Skip to content
2000
image of Carbohydrate Derived Value-added Products from Lignocelluloses

Abstract

Chemistry is confronted with the pressing issues of depleting non-renewable fossil resources and the imperative to combat environmental pollution, which is crucial for a sustainable future. Biomass stands out as the sole organic carbon source in nature among the array of sustainable resources available, positioning it as a prime substitute for fossil-derived chemicals and fuels. Extensive research has been conducted on the abundant lignocelluloses as a potential source for biofuels, bioenergy, and various valuable products, wherein, the incorporation of various processes in biomass fractionation to separate biopolymers (such as lignin, cellulose, and hemicellulose) has the potential to enhance the overall value of the process. However, industrial demonstration of biomass utilization for commercial products has been limited due to the challenges posed by the recalcitrance and complexity of biomass. Therefore, there is a need for efficient reaction processes to enable the production of bio-chemicals and fuels from renewable lignocellulose. This review focuses on the latest chemical methods developed for producing value-added chemicals from biomass-derived cellulose as a renewable feedstock.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728325684240911063353
2024-10-04
2024-11-08
Loading full text...

Full text loading...

References

  1. Hung N.T. Biomass energy consumption and economic growth: Insights from BRICS and developed countries. Environ. Sci. Pollut. Res. Int. 2022 29 20 30055 30072 10.1007/s11356‑021‑17721‑x 34997926
    [Google Scholar]
  2. Ali H.S. Law S.H. Yusop Z. Chin L. Dynamic implication of biomass energy consumption on economic growth in Sub-Saharan Africa: Evidence from panel data analysis. GeoJournal 2017 82 3 493 502 10.1007/s10708‑016‑9698‑y
    [Google Scholar]
  3. Ajmi A.N. Inglesi-Lotz R. Biomass energy consumption and economic growth nexus in OECD countries: A panel analysis. Renew. Energy 2020 162 1649 1654 10.1016/j.renene.2020.10.002
    [Google Scholar]
  4. Konuk F. Zeren F. Akpınar S. Yıldız Ş. Biomass energy consumption and economic growth: Further evidence from NEXT-11 countries. Energy Rep. 2021 7 4825 4832 10.1016/j.egyr.2021.07.070
    [Google Scholar]
  5. Xu J. Li C. Dai L. Xu C. Zhong Y. Yu F. Si C. Biomass fractionation and lignin fractionation towards lignin valorization. ChemSusChem 2020 13 17 4284 4295 10.1002/cssc.202001491 32672385
    [Google Scholar]
  6. Zheng B. Yu S. Chen Z. Huo Y.X. A consolidated review of commercial-scale high-value products from lignocellulosic biomass. Front. Microbiol. 2022 13 933882 10.3389/fmicb.2022.933882 36081794
    [Google Scholar]
  7. Antar M. Lyu D. Nazari M. Shah A. Zhou X. Smith D.L. Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization. Renew. Sustain. Energy Rev. 2021 139 110691 10.1016/j.rser.2020.110691
    [Google Scholar]
  8. Ashokkumar V. Venkatkarthick R. Jayashree S. Chuetor S. Dharmaraj S. Kumar G. Chen W.H. Ngamcharussrivichai C. Recent advances in lignocellulosic biomass for biofuels and value-added bioproducts - A critical review. Bioresour. Technol. 2022 344 Pt B 126195 10.1016/j.biortech.2021.126195 34710596
    [Google Scholar]
  9. Chandra R. Iqbal H.M.N. Vishal G. Lee H.S. Nagra S. Algal biorefinery: A sustainable approach to valorize algal-based biomass towards multiple product recovery. Bioresour. Technol. 2019 278 346 359 10.1016/j.biortech.2019.01.104 30718075
