77. SwantomoD. FaturrahmanI.R. BasukiK.T. WongsawaengD. Chitosan-polyacrylamide graft copolymers prepared with gamma irradiation for gold cyanide adsorption. Polymer-Plastics Technol.Mater.202059121284129110.1080/25740881.2020.1738469
    [Google Scholar]
  78. IbrahimA.G. SalehA.S. ElsharmaE.M. MetwallyE. SiyamT. Chitosan g maleic acid for effective removal of copper and nickel ions from their solutions.Int. J. Biol. Macromol.20191211287129410.1016/j.ijbiomac.2018.10.107 30340005
    [Google Scholar]
  79. SalehA.S. IbrahimA.G. ElsharmaE.M. MetwallyE. SiyamT. Radiation grafting of acrylamide and maleic acid on chitosan and effective application for removal of Co(II) from aqueous solutions.Radiat. Phys. Chem.201814411612410.1016/j.radphyschem.2017.11.018
    [Google Scholar]
  80. AbdelmonemI.M. MetwallyE. SiyamT.E. Abou El-NourF. MousaA.R.M. Gamma radiation-induced preparation of chitosan-acrylic acid-1-vinyl-2-vinylpyrrolidone/multiwalled carbon nanotubes composite for removal of 152+154Eu, 60Co and 134Cs radionuclides.Int. J. Biol. Macromol.20201642258226610.1016/j.ijbiomac.2020.08.120 32805290
    [Google Scholar]
  81. VijayasriK. TiwariA. Detoxification of arsenic from contaminated water using chitosan and radiation-induced grafted chitosan: A comparative study.Chem. Ecol.202137432334110.1080/02757540.2021.1886280
    [Google Scholar]
  82. Abou El FadlF.I. Radiation grafting of ionically crosslinked alginate/chitosan beads with acrylic acid for lead sorption.J. Radioanal. Nucl. Chem.2014301252953510.1007/s10967‑014‑3149‑3
    [Google Scholar]
  83. BenamerS. MahlousM. TahtatD. Nacer-KhodjaA. ArabiM. LouniciH. MameriN. Radiation synthesis of chitosan beads grafted with acrylic acid for metal ions sorption.Radiat. Phys. Chem.201180121391139710.1016/j.radphyschem.2011.06.013
    [Google Scholar]
  84. PuspitasariT. Oktaviani; Pangerteni, D.S.; Nurfilah, E.; Darwis, D. Study of metal ions removal from aqueous solution by using radiation crosslinked chitosan‐co‐Poly(Acrylamide)‐based adsorbent.Macromol. Symp.2015353116817710.1002/masy.201550323
    [Google Scholar]
  85. ElkholyS.S. Chemical and radiation-induced grafting of p-Carboxy N-phenyl maleimide onto chitosan.Polym. Plast. Technol. Eng.200847329930610.1080/03602550701869984
    [Google Scholar]
  86. BarleanyD.R. IlhamiA. YudantoD.Y. Erizal, degradation behaviour of gamma irradiated poly(acrylic acid)-graft-chitosan superabsorbent hydrogel.IOP Conf. Series Mater. Sci. Eng.201831601200710.1088/1757‑899X/316/1/012007
    [Google Scholar]
  87. OrtegaA. SánchezA. BurilloG. Binary Graft of Poly(N-vinylcapro-lactam) and poly(acrylic acid) onto chitosan hydrogels using ionizing radiation for the retention and controlled release of therapeutic compounds.Polymers (Basel)20211316264110.3390/polym13162641 34451181
    [Google Scholar]
  88. TalebM.F.A. Radiation synthesis of polyampholytic and reversible pH-responsive hydrogel and its application as drug delivery system.Polym. Bull.200861334135110.1007/s00289‑008‑0952‑4
    [Google Scholar]
  89. SokkerH.H. El-SawyN.M. HassanM.A. El-AnadouliB.E. Adsorption of crude oil from aqueous solution by hydrogel of chitosan based polyacrylamide prepared by radiation induced graft polymerization.J. Hazard. Mater.20111901-335936510.1016/j.jhazmat.2011.03.055 21497016
    [Google Scholar]
  90. Nizam El-DinH.M. IbraheimD.M. Biological applications of nanocomposite hydrogels prepared by gamma-radiation copolymerization of acrylic acid (AAc) onto plasticized starch (PLST)/montmorillonite clay (MMT)/chitosan (CS) blends.Int. J. Biol. Macromol.202119215116010.1016/j.ijbiomac.2021.09.196 34619272
    [Google Scholar]
  91. BurilloJ.C. Castro-LarragoitiaJ. BurilloG. OrtegaA. Medellin-CastilloN. Removal of arsenic and iron from mine-tailing leachate using chitosan hydrogels synthesized by gamma radiation.Environ. Earth Sci.2017761345010.1007/s12665‑017‑6780‑9
    [Google Scholar]
