Skip to content
2000
Volume 29, Issue 6
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Bioorthogonal chemistry represents a collection of chemical techniques employing unique functional groups to probe and comprehend biological processes within living organisms. This tool has unparalleled selectivity, exceptional biocompatibility, and moreover, the versatility which all together make it a very powerful protocol for the studying of biological processes and developing new therapeutics. This review offers a comprehensive overview of the sophisticated reactions employed in bioorthogonal chemistry, as well as potential methodologies for conducting these reactions. Additionally, it delves into bioorthogonal-based chemical strategies for incorporating 'bioorthogonal handles' into biomolecules. The review extensively covers the recent advancements in bioorthogonal click chemistry, from its inception to its notable applications in live cell imaging, biomolecule characterization, and glycome imaging. Furthermore, it discusses the future potential of click chemistry for synergistic integration of chemistry and biology, highlighting its versatility and promise in advancing various emerging fields in drug discovery and development.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728326779240911055902
2024-10-03
2025-05-22
Loading full text...

Full text loading...

References

  1. TornoeC.W. ChristensenC. MeldalM. Peptidotriazoles on solid phase: 1,2,3-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides.J. Org. Chem.2002673057306210.1021/jo011148j 11975567
    [Google Scholar]
  2. RostovtsevV.V. GreenL.G. FokinV.V. SharplessK.B. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes.Angew. Chem. Int. Ed.200241142596259910.1002/1521‑3773(20020715)41:14<2596:AID‑ANIE2596>3.0.CO;2‑4 12203546
    [Google Scholar]
  3. AgardN.J. PrescherJ.A. BertozziC.R. A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems.J. Am. Chem. Soc.200412646150461504710.1021/ja044996f 15547999
    [Google Scholar]
  4. AgrahariA.K. BoseP. JaiswalM.K. RajkhowaS. SinghA.S. HothaS. MishraN. TiwariV.K. Cu(I)-catalyzed click chemistry in glycoscience and their diverse applications.Chem. Rev.2021121137638795610.1021/acs.chemrev.0c00920 34165284
    [Google Scholar]
  5. TiwariV.K. MishraB.B. MishraK.B. MishraN. SinghA.S. ChenX. Cu-catalyzed click reaction in carbohydrate chemistry.Chem. Rev.201611653086324010.1021/acs.chemrev.5b00408 26796328
    [Google Scholar]
  6. ThirumuruganP. MatosiukD. JozwiakK. Click chemistry for drug development and diverse chemical-biology applications.Chem. Rev.201311374905497910.1021/cr200409f 23531040
    [Google Scholar]
  7. MeldalM. TornøeC.W. Cu-catalyzed azide-alkyne cycloaddition.Chem. Rev.200810882952301510.1021/cr0783479 18698735
    [Google Scholar]
  8. ChenM.M. KopittkeP.M. ZhaoF.J. WangP. Applications and opportunities of click chemistry in plant science.Trends Plant Sci.202429216717810.1016/j.tplants.2023.07.003 37612212
    [Google Scholar]
  9. (a SharmaA. AgrahariA.K. RajkhowaS. TiwariV.K. Emerging impact of triazoles as anti-tubercular agent.Eur. J. Med. Chem.202223811445410.1016/j.ejmech.2022.114454 35597009
    [Google Scholar]
  10. (b YadavS. SinghA.K. AgrahariA.K. SharmaK. SinghA.S. GuptaM.K. TiwariV.K. PrakashP. Making of water soluble curcumin to potentiate conventional antimicrobials by inducing apoptosis-like phenomena among drug-resistant bacteria.Sci. Rep.20201011420410.1038/s41598‑020‑70921‑2 32848171
    [Google Scholar]
  11. JaiswalM.K. TiwariV.K. Growing impact of intramolecular click chemistry in organic synthesis.Chem. Rec.20232311e20230016710.1002/tcr.202300167 37522634
    [Google Scholar]
  12. TiwariV.K. JaiswalM.K. RajkhowaS. SinghS.K. Click Chemistry.SingaporeSpringer Nature202410.1007/978‑981‑97‑4596‑8
    [Google Scholar]
  13. QinA. LamJ.W.Y. TangB.Z. Click polymerization.Chem. Soc. Rev.20103972522254410.1039/b909064a 20571673
    [Google Scholar]
  14. TangW. BeckerM.L. “Click” reactions: a versatile toolbox for the synthesis of peptide-conjugates.Chem. Soc. Rev.201443207013703910.1039/C4CS00139G 24993161
    [Google Scholar]
  15. TaiariolL. ChaixC. FarreC. MoreauE. Click and bioorthogonal chemistry: The future of active targeting of nanoparticles for nanomedicines?Chem. Rev.2022122134038410.1021/acs.chemrev.1c00484 34705429
    [Google Scholar]
  16. FuQ. ShenS. SunP. GuZ. BaiY. WangX. LiuZ. Bioorthogonal chemistry for prodrug activation in vivo.Chem. Soc. Rev.202352227737777210.1039/D2CS00889K 37905601
    [Google Scholar]
  17. Prize announcementAvailable from: https://www.nobelprize.org/prizes/chemistry/2022/prize-announcement/ (accessed on 19-8-2024)
  18. WitczakZ.J. Bielski, R. Click Chemistry in Glycoscience: New Development and Strategies.New YorkWiley-VCH John Wiley & Sons201310.1002/9781118526996
    [Google Scholar]
  19. ChandrasekeranS. Click Reactions in Organic Synthesis.New YorkWiley-VCH, John Wiley & Sons201610.1002/9783527694174
    [Google Scholar]
  20. HimoF. LovellT. HilgrafR. RostovtsevV.V. NoodlemanL. SharplessK.B. FokinV.V. Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates.J. Am. Chem. Soc.2005127121021610.1021/ja0471525 15631470
    [Google Scholar]
  21. RodionovV.O. FokinV.V. FinnM.G. Mechanism of the ligand‐free CuI‐catalyzed azide–alkyne cycloaddition reaction.Angew. Chem. Int. Ed.200544152210221510.1002/anie.200461496