    [Google Scholar]
  10. Javed M.U. Mukhtar H. Hayat M.T. Rashid U. Mumtaz M.W. Ngamcharussrivichai C. Sustainable processing of algal biomass for a comprehensive biorefinery. J. Biotechnol. 2022 352 47 58 10.1016/j.jbiotec.2022.05.009 35613647
    [Google Scholar]
  11. Mujtaba M. Fernandes Fraceto L. Fazeli M. Mukherjee S. Savassa S.M. Araujo de Medeiros G. do Espírito Santo Pereira A. Mancini S.D. Lipponen J. Vilaplana F. Lignocellulosic biomass from agricultural waste to the circular economy: A review with focus on biofuels, biocomposites and bioplastics. J. Clean. Prod. 2023 402 136815 10.1016/j.jclepro.2023.136815
    [Google Scholar]
  12. Kumar A. Bhattacharya T. Mozammil Hasnain S.M. Kumar Nayak A. Hasnain M.S. Applications of biomass-derived materials for energy production, conversion, and storage. Mater. Sci. Energy Technol. 2020 3 905 920 10.1016/j.mset.2020.10.012
    [Google Scholar]
  13. Mahapatra S. Kumar D. Singh B. Sachan P.K. Biofuels and their sources of production: A review on cleaner sustainable alternative against conventional fuel, in the framework of the food and energy nexus. Energy Nexus 2021 4 100036 10.1016/j.nexus.2021.100036
    [Google Scholar]
  14. Mehmandoust M. Li G. Erk N. Biomass-derived carbon materials as an emerging platform for advanced electrochemical sensors: Recent advances and future perspectives. Ind. Eng. Chem. Res. 2023 62 11 4628 4635 10.1021/acs.iecr.2c03058
    [Google Scholar]
  15. He H. Zhang R. Zhang P. Wang P. Chen N. Qian B. Zhang L. Yu J. Dai B. Functional Carbon from Nature: Biomass-Derived Carbon Materials and the Recent Progress of Their Applications. Adv. Sci. 2023 10 16 2205557
    [Google Scholar]
  16. Goodman B.A. Utilization of waste straw and husks from rice production: A review. J. Biores. Bioprod. 2020 5 3 143 162 10.1016/j.jobab.2020.07.001
    [Google Scholar]
  17. Norfarhana A.S. Ilyas R.A. Ngadi N. Othman M.H.D. Misenan M.S.M. Norrrahim M.N.F. Norrrahim M.N.F. Revolutionizing lignocellulosic biomass: A review of harnessing the power of ionic liquids for sustainable utilization and extraction. Int. J. Biol. Macromol. 2024 256 Pt 1 128256 10.1016/j.ijbiomac.2023.128256 38000585
    [Google Scholar]
  18. Wang F. Ouyang D. Zhou Z. Page S.J. Liu D. Zhao X. Lignocellulosic biomass as sustainable feedstock and materials for power generation and energy storage. J. Energy Chem. 2021 57 247 280 10.1016/j.jechem.2020.08.060
    [Google Scholar]
  19. Isikgor F.H. Becer C.R. Lignocellulosic biomass: A sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 2015 6 25 4497 4559 10.1039/C5PY00263J
    [Google Scholar]
  20. Xia Q. Chen C. Yao Y. Li J. He S. Zhou Y. Li T. Pan X. Yao Y. Hu L. A strong, biodegradable and recyclable lignocellulosic bioplastic. Nat. Sustain. 2021 4 7 627 635 10.1038/s41893‑021‑00702‑w
    [Google Scholar]
  21. Fatma S. Hameed A. Noman M. Ahmed T. Shahid M. Tariq M. Sohail I. Tabassum R. Lignocellulosic Biomass: A sustainable bioenergy source for the future. Protein Pept. Lett. 2018 25 2 148 163 10.2174/0929866525666180122144504 29359659
    [Google Scholar]
  22. Kim J.Y. Lee H.W. Lee S.M. Jae J. Park Y.K. Overview of the recent advances in lignocellulose liquefaction for producing biofuels, bio-based materials and chemicals. Bioresour. Technol. 2019 279 373 384 10.1016/j.biortech.2019.01.055 30685133
    [Google Scholar]