  92. ShimJ.W. NhoY.C. Preparation of poly(acrylic acid)-chitosan hydrogels by gamma irradiation and in vitro drug release.J. Appl. Polym. Sci.200390133660366710.1002/app.13120
    [Google Scholar]
  93. Leyva-GómezG. Santillan-ReyesE. LimaE. Madrid-MartínezA. KrötzschE. Quintanar-GuerreroD. Garciadiego-CázaresD. Martínez-JiménezA. Hernández MoralesM. Ortega-PeñaS. Contreras-FigueroaM.E. Cortina-RamírezG.E. Abarca-BuisR.F. A novel hydrogel of poloxamer 407 and chitosan obtained by gamma irradiation exhibits physicochemical properties for wound management.Mater. Sci. Eng. C201774364610.1016/j.msec.2016.12.127 28254305
    [Google Scholar]
  94. CaiH. ZhangZ.P. ChuanSun P.; Lin He, B.; Xia Zhu, X. Synthesis and characterization of thermo- and pH-sensitive hydrogels based on chitosan-grafted N-isopropylacrylamide via γ-radiation.Radiat. Phys. Chem.2005741263010.1016/j.radphyschem.2004.10.007
    [Google Scholar]
  95. NhoY.C. ParkK.R. Preparation and properties of PVA/PVP hydrogels containing chitosan by radiation.J. Appl. Polym. Sci.20028581787179410.1002/app.10812
    [Google Scholar]
  96. CruzA. García-UriosteguiL. OrtegaA. IsoshimaT. BurilloG. Radiation grafting of N-vinylcaprolactam onto nano and macrogels of chitosan: Synthesis and characterization.Carbohydr. Polym.201715530331210.1016/j.carbpol.2016.08.083 27702516
    [Google Scholar]
  97. CasimiroM.H. PereiraA. LealJ.P. RodriguesG. FerreiraL.M. Chitosan/PVA based membranes processed by gamma radiation as scaffolding materials for skin regeneration.Membranes (Basel)202111856110.3390/membranes11080561 34436324
    [Google Scholar]
  98. El SalmawiK.M. Gamma radiation‐induced crosslinked PVA/chitosan blends for wound dressing.J. Macromol. Sci. Part A Pure Appl. Chem.200744554154510.1080/10601320701235891
    [Google Scholar]
  99. BisenD.S. BhattR. BajpaiA.K. BajpaiR. KatareR. Reverse indentation size effects in gamma irradiated blood compatible blend films of chitosan-poly (vinyl alcohol) for possible medical applications.Mater. Sci. Eng. C20177198299310.1016/j.msec.2016.11.001 27987797
    [Google Scholar]
  100. CasimiroM.H. GomesS.R. RodriguesG. LealJ.P. FerreiraL.M. Chitosan/poly(vinylpyrrolidone) matrices obtained by gamma-irradiation for skin scaffolds: Characterization and preliminary cell response studies.Materials (Basel)20181112253510.3390/ma11122535 30551595
    [Google Scholar]
  101. PasanphanW. RattanawongwiboonT. RimdusitP. PiroonpanT. Radiation-induced graft copolymerization of poly(ethylene glycol) monomethacrylate onto deoxycholate-chitosan nanoparticles as a drug carrier.Radiat. Phys. Chem.20149419920410.1016/j.radphyschem.2013.06.026
    [Google Scholar]
  102. CasimiroM.H. GilM.H. LealJ.P. Drug release assays from new chitosan/pHEMA membranes obtained by gamma irradiation.Nucl. Instrum. Methods Phys. Res. B2007265140640910.1016/j.nimb.2007.09.013
    [Google Scholar]
  103. RattanawongwiboonT. HemvichianK. LertsarawutP. SuwanmalaP. Chitosan-poly(ethylene glycol) diacrylate beads prepared by radiation-induced crosslinking and their promising applications derived from encapsulation of essential oils.Radiat. Phys. Chem.202017010865610.1016/j.radphyschem.2019.108656
    [Google Scholar]
  104. RadwanR.R. Abdel GhaffarA.M. AliH.E. Gamma radiation preparation of chitosan nanoparticles for controlled delivery of memantine.J. Biomater. Appl.20203481150116210.1177/0885328219890071 31771402
    [Google Scholar]
  105. UddinI. IslamJ.M.M. HaqueA. ZubairA. BaruaR. RahamanS. RahmanL. KhanM.A. Significant influence of gamma-radiation-treated chitosan and alginate on increased productivity as well as improved taste and flavor of pineapple.Int. J. Fruit Sci.202020sup245546910.1080/15538362.2020.1740909
    [Google Scholar]
/content/journals/coc/10.2174/0113852728317918240710112955
Loading
/content/journals/coc/10.2174/0113852728317918240710112955
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test