    [Google Scholar]
  22. SissonA.L. PappI. LandfesterK. HaagR. Functional nanoparticles from dendritic precursors: Hierarchical assembly in miniemulsion.Macromolecules200942255655910.1021/ma802238e
    [Google Scholar]
  23. WorchJ.C. StubbsC.J. PriceM.J. DoveA.P. Click nucleophilic conjugate additions to activated alkynes: exploring thiol-yne, amino-yne, and hydroxyl-yne reactions from (bio)organic to polymer chemistry.Chem. Rev.2021121126744677610.1021/acs.chemrev.0c01076 33764739
    [Google Scholar]
  24. BarrowA.S. SmedleyC.J. ZhengQ. LiS. DongJ. MosesJ.E. The growing applications of SuFEx click chemistry.Chem. Soc. Rev.201948174731475810.1039/C8CS00960K 31364998
    [Google Scholar]
  25. DevarajN.K. FinnM.G. Introduction: Click chemistry.Chem. Rev.2021121126697669810.1021/acs.chemrev.1c00469 34157843
    [Google Scholar]
  26. ZhangL. ChenX. XueP. SunH.H.Y. WilliamsI.D. SharplessK.B. FokinV.V. JiaG. Ruthenium-catalyzed cycloaddition of alkynes and organic azides.J. Am. Chem. Soc.200512746159981599910.1021/ja054114s 16287266
    [Google Scholar]
  27. HuisgenR. 1,3‐Dipolar Cycloadditions. Past and Future.Angew. Chem. Int. Ed. Engl.196321056559810.1002/anie.196305651
    [Google Scholar]
  28. RamacharyD.B. RamakumarK. NarayanaV.V. Amino acid-catalyzed cascade [3+2]-cycloaddition/hydrolysis reactions based on the push-pull dienamine platform: synthesis of highly functionalized NH-1,2,3-triazoles.Chemistry200814309143914710.1002/chem.200801325 18767077
    [Google Scholar]
  29. RamacharyD.B. ShashankA.B. KarthikS. An organocatalytic azide-aldehyde [3+2] cycloaddition: high-yielding regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles.Angew. Chem. Int. Ed.20145339104201042410.1002/anie.201406721 25079606
    [Google Scholar]
  30. BelkheiraM. El AbedD. PonsJ.M. BressyC. Organocatalytic synthesis of 1,2,3-triazoles from unactivated ketones and arylazides.Chemistry20111746129171292110.1002/chem.201102046 21984230
    [Google Scholar]
  31. WangL. PengS. DanenceL.J.T. GaoY. WangJ. Amine-catalyzed [3+2] Huisgen cycloaddition strategy for the efficient assembly of highly substituted 1,2,3-triazoles.Chemistry201218196088609310.1002/chem.201103393 22461307
    [Google Scholar]
  32. DanenceL.J.T. GaoY. LiM. HuangY. WangJ. Organocatalytic enamide-azide cycloaddition reactions: regiospecific synthesis of 1,4,5-trisubstituted-1,2,3-triazoles.Chemistry201117133584358710.1002/chem.201002775 21341323
    [Google Scholar]
  33. SangwanR. Javed; Dubey, A.; Mandal, P.K. Organocatalytic [3+2] cycloadditions: Toward facile synthesis of sulfonyl-1,2,3-triazolyl and fully substituted 1,2,3-triazolyl glycoconjugates.ChemistrySelect20172174733474310.1002/slct.201700805
    [Google Scholar]
  34. JaiswalM.K. GuptaA. YadavM.S. PandeyV.K. TiwariV.K. Organocatalyzed regioselective synthesis of 1,5‐disubstituted 1,2,3‐triazolyl glycoconjugates.Chemistry20232955e20230174910.1002/chem.202301749 37432103
    [Google Scholar]
  35. KumarG.S. LinQ. Light-triggered click chemistry, q. light-triggered click chemistry.Chem. Rev.2021121126991703110.1021/acs.chemrev.0c00799 33104332
    [Google Scholar]
  36. HemaK. SureshanK.M. Topochemical azide–alkyne cycloaddition reaction.Acc. Chem. Res.201952113149316310.1021/acs.accounts.9b00398 31600046
    [Google Scholar]
  37. ChangP.V. ChenX. SmyrniotisC. XenakisA. HuT. BertozziC.R. WuP. Metabolic labeling of sialic acids in living animals with alkynyl sugars.Angew. Chem. Int. Ed.200948224030403310.1002/anie.200806319 19388017
    [Google Scholar]
  38. WittigG. KrebsA. Zur Existenz niedergliedriger Cycloalkine, I.Chem. Ber.196194123260327510.1002/cber.19610941213
    [Google Scholar]
  39. SlettenE.M. BertozziC.R. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality.Angew. Chem. Int. Ed.200948386974699810.1002/anie.200900942 19714693
    [Google Scholar]
  40. LinF.L. HoytH.M. van HalbeekH. BergmanR.G. BertozziC.R. Mechanistic investigation of the staudinger ligation.J. Am. Chem. Soc.200512782686269510.1021/ja044461m 15725026
    [Google Scholar]
  41. OhtsuboK. MarthJ.D. Glycosylation in cellular mechanisms of health and disease.Cell2006126585586710.1016/j.cell.2006.08.019 16959566
    [Google Scholar]
  42. (a PrescherJ.A. BertozziC.R. Chemistry in living systems.Nat. Chem. Biol.200511132110.1038/nchembio0605‑13 16407987
    [Google Scholar]
  43. (b BertozziC.R. A decade of bioorthogonal chemistry.Acc. Chem. Res.201144965165310.1021/ar200193f 21928847
    [Google Scholar]
  44. SharplessK.B. American Chemical Society 217th National Meeting division of Medicinal Chemistry general session. 21-25 March 1999, Anaheim, CA, USA.IDrugs199926507510Anaheim, CA, United States
    [Google Scholar]
  45. KolbH.C. FinnM.G. SharplessK.B. Click chemistry: Diverse chemical function from a few good reactions.Angew. Chem. Int. Ed.200140112004202110.1002/1521‑3773(20010601)40:11<2004:AID‑ANIE2004>3.0.CO;2‑5 11433435
    [Google Scholar]
  46. MaN. WangY. ZhaoB.X. YeW.C. JiangS. The application of click chemistry in the synthesis of agents with anticancer activity.Drug Des. Devel. Ther.2015915851599 25792812
    [Google Scholar]
  47. LiH. AnejaR. ChaikenI. Click chemistry in peptide-based drug design.Molecules20131889797981710.3390/molecules18089797 23959192
    [Google Scholar]
  48. PasiniD. The click reaction as an efficient tool for the construction of macrocyclic structures.Molecules20131889512953010.3390/molecules18089512 23966075