  23. Rajesh Banu J. Preethi Kavitha S. Tyagi V.K. Gunasekaran M. Karthikeyan O.P. Kumar G. Lignocellulosic biomass based biorefinery: A successful platform towards circular bioeconomy. Fuel 2021 302 121086 10.1016/j.fuel.2021.121086
    [Google Scholar]
  24. Zhang B. Gao Y. Zhang L. Zhou Y. The plant cell wall: Biosynthesis, construction, and functions. J. Integr. Plant Biol. 2021 63 1 251 272 10.1111/jipb.13055 33325153
    [Google Scholar]
  25. Parre E. Geitmann A. Pectin and the role of the physical properties of the cell wall in pollen tube growth of Solanum chacoense. Planta 2005 220 4 582 592 10.1007/s00425‑004‑1368‑5 15449057
    [Google Scholar]
  26. Wang Y. Fan C. Hu H. Li Y. Sun D. Wang Y. Peng L. Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops. Biotechnol. Adv. 2016 34 5 997 1017 10.1016/j.biotechadv.2016.06.001 27269671
    [Google Scholar]
  27. Daher F.B. Braybrook S.A. How to let go: Pectin and plant cell adhesion. Front. Plant Sci. 2015 6 523 10.3389/fpls.2015.00523 26236321
    [Google Scholar]
  28. Du J. Anderson C.T. Xiao C. Dynamics of pectic homogalacturonan in cellular morphogenesis and adhesion, wall integrity sensing and plant development. Nat. Plants 2022 8 4 332 340 10.1038/s41477‑022‑01120‑2 35411046
    [Google Scholar]
  29. McCann M.C. Carpita N.C. Biomass recalcitrance: A multi-scale, multi-factor, and conversion-specific property: Fig. 1. J. Exp. Bot. 2015 66 14 4109 4118 10.1093/jxb/erv267 26060266
    [Google Scholar]
  30. Zoghlami A. Paës G. Lignocellulosic Biomass: Understanding Recalcitrance and Predicting Hydrolysis. Front Chem. 2019 7 874 10.3389/fchem.2019.00874 31921787
    [Google Scholar]
  31. Bichot A. Lerosty M. Radoiu M. Méchin V. Bernet N. Delgenès J.P. García-Bernet D. Decoupling thermal and non-thermal effects of the microwaves for lignocellulosic biomass pretreatment. Energy Convers. Manage. 2020 203 112220 10.1016/j.enconman.2019.112220
    [Google Scholar]
  32. Atalla R.H. VanderHart D.L. The role of solid state NMR spectroscopy in studies of the nature of native celluloses. Solid State Nucl. Magn. Reson. 1999 15 1 1 19 10.1016/S0926‑2040(99)00042‑9 10903080
    [Google Scholar]
  33. Jarvis M.C. Structure of native cellulose microfibrils, the starting point for nanocellulose manufacture. Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci. 2018 376 2112 20170045 10.1098/rsta.2017.0045 29277742
    [Google Scholar]
  34. Lampugnani E.R. Flores-Sandoval E. Tan Q.W. Mutwil M. Bowman J.L. Persson S. Cellulose synthesis – central components and their evolutionary relationships. Trends Plant Sci. 2019 24 5 402 412 10.1016/j.tplants.2019.02.011 30905522
    [Google Scholar]
  35. George J. S N S. Cellulose nanocrystals: Synthesis, functional properties, and applications. Nanotechnol. Sci. Appl. 2015 8 45 54 10.2147/NSA.S64386 26604715
    [Google Scholar]
  36. Seddiqi H. Oliaei E. Honarkar H. Jin J. Geonzon L.C. Bacabac R.G. Klein-Nulend J. Cellulose and its derivatives: Towards biomedical applications. Cellulose 2021 28 4 1893 1931 10.1007/s10570‑020‑03674‑w
    [Google Scholar]
  37. Xiao M. Liu Y-J. Bayer E.A. Kosugi A. Cui Q. Cellulosomal hemicellulases: Indispensable players for ensuring effective lignocellulose bioconversion. Green Carbon 2024 2 1 57 69 10.1016/j.greenca.2024.01.003
    [Google Scholar]
  38. Tarasov D. Leitch M. Fatehi P. Lignin–carbohydrate complexes: Properties, applications, analyses, and methods of extraction: A review. Biotechnol. Biofuels 2018 11 1 269 10.1186/s13068‑018‑1262‑1 30288174
    [Google Scholar]
  39. Farhat W. Venditti R.A. Hubbe M. Taha M. Becquart F. Ayoub A. A review of water-resistant hemicellulose-based materials: Processing and applications. ChemSusChem 2017 10 2 305 323 10.1002/cssc.201601047 28029233
    [Google Scholar]
  40. de Souza T.S.P. Kawaguti H.Y. Cellulases, hemicellulases, and pectinases: Applications in the food and beverage industry. Food Bioprocess Technol. 2021 14 8 1446 1477 10.1007/s11947‑021‑02678‑z
    [Google Scholar]
  41. Vasile C. Baican M. Lignins as promising renewable biopolymers and bioactive compounds for high-performance materials. Polymers (Basel) 2023 15 15 3177 10.3390/polym15153177 37571069
    [Google Scholar]
  42. Watkins D. Nuruddin M. Hosur M. Tcherbi-Narteh A. Jeelani S. Extraction and characterization of lignin from different biomass resources. J. Mater. Res. Technol. 2015 4 1 26 32 10.1016/j.jmrt.2014.10.009
    [Google Scholar]
  43. Kang X. Kirui A. Dickwella Widanage M.C. Mentink-Vigier F. Cosgrove D.J. Wang T. Lignin-polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR. Nat. Commun. 2019 10 1 347 10.1038/s41467‑018‑08252‑0 30664653
    [Google Scholar]
  44. Liu Q. Luo L. Zheng L. Lignins: Biosynthesis and Biological Functions in Plants. Int. J. Mol. Sci. 2018 19 2 335 10.3390/ijms19020335 29364145
    [Google Scholar]
  45. Jazi M.E. Structure, chemistry and physicochemistry of lignin for material functionalization. SN Appl. Sci. 2019 1 1094
    [Google Scholar]
  46. Rao X. Barros J. Modeling lignin biosynthesis: A pathway to renewable chemicals. Trends Plants Sci. 2023 29 5 546 559
    [Google Scholar]
  47. del Río J.C. Rencoret J. Gutiérrez A. Elder T. Kim H. Ralph J. Lignin monomers from beyond the canonical monolignol biosynthetic pathway: Another brick in the wall. ACS Sustain. Chem. Eng. 2020 8 13 4997 5012 10.1021/acssuschemeng.0c01109
    [Google Scholar]
  48. Vanholme R. Demedts B. Morreel K. Ralph J. Boerjan W. Lignin biosynthesis and structure. Plant Physiol. 2010 153 3 895 905 10.1104/pp.110.155119 20472751
    [Google Scholar]
  49. Suota M.J. da Silva T.A. Zawadzki S.F. Sassaki G.L. Hansel F.A. Paleologou M. Ramos L.P. Chemical and structural characterization of hardwood and softwood LignoForce™ lignins. Ind. Crops Prod. 2021 173 114138 10.1016/j.indcrop.2021.114138
    [Google Scholar]
  50. Gellerstedt G. Softwood kraft lignin: Raw material for the future. Ind. Crops Prod. 2015 77 845 854 10.1016/j.indcrop.2015.09.040
    [Google Scholar]
  51. Martin A.F. Tobimatsu Y. Kusumi R. Matsumoto N. Miyamoto T. Lam P.Y. Yamamura M. Koshiba T. Sakamoto M. Umezawa T. Altered lignocellulose chemical structure and molecular assembly in CINNAMYL ALCOHOL DEHYDROGENASE-deficient rice. Sci. Rep. 2019 9 1 17153 10.1038/s41598‑019‑53156‑8 31748605
    [Google Scholar]
  52. Kirui A. Zhao W. Deligey F. Yang H. Kang X. Mentink-Vigier F. Wang T. Carbohydrate-aromatic interface and molecular architecture of lignocellulose. Nat. Commun. 2022 13 1 538 10.1038/s41467‑022‑28165‑3 35087039
    [Google Scholar]
  53. Santos M.B. Sillero L. Gatto D.A. Labidi J. Bioactive molecules in wood extractives: Methods of extraction and separation, a review. Ind. Crops Prod. 2022 186 115231 10.1016/j.indcrop.2022.115231
    [Google Scholar]
  54. N’Guessan J.L.L. Niamké B.F. Yao N.J.C. Amusant N. Wood extractives: Main families, functional properties. Fields of Application and Interest of Wood Waste. For. Prod. J. 2023 73 3 194 208 10.13073/FPJ‑D‑23‑00015
    [Google Scholar]