    [Google Scholar]
  49. AngellY.L. BurgessK. Peptidomimetics via copper-catalyzed azide–alkyne cycloadditions.Chem. Soc. Rev.200736101674168910.1039/b701444a 17721589
    [Google Scholar]
  50. MishraA. AgrahariA.K. TiwariV.K. Application of CuAAC in carbohydrates in Click Chemistry.Science of Synthesis.Springer2021
    [Google Scholar]
  51. LiangL. AstrucD. The copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) “click” reaction and its applications. An overview.Coord. Chem. Rev.201125523-242933294510.1016/j.ccr.2011.06.028
    [Google Scholar]
  52. YiG. SonJ. YooJ. ParkC. KooH. Application of click chemistry in nanoparticle modification and its targeted delivery.Biomater. Res.20182211310.1186/s40824‑018‑0123‑0 29686885
    [Google Scholar]
  53. HuisgenR. Kinetics and mechanism of 1,3‐dipolar cycloadditions.Angew. Chem. Int. Ed. Engl.196321163364510.1002/anie.196306331
    [Google Scholar]
  54. HuisgenR. Kinetics and reaction mechanisms: selected examples from the experience of forty years.Pure Appl. Chem.198961461362810.1351/pac198961040613
    [Google Scholar]
  55. HuisgenR. SzeimiesG. MöbiusL. 1.3‐Dipolare cycloadditionen, XXXII. kinetik der additionen organischer azide an CC‐mehrfachbindungen.Chem. Ber.196710082494250710.1002/cber.19671000806
    [Google Scholar]
  56. HuisgenR. 1,3-Dipolar Cycloadditions-Introduction, Survey, Mechanism. In: 1,3-Dipolar Cycloaddition Chemistry.New YorkWiley1984
    [Google Scholar]
  57. MichaelA. Ueber die Einwirkung von Diazobenzolimid auf Acetylendicarbonsäuremethylester.J. Prakt. Chem.1893481949510.1002/prac.18930480114
    [Google Scholar]
  58. ChanT.R. HilgrafR. SharplessK.B. FokinV.V. Polytriazoles as copper(I)-stabilizing ligands in catalysis.Org. Lett.20046172853285510.1021/ol0493094 15330631
    [Google Scholar]
  59. JohanssonJ.R. Beke-SomfaiT. Said StålsmedenA. KannN. Ruthenium-catalyzed azide alkyne cycloaddition reaction: Scope, mechanism, and applications.Chem. Rev.201611623147261476810.1021/acs.chemrev.6b00466 27960271
    [Google Scholar]
  60. BonandiE. ChristodoulouM.S. FumagalliG. PerdicchiaD. RastelliG. PassarellaD. The 1,2,3-triazole ring as a bioisostere in medicinal chemistry.Drug Discov. Today201722101572158110.1016/j.drudis.2017.05.014 28676407
    [Google Scholar]
  61. LemieuxG. BertozziC.R. Chemoselective ligation reactions with proteins, oligosaccharides and cells.Trends Biotechnol.1998161250651310.1016/S0167‑7799(98)01230‑X 9881482
    [Google Scholar]
  62. MahalL.K. YaremaK.J. BertozziC.R. Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis.Science199727653151125112810.1126/science.276.5315.1125 9173543
    [Google Scholar]
  63. SeverinovK. MuirT.W. Expressed protein ligation, a novel method for studying protein-protein interactions in transcription.J. Biol. Chem.199827326162051620910.1074/jbc.273.26.16205 9632677
    [Google Scholar]
  64. SaxonE. BertozziC.R. Cell surface engineering by a modified Staudinger reaction.Science200028754602007201010.1126/science.287.5460.2007 10720325
    [Google Scholar]
  65. StaudingerH. MeyerJ. Über neue organische Phosphorverbindungen III.Phosphinmethylenderivate und Phosphinimine. Helv. Chim. Acta19192163564610.1002/hlca.19190020164
    [Google Scholar]
  66. BanaheneN. KavunjaH.W. SwartsB.M. Chemical Reporters for Bacterial Glycans: Development and Applications.Chem. Rev.202212233336341310.1021/acs.chemrev.1c00729 34905344
    [Google Scholar]
  67. BauerD. CornejoM.A. HoangT.T. LewisJ.S. ZeglisB.M. Click chemistry and radiochemistry: An update.Bioconjugate Chem.2023341119255010.1021/acs.bioconjchem.3c00286
    [Google Scholar]
  68. SaxonE. ArmstrongJ.I. BertozziC.R.A. “traceless” Staudinger ligation for the chemoselective synthesis of amide bonds.Org. Lett.20002142141214310.1021/ol006054v 10891251
    [Google Scholar]
  69. BaskinJ.M. PrescherJ.A. LaughlinS.T. AgardN.J. ChangP.V. MillerI.A. LoA. CodelliJ.A. BertozziC.R. Copper-free click chemistry for dynamic in vivo imaging.Proc. Natl. Acad. Sci. USA200710443167931679710.1073/pnas.0707090104 17942682
    [Google Scholar]
  70. SpäteA.K. SchartV.F. SchöllkopfS. NiederwieserA. WittmannV. Terminal alkenes as versatile chemical reporter groups for metabolic oligosaccharide engineering.Chemistry20142050165021650810.1002/chem.201404716 25298205
    [Google Scholar]
  71. SchartV.F. HassenrückJ. SpäteA.K. DoldJ.E.G.A. FahrnerR. WittmannV. Hassenrück, J.; Anne-Katrin Späte, A.K.; Dold, J.E.G.A.; Fahrner, R.; Wittmann, V. Triple orthogonal labeling of glycans by applying photoclick chemistry.ChemBioChem201920216617110.1002/cbic.201800740 30499611
    [Google Scholar]
  72. KozmaE. BojtárM. KeleP. Bioorthogonally assisted phototherapy: recent advances and prospects.Angew. Chem. Int. Ed.20236233e20230319810.1002/anie.202303198 37161824
    [Google Scholar]
  73. ChenX. VarkiA. User-friendly bioorthogonal reactions click to explore glycan functions in complex biological systems.J. Clin. Invest.20231336e16940810.1172/JCI169408 36919701
    [Google Scholar]
  74. ZhangH. WangJ. HanR. SunB. LuoC. Bioorthogonal chemistry-driven anticancer nanotherapeutics.Trends Chem.20235969771010.1016/j.trechm.2023.05.006
    [Google Scholar]
  75. AzagarsamyM.A. AnsethK.S. Bioorthogonal click chemistry: An indispensable tool to create multifaceted cell culture scaffolds.ACS Macro Lett.2013215910.1021/mz300585q 23336091
    [Google Scholar]
  76. StuyverT. JornerK. ColeyC.W. Reaction profiles for quantum chemistry-computed [3 + 2] cycloaddition reactions.Sci. Data20231016610.1038/s41597‑023‑01977‑8 36725850
    [Google Scholar]
  77. SenguptaP. DuttaS. ChhikaraB.S. Bioorthogonal chemistry in the reproductive medicine.Chem. Biol. Lett.202310545
    [Google Scholar]
  78. BertozziC. A special virtual issue celebrating the 2022 nobel prize in chemistry for the development of click chemistry and bioorthogonal chemistry.ACS Cent. Sci.20239455855910.1021/acscentsci.2c01430 37122475
    [Google Scholar]
  79. DubeD. BertozziC.R. Metabolic oligosaccharide engineering as a tool for glycobiology.Curr. Opin. Chem. Biol.20037561662510.1016/j.cbpa.2003.08.006 14580567
    [Google Scholar]
  80. BertozziC. PhilippidisA. DaviesK. Sweet dreams are made of this: An interview with carolyn bertozzi.GEN Biotechnol.20232645946310.1089/genbio.2023.29119.cbe
    [Google Scholar]
  81. WratilP.R. HorstkorteR. ReutterW. Metabolic glycoengineering with N‐acyl side chain modified mannosamines.Angew. Chem. Int. Ed.201655339482951210.1002/anie.201601123 27435524
    [Google Scholar]
  82. AgatemorC. BuettnerM.J. ArissR. MuthiahK. SaeuiC.T. YaremaK.J. Exploiting metabolic glycoengineering to advance healthcare.Nat. Rev. Chem.201931060562010.1038/s41570‑019‑0126‑y 31777760
    [Google Scholar]
  83. GololobovY.G. KasukhinL.F. Recent advances in the staudinger reaction.Tetrahedron19924881353140610.1016/S0040‑4020(01)92229‑X
    [Google Scholar]
  84. WileyR.A. SternsonL.A. SasameH.A. GilletteJ.R. Enzymatic oxidation of diphenylmethylphosphine and 3-dimethylaminopropyldiphenyl-phosphine by rat liver microsomes.Biochem. Pharmacol.197221243235324710.1016/0006‑2952(72)90088‑3 4648432
    [Google Scholar]
  85. KöhnM. BreinbauerR. The Staudinger ligation-a gift to chemical biology.Angew. Chem. Int. Ed.200443243106311610.1002/anie.200401744 15199557
    [Google Scholar]
  86. LaughlinS.T. BertozziC.R. Metabolic labeling of glycans with azido sugars and subsequent glycan-profiling and visualization via Staudinger ligation.Nat. Protoc.20072112930294410.1038/nprot.2007.422 18007630
    [Google Scholar]
  87. PrescherJ.A. DubeD.H. BertozziC.R. Chemical remodelling of cell surfaces in living animals.Nature2004430700287387710.1038/nature02791 15318217
    [Google Scholar]
  88. NevesA.A. StöckmannH. HarmstonR.R. PryorH.J. AlamI.S. Ireland-ZecchiniH. LewisD.Y. LyonsS.K. LeeperF.J. BrindleK.M. Imaging sialylated tumor cell glycans in vivo.FASEB J.20112582528253710.1096/fj.10‑178590 21493886
    [Google Scholar]
  89. SundhoroM. JeonS. ParkJ. RamströmO. YanM. Perfluoroaryl azide staudinger reaction: A fast and bioorthogonal reaction.Angew. Chem. Int. Ed.20175640121171212110.1002/anie.201705346 28796447
    [Google Scholar]
  90. KolbH.C. SharplessK.B. The growing impact of click chemistry on drug discovery.Drug Discov. Today20038241128113710.1016/S1359‑6446(03)02933‑7 14678739
    [Google Scholar]
  91. LutzJ.F. ZarafshaniZ. Efficient construction of therapeutics, bioconjugates, biomaterials and bioactive surfaces using azide–alkyne “click” chemistry.Adv. Drug Deliv. Rev.200860995897010.1016/j.addr.2008.02.004 18406491
    [Google Scholar]
  92. TanakaT. KamiyaN. NagamuneT. N‐terminal glycine‐specific protein conjugation catalyzed by microbial transglutaminase.FEBS Lett.2005579102092209610.1016/j.febslet.2005.02.064 15811324
    [Google Scholar]
  93. TiwariV.K. Carbohydrates in Drug Discovery and Developments; Elsevier Inc.: The Netherland, 2020, PP.213-266. Tiwari, V.K. Synthetic Strategies in Carbohydrate Chemistry.The NetherlandElsevier Inc.2023
    [Google Scholar]
  94. van BerkelS.S. DirksA.T.J. MeeuwissenS.A. PingenD.L.L. BoermanO.C. LavermanP. van DelftF.L. CornelissenJ.J.L.M. RutjesF.P.J.T. Application of metal-free triazole formation in the synthesis of cyclic RGD-DTPA conjugates.ChemBioChem20089111805181510.1002/cbic.200800074 18623291
    [Google Scholar]
  95. JoshiN.S. WhitakerL.R. FrancisM.B. A three-component Mannich-type reaction for selective tyrosine bioconjugation.J. Am. Chem. Soc.200412649159421594310.1021/ja0439017 15584710
    [Google Scholar]
  96. AntosJ. FrancisM. Transition metal catalyzed methods for site-selective protein modification.Curr. Opin. Chem. Biol.200610325326210.1016/j.cbpa.2006.04.009 16698310
    [Google Scholar]
  97. GauthierM.A. KlokH.A. Peptide/protein–polymer conjugates: synthetic strategies and design concepts.Chem. Commun. (Camb.)2008232591261110.1039/b719689j 18535687
    [Google Scholar]
  98. TronG.C. PiraliT. BillingtonR.A. CanonicoP.L. SorbaG. GenazzaniA.A. Click chemistry reactions in medicinal chemistry: Applications of the 1,3‐dipolar cycloaddition between azides and alkynes.Med. Res. Rev.200828227830810.1002/med.20107 17763363
    [Google Scholar]
  99. SharplessK.B. ManetschR. In situ click chemistry: a powerful means for lead discovery.Expert Opin. Drug Discov.20061652553810.1517/17460441.1.6.525 23506064
    [Google Scholar]
  100. HeinJ.E. FokinV.V. Copper-catalyzed azide–alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(i) acetylides.Chem. Soc. Rev.20103941302131510.1039/b904091a 20309487
    [Google Scholar]
  101. GaetkeL. ChowC.K. Copper toxicity, oxidative stress, and antioxidant nutrients.Toxicology20031891-214716310.1016/S0300‑483X(03)00159‑8 12821289
    [Google Scholar]