  55. Singh A. Prajapati P. Vyas S. Gaur V.K. Sindhu R. Binod P. Kumar V. Singhania R.R. Awasthi M.K. Zhang Z. Varjani S. A comprehensive review of feedstocks as sustainable substrates for next-generation biofuels. BioEnergy Res. 2023 16 1 105 122 10.1007/s12155‑022‑10440‑2
    [Google Scholar]
  56. Tortosa Masiá A.A. Buhre B.J.P. Gupta R.P. Wall T.F. Characterising ash of biomass and waste. Fuel Process. Technol. 2007 88 11-12 1071 1081 10.1016/j.fuproc.2007.06.011
    [Google Scholar]
  57. Phiri R. Mavinkere Rangappa S. Siengchin S. Agro-waste for renewable and sustainable green production: A review. J. Clean. Prod. 2024 434 139989 10.1016/j.jclepro.2023.139989
    [Google Scholar]
  58. Reddy K.V. Sree N.R.S. Ranjit P. Maddela N.R. Biomass waste and feedstock as a source of renewable energy. Green Approach to Alternative Fuel for a Sustainable Future. Amsterdam Elsevier 2024
    [Google Scholar]
  59. Mäkelä M. Fullana A. Yoshikawa K. Ash behavior during hydrothermal treatment for solid fuel applications. Part 1: Overview of different feedstock. Energy Convers. Manage. 2016 121 402 408 10.1016/j.enconman.2016.05.016
    [Google Scholar]
  60. Mankar A.R. Pandey A. Modak A. Pant K.K. Pretreatment of lignocellulosic biomass: A review on recent advances. Bioresour. Technol. 2021 334 125235 10.1016/j.biortech.2021.125235 33957458
    [Google Scholar]
  61. Zakaria M.R. Fujimoto S. Hirata S. Hassan M.A. Ball milling pretreatment of oil palm biomass for enhancing enzymatic hydrolysis. Appl. Biochem. Biotechnol. 2014 173 7 1778 1789 10.1007/s12010‑014‑0964‑5 24908052
    [Google Scholar]
  62. Zhao X. Li S. Wu R. Liu D. Organosolv fractionating pre‐treatment of lignocellulosic biomass for efficient enzymatic saccharification: Chemistry, kinetics, and substrate structures. Biofuels Bioprod. Biorefin. 2017 11 3 567 590 10.1002/bbb.1768
    [Google Scholar]
  63. Brodeur G. Yau E. Badal K. Collier J. Ramachandran K.B. Ramakrishnan S. Chemical and physicochemical pretreatment of lignocellulosic biomass: A review. Enzyme Res. 2011 2011 1 17 10.4061/2011/787532 21687609
    [Google Scholar]
  64. Chandel H. Kumar P. Chandel A.K. Verma M.L. Biotechnological advances in biomass pretreatment for bio-renewable production through nanotechnological intervention. Biomass Convers. Biorefin. 2022 14 1 23 35529175
    [Google Scholar]
  65. Yu Y. Wu J. Ren X. Lau A. Rezaei H. Takada M. Bi X. Sokhansanj S. Steam explosion of lignocellulosic biomass for multiple advanced bioenergy processes: A review. Renew. Sustain. Energy Rev. 2022 154 111871 10.1016/j.rser.2021.111871
    [Google Scholar]
  66. Zhao C. Shao Q. Chundawat S.P.S. Recent advances on ammonia-based pretreatments of lignocellulosic biomass. Bioresour. Technol. 2020 298 122446 10.1016/j.biortech.2019.122446 31791921
    [Google Scholar]
  67. Martínez S.A.H. Melchor-Martínez E.M. Hernández J.A.R. Parra-Saldívar R. Iqbal H.M.N. Magnetic nanomaterials assisted nanobiocatalysis systems and their applications in biofuels production. Fuel 2022 312 122927 10.1016/j.fuel.2021.122927
    [Google Scholar]
  68. Veluchamy C. Kalamdhad A.S. Gilroyed B.H. Advanced Pretreatment Strategies for Bioenergy Production from Biomass and Biowaste. Handbook of Environmental Materials Management Cham Springer 2023
    [Google Scholar]
  69. Galbe M. Wallberg O. Pretreatment for biorefineries: A review of common methods for efficient utilisation of lignocellulosic materials. Biotechnol. Biofuels 2019 12 1 294 10.1186/s13068‑019‑1634‑1 31890022
    [Google Scholar]