  102. YinZ. Comellas-AragonesM. ChowdhuryS. BentleyP. KaczanowskaK. BenMohamedL. GildersleeveJ.C. FinnM.G. HuangX. Boosting immunity to small tumor-associated carbohydrates with bacteriophage qβ capsids.ACS Chem. Biol.2013861253126210.1021/cb400060x 23505965
    [Google Scholar]
  103. RabukaD. HubbardS.C. LaughlinS.T. ArgadeS.P. BertozziC.R. A chemical reporter strategy to probe glycoprotein fucosylation.J. Am. Chem. Soc.200612837120781207910.1021/ja064619y 16967952
    [Google Scholar]
  104. Besanceney-WeblerC. JiangH. WangW. BaughnA.D. WuP. Metabolic labeling of fucosylated glycoproteins in Bacteroidales species.Bioorg. Med. Chem. Lett.201121174989499210.1016/j.bmcl.2011.05.038 21676614
    [Google Scholar]
  105. HsuT.L. HansonS.R. KishikawaK. WangS.K. SawaM. WongC.H. Alkynyl sugar analogs for the labeling and visualization of glycoconjugates in cells.Proc. Natl. Acad. Sci. USA200710482614261910.1073/pnas.0611307104 17296930
    [Google Scholar]
  106. SawaM. HsuT.L. ItohT. SugiyamaM. HansonS.R. VogtP.K. WongC.H. Glycoproteomic probes for fluorescent imaging of fucosylated glycans in vivo.Proc. Natl. Acad. Sci. USA200610333123711237610.1073/pnas.0605418103 16895981
    [Google Scholar]
  107. ShiehP. HangauerM.J. BertozziC.R. Fluorogenic azidofluoresceins for biological imaging.J. Am. Chem. Soc.201213442174281743110.1021/ja308203h 23025473
    [Google Scholar]
  108. SumranjitJ. ChungS. Recent advances in target characterization and identification by photoaffinity probes.Molecules2013189104251045110.3390/molecules180910425 23994969
    [Google Scholar]
  109. ZhaoL. MayJ.P. BlancA. DietrichD.J. LoonchantaA. MatinkhooK. PryymaA. PerrinD.M. Synthesis of a cytotoxic amanitin for biorthogonal conjugation.ChemBioChem201516101420142510.1002/cbic.201500226 26043184
    [Google Scholar]
  110. BallellL. van ScherpenzeelM. BuchalovaK. LiskampR.M.J. PietersR.J. A new chemical probe for the detection of the cancer-linked galectin-3.Org. Biomol. Chem.20064234387439410.1039/b611050a 17102885
    [Google Scholar]
  111. BallellL. AlinkK.J. SlijperM. VersluisC. LiskampR.M.J. PietersR.J. A new chemical probe for proteomics of carbohydrate-binding proteins.ChemBioChem20056229129510.1002/cbic.200400209 15578642
    [Google Scholar]
  112. WangQ. ChanT.R. HilgrafR. FokinV.V. SharplessK.B. FinnM.G. Bioconjugation by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition.J. Am. Chem. Soc.2003125113192319310.1021/ja021381e 12630856
    [Google Scholar]
  113. HongV. SteinmetzN.F. ManchesterM. FinnM.G. Labeling live cells by copper-catalyzed alkyne--azide click chemistry.Bioconjug. Chem.201021101912191610.1021/bc100272z 20886827
    [Google Scholar]
  114. Soriano del AmoD. WangW. JiangH. BesanceneyC. YanA.C. LevyM. LiuY. MarlowF.L. WuP. Biocompatible copper(I) catalysts for in vivo imaging of glycans.J. Am. Chem. Soc.201013247168931689910.1021/ja106553e 21062072
    [Google Scholar]
  115. JiangH. ZhengT. Lopez-AguilarA. FengL. KoppF. MarlowF.L. WuP. Monitoring dynamic glycosylation in vivo using supersensitive click chemistry.Bioconjug. Chem.201425469870610.1021/bc400502d 24499412
    [Google Scholar]
  116. YinZ. DulaneyS. McKayC.S. BanielC. KaczanowskaK. RamadanS. FinnM.G. HuangX. Chemical synthesis of GM2 glycans, bioconjugation with bacteriophage qβ, and the induction of anticancer antibodies.ChemBioChem201617217418010.1002/cbic.201500499 26538065
    [Google Scholar]
  117. GuptaS.S. KuzelkaJ. SinghP. LewisW.G. ManchesterM. FinnM.G. Accelerated bioorthogonal conjugation: a practical method for the ligation of diverse functional molecules to a polyvalent virus scaffold.Bioconjug. Chem.20051661572157910.1021/bc050147l 16287257
    [Google Scholar]
  118. GutmannM. MemmelE. BraunA.C. SeibelJ. MeinelL. LühmannT. Biocompatible azide–alkyne “click” reactions for surface decoration of glyco‐engineered cells.ChemBioChem201617986687510.1002/cbic.201500582 26818821
    [Google Scholar]
  119. BestM.D. Click chemistry and bioorthogonal reactions: unprecedented selectivity in the labeling of biological molecules.Biochemistry200948286571658410.1021/bi9007726 19485420
    [Google Scholar]
  120. GuptaS.S. RajaK.S. KaltgradE. StrableE. FinnM.G. Virus–glycopolymer conjugates by copper(i) catalysis of atom transfer radical polymerization and azide–alkyne cycloaddition.Chem. Commun. (Camb.)200534344315431710.1039/b502444g 16113733
    [Google Scholar]
  121. ParkerM.F.L. FlavellR.R. LuuJ.M. RosenbergO.S. OhligerM.A. WilsonD.M. Small molecule sensors targeting the bacterial cell wall.ACS Infect. Dis.2020671587159810.1021/acsinfecdis.9b00515 32433879
    [Google Scholar]
  122. NingX. GuoJ. WolfertM.A. BoonsG.J. Visualizing metabolically labeled glycoconjugates of living cells by copper-free and fast huisgen cycloadditions.Angew. Chem. Int. Ed.200847122253225510.1002/anie.200705456 18275058
    [Google Scholar]
  123. LaughlinS.T. BaskinJ.M. AmacherS.L. BertozziC.R. In vivo imaging of membrane-associated glycans in developing zebrafish.Science2008320587666466710.1126/science.1155106 18451302
    [Google Scholar]
  124. Fernández-SuárezM. BaruahH. Martínez-HernándezL. XieK.T. BaskinJ.M. BertozziC.R. TingA.Y. TingA.Y. Redirecting lipoic acid ligase for cell surface protein labeling with small-molecule probes.Nat. Biotechnol.200725121483148710.1038/nbt1355 18059260
    [Google Scholar]