  70. Pińkowska H. Krzywonos M. Wolak P. Valorization of rapeseed meal by hydrothermal treatment—effect of reaction parameters on low molecular products distribution. Cellul. Chem. Technol. 2019 53 7-8 755 765 10.35812/CelluloseChemTechnol.2019.53.74
    [Google Scholar]
  71. Lê H.Q. Ma Y. Borrega M. Sixta H. Wood biorefinery based on γ-valerolactone/water fractionation. Green Chem. 2016 18 20 5466 5476 10.1039/C6GC01692H
    [Google Scholar]
  72. Bozell J.J. Black S.K. Myers M. Cahill D. Miller W.P. Park S. Solvent fractionation of renewable woody feedstocks: Organosolv generation of biorefinery process streams for the production of biobased chemicals. Biomass Bioenergy 2011 35 10 4197 4208 10.1016/j.biombioe.2011.07.006
    [Google Scholar]
  73. Geilen F.M.A. Engendahl B. Harwardt A. Marquardt W. Klankermayer J. Leitner W. Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system. Angew. Chem. Int. Ed. 2010 49 32 5510 5514 10.1002/anie.201002060 20586088
    [Google Scholar]
  74. Gomes J.M. Silva S.S. Reis R.L. Biocompatible ionic liquids: Fundamental behaviours and applications. Chem. Soc. Rev. 2019 48 15 4317 4335 10.1039/C9CS00016J 31225558
    [Google Scholar]
  75. Costa S.P.F. Azevedo A.M.O. Pinto P.C.A.G. Saraiva M.L.M.F.S. Environmental impact of ionic liquids: Recent advances in (Eco)toxicology and (Bio) degradability. ChemSusChem 2017 10 11 2321 2347 10.1002/cssc.201700261 28394478
    [Google Scholar]
  76. Klein-Marcuschamer D. Simmons B.A. Blanch H.W. Techno‐economic analysis of a lignocellulosic ethanol biorefinery with ionic liquid pre‐treatment. Biofuels Bioprod. Biorefin. 2011 5 5 562 569 10.1002/bbb.303
    [Google Scholar]
  77. Gorke J.T. Srienc F. Kazlauskas R.J. Hydrolase-catalyzed biotransformations in deep eutectic solvents. Chem. Commun. (Camb.) 2008 10 10 1235 1237 10.1039/b716317g 18309428
    [Google Scholar]
  78. Satlewal A. Agrawal R. Bhagia S. Sangoro J. Ragauskas A.J. Natural deep eutectic solvents for lignocellulosic biomass pretreatment: Recent developments, challenges and novel opportunities. Biotechnol. Adv. 2018 36 8 2032 2050 10.1016/j.biotechadv.2018.08.009 30193965
    [Google Scholar]
  79. Akyol Ç. Ince O. Bozan M. Ozbayram E.G. Ince B. Biological pretreatment with Trametes versicolor to enhance methane production from lignocellulosic biomass: A metagenomic approach. Ind. Crops Prod. 2019 140 111659 10.1016/j.indcrop.2019.111659
    [Google Scholar]
  80. Ali S.S. Al-Tohamy R. Manni A. Luz F.C. Elsamahy T. Sun J. Enhanced digestion of bio-pretreated sawdust using a novel bacterial consortium: Microbial community structure and methane-producing pathways. Fuel 2019 254 115604 10.1016/j.fuel.2019.06.012
    [Google Scholar]
  81. Karunanithy C. Muthukumarappan K. Gibbons W.R. Effect of extruder screw speed, temperature, and enzyme levels on sugar recovery from different biomasses. ISRN Biotechnol. 2012 2013 942810 25969784
    [Google Scholar]
  82. Budarin V.L. Clark J.H. Lanigan B.A. Shuttleworth P. Macquarrie D.J. Microwave assisted decomposition of cellulose: A new thermochemical route for biomass exploitation. Bioresour. Technol. 2010 101 10 3776 3779 10.1016/j.biortech.2009.12.110 20093017
    [Google Scholar]
  83. Maurya D.P. Vats S. Rai S. Negi S. Optimization of enzymatic saccharification of microwave pretreated sugarcane tops through response surface methodology for biofuel. Indian J. Exp. Biol. 2013 51 11 992 996 24416936
    [Google Scholar]
  84. Velmurugan R. Muthukumar K. Ultrasound-assisted alkaline pretreatment of sugarcane bagasse for fermentable sugar production: Optimization through response surface methodology. Bioresour. Technol. 2012 112 293 299 10.1016/j.biortech.2012.01.168 22418083
    [Google Scholar]
  85. Falls M. Madison M. Liang C. Karim M.N. Sierra-Ramirez R. Holtzapple M.T. Mechanical pretreatment of biomass – Part II: Shock treatment. Biomass Bioenergy 2019 126 47 56 10.1016/j.biombioe.2019.04.016
    [Google Scholar]
  86. John I. Pola J. Appusamy A. Optimization of ultrasonic assisted saccharification of sweet lime peel for bioethanol production using Box-Behnken method. Waste Biomass Valoriz. 2019 10 2 441 453 10.1007/s12649‑017‑0072‑1
    [Google Scholar]
  87. Zheng J. Zhu J. Xu X. Wang W. Li J. Zhao Y. Tang K. Song Q. Qi X. Kong D. Tang Y. Continuous hydrogenation of ethyl levulinate to γ-valerolactone and 2-methyl tetrahydrofuran over alumina doped Cu/SiO2 catalyst: The potential of commercialization. Sci. Rep. 2016 6 1 28898 10.1038/srep28898 27377401
    [Google Scholar]
  88. Julio A. Silva C. Grilo L.M. Vasconcelos M.H. Lacerda T.M. Levulinic acid: Perspectives of its biobased production and most promising derivatives. Production of Top 12 Biochemicals Selected by USDOE from Renewable Resources. Amsterdam Elsevier 2022 387 414
    [Google Scholar]
  89. Sajid M. Farooq U. Bary G. Azim M.M. Zhao X. Sustainable production of levulinic acid and its derivatives for fuel additives and chemicals: Progress, challenges, and prospects. Green Chem. 2021 23 23 9198 9238 10.1039/D1GC02919C
    [Google Scholar]
  90. Rajendaren V. Saufi S.M. Zahari M.A.K.M. A review of the methods for levulinic acid separation and extraction. Biomass Conv. Bioref 2022 14 03444 03447
    [Google Scholar]
  91. Mthembu L.D. Gupta R. Deenadayalu N. Advances in Biomass-Based Levulinic Acid Production. Waste Biomass Valoriz. 2023 14 1 1 22 10.1007/s12649‑022‑01948‑x
    [Google Scholar]
  92. Fachri B.A. Abdilla R.M. Bovenkamp H.H. Rasrendra C.B. Heeres H.J. Experimental and Kinetic Modeling Studies on the Sulfuric Acid Catalyzed Conversion of d -Fructose to 5-Hydroxymethylfurfural and Levulinic Acid in Water. ACS Sustain. Chem. Eng. 2015 3 12 3024 3034 10.1021/acssuschemeng.5b00023
    [Google Scholar]
  93. Signoretto M. Taghavi S. Ghedini E. Menegazzo F. Catalytic Production of Levulinic Acid (LA) from Actual Biomass. Molecules 2019 24 15 2760 10.3390/molecules24152760 31366018
    [Google Scholar]
  94. Kang S. Fu J. Zhang G. From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis. Renew. Sustain. Energy Rev. 2018 94 340 362 10.1016/j.rser.2018.06.016
    [Google Scholar]
  95. Morone A. Apte M. Pandey R.A. Levulinic acid production from renewable waste resources: Bottlenecks, potential remedies, advancements and applications. Renew. Sustain. Energy Rev. 2015 51 548 565 10.1016/j.rser.2015.06.032
    [Google Scholar]
  96. Zhang X. Wilson K. Lee A.F. Heterogeneously Catalyzed Hydrothermal Processing of C 5 –C 6 Sugars. Chem. Rev. 2016 116 19 12328 12368 10.1021/acs.chemrev.6b00311 27680093
    [Google Scholar]
  97. Pileidis F.D. Titirici M.M. Levulinic acid biorefineries: New challenges for efficient utilization of biomass. ChemSusChem 2016 9 6 562 582 10.1002/cssc.201501405 26847212
    [Google Scholar]
  98. Chang C. Ma X. Cen P. Kinetic studies on wheat straw hydrolysis to levulinic acid. Chin. J. Chem. Eng. 2009 17 5 835 839 10.1016/S1004‑9541(08)60284‑0
    [Google Scholar]