  125. NeefA.B. SchultzC. Selective fluorescence labeling of lipids in living cells.Angew. Chem. Int. Ed.20094881498150010.1002/anie.200805507 19145623
    [Google Scholar]
  126. JewettJ.C. BertozziC.R. Cu-free click cycloaddition reactions in chemical biology.Chem. Soc. Rev.20103941272127910.1039/b901970g 20349533
    [Google Scholar]
  127. LinkA.J. VinkM.K.S. AgardN.J. PrescherJ.A. BertozziC.R. TirrellD.A. Discovery of aminoacyl-tRNA synthetase activity through cell-surface display of noncanonical amino acids.Proc. Natl. Acad. Sci. USA200610327101801018510.1073/pnas.0601167103 16801548
    [Google Scholar]
  128. ZouY. YinJ. Cu-free cycloaddition for identifying catalytic active adenylation domains of nonribosomal peptide synthetases by phage display.Bioorg. Med. Chem. Lett.200818205664566710.1016/j.bmcl.2008.08.085 18801656
    [Google Scholar]
  129. HurG.H. MeierJ.L. BaskinJ. CodelliJ.A. BertozziC.R. MarahielM.A. BurkartM.D. Crosslinking studies of protein-protein interactions in nonribosomal peptide biosynthesis.Chem. Biol.200916437238110.1016/j.chembiol.2009.02.009 19345117
    [Google Scholar]
  130. NessenM.A. KramerG. BackJ. BaskinJ.M. SmeenkL.E.J. de KoningL.J. van MaarseveenJ.H. de JongL. BertozziC.R. HiemstraH. de KosterC.G. Selective enrichment of azide-containing peptides from complex mixtures.J. Proteome Res.2009873702371110.1021/pr900257z 19402736
    [Google Scholar]
  131. DavisD.L. PriceE.K. AderibigbeS.O. LarkinM.X.H. BarlowE.D. ChenR. FordL.C. GrayZ.T. GrenS.H. JinY. KeddingtonK.S. KentA.D. KimD. LewisA. MarroucheR.S. O’DairM.K. PowellD.R. ScaddenM.H.C. SessionC.B. TaoJ. TrieuJ. WhitefordK.N. YuanZ. YunG. ZhuJ. HeemstraJ.M. Effect of buffer conditions and organic cosolvents on the rate of strain-promoted azide–alkyne cycloaddition.J. Org. Chem.201681156816681910.1021/acs.joc.6b01112 27387821
    [Google Scholar]
  132. AndertonG.I. BangerterA.S. DavisT.C. FengZ. FurtakA.J. LarsenJ.O. ScrogginT.L. HeemstraJ.M. Accelerating strain-promoted azide–alkyne cycloaddition using micellar catalysis.Bioconjug. Chem.20152681687169110.1021/acs.bioconjchem.5b00274 26056848
    [Google Scholar]
  133. PoloukhtineA.A. MbuaN.E. WolfertM.A. BoonsG.J. PopikV.V. Selective labeling of living cells by a photo-triggered click reaction.J. Am. Chem. Soc.200913143157691577610.1021/ja9054096 19860481
    [Google Scholar]
  134. HartG.W. HousleyM.P. SlawsonC. Cycling of O-linked β-N-acetylglucosamine on nucleocytoplasmic proteins.Nature200744671391017102210.1038/nature05815 17460662
    [Google Scholar]
  135. AgardN.J. BaskinJ.M. PrescherJ.A. LoA. BertozziC.R. A comparative study of bioorthogonal reactions with azides.ACS Chem. Biol.200611064464810.1021/cb6003228 17175580
    [Google Scholar]
  136. SlettenE.M. BertozziC.R. A hydrophilic azacyclooctyne for Cu-free click chemistry.Org. Lett.200810143097309910.1021/ol801141k 18549231
    [Google Scholar]
  137. BachR.D. Ring strain energy in the cyclooctyl system. The effect of strain energy on [3 + 2] cycloaddition reactions with azides.J. Am. Chem. Soc.2009131145233524310.1021/ja8094137 19301865
    [Google Scholar]
  138. JohnsonJ.A. BaskinJ.M. BertozziC.R. KobersteinJ.T. TurroN.J. Copper-free click chemistry for the in situ crosslinking of photodegradable star polymers.Chem. Commun. (Camb.)2008263064306610.1039/b803043j 18688349
    [Google Scholar]
  139. BirdR.E. LemmelS.A. YuX. ZhouQ.A. Bioorthogonal chemistry and its applications.Bioconjug. Chem.202132122457247910.1021/acs.bioconjchem.1c00461 34846126
    [Google Scholar]
  140. ChangP.V. PrescherJ.A. SlettenE.M. BaskinJ.M. MillerI.A. AgardN.J. LoA. BertozziC.R. Copper-free click chemistry in living animals.Proc. Natl. Acad. Sci. USA201010751821182610.1073/pnas.0911116107 20080615
    [Google Scholar]
  141. LiS. YuB. WangJ. ZhengY. ZhangH. WalkerM.J. YuanZ. ZhuH. ZhangJ. WangP.G. WangB. Biomarker-based metabolic labeling for redirected and enhanced immune response.ACS Chem. Biol.20181361686169410.1021/acschembio.8b00350 29792670
    [Google Scholar]
  142. KooH. LeeS. NaJ.H. KimS.H. HahnS.K. ChoiK. KwonI.C. JeongS.Y. KimK. Bioorthogonal copper-free click chemistry in vivo for tumor-targeted delivery of nanoparticles.Angew. Chem. Int. Ed.20125147118361184010.1002/anie.201206703 23081905
    [Google Scholar]
  143. CodelliJ.A. BaskinJ.M. AgardN.J. BertozziC.R. Second-generation difluorinated cyclooctynes for copper-free click chemistry.J. Am. Chem. Soc.200813034114861149310.1021/ja803086r 18680289
    [Google Scholar]
  144. BlackmanM.L. RoyzenM. FoxJ.M. Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity.J. Am. Chem. Soc.200813041135181351910.1021/ja8053805 18798613
    [Google Scholar]
  145. RossinR. van den BoschS.M. ten HoeveW. CarvelliM. VersteegenR.M. LubJ. RobillardM.S. Highly reactive trans-cyclooctene tags with improved stability for Diels-Alder chemistry in living systems.Bioconjug. Chem.20132471210121710.1021/bc400153y 23725393
    [Google Scholar]
  146. SelvarajR. FoxJ.M. trans-Cyclooctene—a stable, voracious dienophile for bioorthogonal labeling.Curr. Opin. Chem. Biol.201317575376010.1016/j.cbpa.2013.07.031 23978373
    [Google Scholar]
  147. KarverM.R. WeisslederR. HilderbrandS.A. Synthesis and evaluation of a series of 1,2,4,5-tetrazines for bioorthogonal conjugation.Bioconjug. Chem.201122112263227010.1021/bc200295y 21950520
    [Google Scholar]
  148. KamberD.N. LiangY. BlizzardR.J. LiuF. MehlR.A. HoukK.N. PrescherJ.A. 1,2,4-Triazines are versatile bioorthogonal reagents.J. Am. Chem. Soc.2015137268388839110.1021/jacs.5b05100 26084312
    [Google Scholar]
  149. DarkoA. WallaceS. DmitrenkoO. MachovinaM.M. MehlR.A. ChinJ.W. FoxJ.M. Conformationally strained trans-cyclooctene with improved stability and excellent reactivity in tetrazine ligation.Chem. Sci. (Camb.)20145103770377610.1039/C4SC01348D 26113970
    [Google Scholar]
  150. LiuF. PatonR.S. KimS. LiangY. HoukK.N. Diels-Alder reactivities of strained and unstrained cycloalkenes with normal and inverse-electron-demand dienes: activation barriers and distortion/interaction analysis.J. Am. Chem. Soc.201313541156421564910.1021/ja408437u 24044412
    [Google Scholar]
  151. MenzelJ.P. FeistF. TutenB. WeilT. BlincoJ.P. Barner-KowollikC. Light‐controlled orthogonal covalent bond formation at two different wavelengths.Angew. Chem. Int. Ed.201958227470747410.1002/anie.201901275 30916368
    [Google Scholar]
  152. RiederU. LuedtkeN.W. Alkene-tetrazine ligation for imaging cellular DNA.Angew. Chem. Int. Ed.201453359168917210.1002/anie.201403580 24981416
    [Google Scholar]
  153. CarlsonJ.C.T. MikulaH. WeisslederR. Unraveling tetrazine-triggered bioorthogonal elimination enables chemical tools for ultrafast release and universal cleavage.J. Am. Chem. Soc.2018140103603361210.1021/jacs.7b11217 29384666
    [Google Scholar]
  154. MacKenzieD.A. SherrattA.R. ChigrinovaM. CheungL.L.W. PezackiJ.P. Strain-promoted cycloadditions involving nitrones and alkynes—rapid tunable reactions for bioorthogonal labeling.Curr. Opin. Chem. Biol.201421818810.1016/j.cbpa.2014.05.023 25022431
    [Google Scholar]
  155. WangY. Torres-GarciaD. MostertT.P. ReinaldaL. Van KasterenS.L. A bioorthogonal dual fluorogenic probe for the live-cell monitoring of nutrient uptake by mammalian cells.Angew. Chem. Int. Edn.20242024e202401733
    [Google Scholar]
  156. KufleitnerM. HaiberL.M. LiS. SurendranH. MayerT.U. ZumbuschA. WittmannV. Next‐generation metabolic glycosylation reporters enable detection of protein O−glcnacylation in living cells without S‐glyco modification.Angew. Chem. Int. Ed.20246320e20232024710.1002/anie.202320247 38501674
    [Google Scholar]
  157. MacKenzieD.A. PezackiJ.P. Kinetics studies of rapid strain-promoted [3+2] cycloadditions of nitrones with bicyclo[6.1.0]nonyne.Can. J. Chem.201492433734010.1139/cjc‑2013‑0577
    [Google Scholar]
  158. LangK. ChinJ.W. Bioorthogonal reactions for labeling proteins.ACS Chem. Biol.201491162010.1021/cb4009292 24432752
    [Google Scholar]
  159. PeplowM. Click chemistry sees first use in humans.2020Available from: https://cen.acs.org/pharmaceuticals/Click-chemistry-seesfirstuse/98/web/2020/10 (accessed on 19-8-2024)
  160. PiggaJ.E. RosenbergerJ.E. JemasA. BoydS.J. DmitrenkoO. XieY. FoxJ.M. General, divergent platform for diastereoselective synthesis of trans ‐cyclooctenes with high reactivity and favorable physiochemical properties**.Angew. Chem. Int. Ed.20216027149751498010.1002/anie.202101483 33742526
    [Google Scholar]
  161. SvatunekD. WilkovitschM. HartmannL. HoukK.N. MikulaH. Uncovering the key role of distortion in bioorthogonal tetrazine tools that defy the reactivity/stability trade-off.J. Am. Chem. Soc.2022144188171817710.1021/jacs.2c01056 35500228
    [Google Scholar]
  162. TaylorM.T. BlackmanM.L. DmitrenkoO. FoxJ.M. Design and synthesis of highly reactive dienophiles for the tetrazine-trans-cyclooctene ligation.J. Am. Chem. Soc.2011133259646964910.1021/ja201844c 21599005
    [Google Scholar]
  163. KamberD.N. NazarovaL.A. LiangY. LopezS.A. PattersonD.M. ShihH.W. HoukK.N. PrescherJ.A. Isomeric cyclopropenes exhibit unique bioorthogonal reactivities.J. Am. Chem. Soc.201313537136801368310.1021/ja407737d 24000889
    [Google Scholar]
  164. PipkornR. WaldeckW. DidingerB. KochM. MuellerG. WiesslerM. BraunK. Inverse‐electron‐demand Diels‐Alder reaction as a highly efficient chemoselective ligation procedure: Synthesis and function of a BioShuttle for temozolomide transport into prostate cancer cells.J. Pept. Sci.200915323524110.1002/psc.1108 19177421
    [Google Scholar]
  165. LewisG.D. FigariI. FendlyB. Lee WongW. CarterP. GormanC. ShepardH.M. Differential responses of human tumor cell lines to anti-p185HER2 monoclonal antibodies.Cancer Immunol. Immunother.199337425526310.1007/BF01518520 8102322
    [Google Scholar]
  166. DevarajN.K. WeisslederR. HilderbrandS.A. Tetrazine-based cycloadditions: application to pretargeted live cell imaging.Bioconjug. Chem.200819122297229910.1021/bc8004446 19053305
    [Google Scholar]
  167. Kataki-AnastasakouA. HernandezS. SlettenE.M. Cell-surface labeling via bioorthogonal host–guest chemistry.ACS Chem. Biol.202116112124212910.1021/acschembio.1c00494 34669367
    [Google Scholar]
  168. PattersonD.M. NazarovaL.A. XieB. KamberD.N. PrescherJ.A. Functionalized cyclopropenes as bioorthogonal chemical reporters.J. Am. Chem. Soc.201213445186381864310.1021/ja3060436 23072583
    [Google Scholar]
  169. DevarajN.K. The future of bioorthogonal chemistry.ACS Cent. Sci.20184895295910.1021/acscentsci.8b00251 30159392
    [Google Scholar]
  170. TiwariV.K. JaiswalM.K. RajkhowaS. SinghS.K. Bioorthogonal click chemistry: Invention to appliication in living systems. Click Chemistry.SingaporeSpringer Nature202417520410.1007/978‑981‑97‑4596‑8_6
    [Google Scholar]
  171. LeunissenE.H.P. MeulenersM.H.L. VerkadeJ.M.M. DommerholtJ. HoenderopJ.G.J. van DelftF.L. Copper-free click reactions with polar bicyclononyne derivatives for modulation of cellular imaging.ChemBioChem201415101446145110.1002/cbic.201402030 24904006
    [Google Scholar]
  172. DevarajN.K. UpadhyayR. HaunJ.B. HilderbrandS.A. WeisslederR. Fast and sensitive pretargeted labeling of cancer cells through a tetrazine/trans-cyclooctene cycloaddition.Angew. Chem. Int. Ed.200948387013701610.1002/anie.200903233 19697389
    [Google Scholar]
  173. ŠlachtováV. MotornovV. BeierP. VrabelM. Bioorthogonal Cycloadditions of C3‐Trifluoromethylated 1,2,4‐Triazines with trans ‐Cyclooctenes.Chemistry20243040e20240083910.1002/chem.202400839 38739300
    [Google Scholar]
  174. NingX. TemmingR.P. DommerholtJ. GuoJ. AniaD.B. DebetsM.F. WolfertM.A. BoonsG.J. van DelftF.L. Protein modification by strain-promoted alkyne-nitrone cycloaddition.Angew. Chem. Int. Ed.201049173065306810.1002/anie.201000408 20333639
    [Google Scholar]
  175. YaremaK.J. MahalL.K. BruehlR.E. RodriguezE.C. BertozziC.R. Metabolic delivery of ketone groups to sialic acid residues. Application To cell surface glycoform engineering.J. Biol. Chem.199827347311683117910.1074/jbc.273.47.31168 9813021
    [Google Scholar]
  176. StöckmannH. NevesA.A. StairsS. BrindleK.M. LeeperF.J. Exploring isonitrile-based click chemistry for ligation with biomolecules.Org. Biomol. Chem.20119217303730510.1039/c1ob06424j 21915395
    [Google Scholar]
  177. SlettenE.M. BertozziC.R. A bioorthogonal quadricyclane ligation.J. Am. Chem. Soc.201113344175701757310.1021/ja2072934 21962173
    [Google Scholar]
  178. SongW. WangY. QuJ. MaddenM.M. LinQ. A photoinducible 1,3-dipolar cycloaddition reaction for rapid, selective modification of tetrazole-containing proteins.Angew. Chem. Int. Ed.200847152832283510.1002/anie.200705805 18311742
    [Google Scholar]
  179. SongW. WangY. QuJ. LinQ. Selective functionalization of a genetically encoded alkene-containing protein via “photoclick chemistry” in bacterial cells.J. Am. Chem. Soc.2008130309654965510.1021/ja803598e 18593155
    [Google Scholar]
  180. LimR.K.V. LinQ. Photoinducible bioorthogonal chemistry: a spatiotemporally controllable tool to visualize and perturb proteins in live cells.Acc. Chem. Res.201144982883910.1021/ar200021p 21609129
    [Google Scholar]
  181. DirksenA. DirksenS. HackengT.M. DawsonP.E. Nucleophilic catalysis of hydrazone formation and transimination: implications for dynamic covalent chemistry.J. Am. Chem. Soc.200612849156021560310.1021/ja067189k 17147365
    [Google Scholar]
  182. RashidianM. SongJ.M. PricerR.E. DistefanoM.D. Chemoenzymatic reversible immobilization and labeling of proteins without prior purification.J. Am. Chem. Soc.2012134208455846710.1021/ja211308s 22435540
    [Google Scholar]
  183. AgtenS.M. SuylenD. IppelH. KokozidouM. TansG. van de VijverP. KoenenR.R. HackengT.M. Chemoselective oxime reactions in proteins and peptides by using an optimized oxime strategy: the demise of levulinic acid.ChemBioChem201314182431243410.1002/cbic.201300598 24151209
    [Google Scholar]
  184. KaurT. WadhwaP. BagchiS. SharmaA. Isocyanide based [4+1] cycloaddition reactions: an indispensable tool in multi-component reactions (MCRs).Chem. Commun. (Camb.)201652436958697610.1039/C6CC01562J 27063921
    [Google Scholar]
  185. GiustinianoM. BassoA. MercalliV. MassarottiA. NovellinoE. TronG.C. ZhuJ. To each his own: isonitriles for all flavors. Functionalized isocyanides as valuable tools in organic synthesis.Chem. Soc. Rev.20174651295135710.1039/C6CS00444J 27983738
    [Google Scholar]
  186. TuJ. SvatunekD. ParvezS. LiuA.C. LevandowskiB.J. EckvahlH.J. PetersonR.T. HoukK.N. FranziniR.M. Stable, reactive, and orthogonal tetrazines: Dispersion forces promote the cycloaddition with isonitriles.Angew. Chem. Int. Ed.201958279043904810.1002/anie.201903877 31062496
    [Google Scholar]
  187. MadonnaM.A. MitryM.M.A. GrecoF. OsbornH.M.L. In vivo applications of bioorthogonal reactions: Chemistry and targeting mechanisms.Chemistry202329e2022039
    [Google Scholar]
  188. McKayC.S. FinnM.G. Click chemistry in complex mixtures: Bioorthogonal bioconjugation.Chem. Biol.20142191075110110.1016/j.chembiol.2014.09.002 25237856
    [Google Scholar]
  189. LossouarnA. RenardP.Y. SabotC. Tailored bioorthogonal and bioconjugate chemistry: A source of inspiration for developing kinetic target-guided synthesis strategies.Bioconjug. Chem.2021321637210.1021/acs.bioconjchem.0c00568 33232599
    [Google Scholar]
  190. BauerD. CornejoM.A. HoangT.T. LewisJ.S. ZeglisB.M. Click chemistry and radiochemistry: An update.Bioconjug. Chem.202334111925195010.1021/acs.bioconjchem.3c00286 37737084
    [Google Scholar]
  191. PetrovskiiS.K. GrachovaE.V. MonakhovK.Y. Bioorthogonal chemistry of polyoxometalates – challenges and prospects.Chem. Sci. (Camb.)202415124202422110.1039/D3SC06284H 38516091
    [Google Scholar]
  192. ZhaoR. ChenY. LiangY. Bioorthogonal delivery of carbon disulfide in living cells.Angew. Chem. Int. Edn.20242024e202400020
    [Google Scholar]
/content/journals/coc/10.2174/0113852728326779240911055902
Loading
/content/journals/coc/10.2174/0113852728326779240911055902
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): alkyne; Azides; bioorthogonal chemistry; carbohydrates; click chemistry; CuAAC; SPAAC
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test