  99. Bevilaqua D.B. Rambo M.K.D. Rizzetti T.M. Cardoso A.L. Martins A.F. Cleaner production: Levulinic acid from rice husks. J. Clean. Prod. 2013 47 96 101 10.1016/j.jclepro.2013.01.035
    [Google Scholar]
  100. Yang Z. Kang H. Guo Y. Zhuang G. Bai Z. Zhang H. Feng C. Dong Y. Dilute-acid conversion of cotton straw to sugars and levulinic acid via 2-stage hydrolysis. Ind. Crops Prod. 2013 46 205 209 10.1016/j.indcrop.2013.01.031
    [Google Scholar]
  101. Omari K.W. Besaw J.E. Kerton F.M. Hydrolysis of chitosan to yield levulinic acid and 5-hydroxymethylfurfural in water under microwave irradiation. Green Chem. 2012 14 5 1480 1487 10.1039/c2gc35048c
    [Google Scholar]
  102. Khan M.A. Dharmalingam B. Chuetor S. Cheng Y-S. Sriariyanun M. Comprehensive review on effective conversion of lignocellulosic biomass to levulinic acid. Biomass Conv. Bioref 2023 2023 04663-2 10.1007/s13399‑023‑04663‑2
    [Google Scholar]
  103. Liu X. Yang W. Zhang Q. Li C. Wu H. Current approaches to alkyl levulinates via efficient valorization of biomass derivatives. Front Chem. 2020 8 794 10.3389/fchem.2020.00794 33195025
    [Google Scholar]
  104. Gürbüz E.I. Wettstein S.G. Dumesic J.A. Conversion of hemicellulose to furfural and levulinic acid using biphasic reactors with alkylphenol solvents. ChemSusChem 2012 5 2 383 387 10.1002/cssc.201100608 22275334
    [Google Scholar]
  105. Li J. Jiang Z. Hu L. Hu C. Selective conversion of cellulose in corncob residue to levulinic acid in an aluminum trichloride-sodium chloride system. ChemSusChem 2014 7 9 2482 2488 10.1002/cssc.201402384 25045141
    [Google Scholar]
  106. Phachwisoot G. Nakason K. Chanthad C. Khemthong P. Kraithong W. Youngjan S. Panyapinyopol B. Sequential production of levulinic acid and supercapacitor electrode materials from cassava rhizome through an integrated biorefinery process. ACS Sustain. Chem. Eng. 2021 9 23 7824 7836 10.1021/acssuschemeng.1c01335
    [Google Scholar]
  107. Chen X. Zhang K. Xiao L.P. Sun R.C. Song G. Total utilization of lignin and carbohydrates in Eucalyptus grandis: An integrated biorefinery strategy towards phenolics, levulinic acid, and furfural. Biotechnol. Biofuels 2020 13 1 2 10.1186/s13068‑019‑1644‑z 31921351
    [Google Scholar]
  108. Wang C. Zhang Q. Chen Y. Zhang X. Xu F. Highly Efficient Conversion of Xylose Residues to Levulinic Acid over FeCl 3 Catalyst in Green Salt Solutions. ACS Sustain. Chem. Eng. 2018 6 3 3154 3161 10.1021/acssuschemeng.7b03183
    [Google Scholar]
  109. Zhao P. Zhou C. Li J. Xu S. Hu C. Synergistic Effect of Different Species in Stannic Chloride Solution on the Production of Levulinic Acid from Biomass. ACS Sustain. Chem. Eng. 2019 7 5 5176 5183 10.1021/acssuschemeng.8b06062
    [Google Scholar]
  110. Wang K. Liu Y. Wu W. Chen Y. Fang L. Li W. Ji H. Production of Levulinic Acid via Cellulose Conversion Over Metal Oxide-Loaded MOF Catalysts in Aqueous Medium. Catal. Lett. 2020 150 2 322 331 10.1007/s10562‑019‑03023‑y
    [Google Scholar]
  111. Shen F. Smith R.L. Jr Li L. Yan L. Qi X. Eco-friendly Method for Efficient Conversion of Cellulose into Levulinic Acid in Pure Water with Cellulase-Mimetic Solid Acid Catalyst. ACS Sustain. Chem. Eng. 2017 5 3 2421 2427 10.1021/acssuschemeng.6b02765
    [Google Scholar]
  112. Liu S. Cheng X. Sun S. Chen Y. Bian B. Liu Y. Tong L. Yu H. Ni Y. Yu S. High-Yield and High-Efficiency Conversion of HMF to Levulinic Acid in a Green and Facile Catalytic Process by a Dual-Function Brønsted-Lewis Acid HScCl 4 Catalyst. ACS Omega 2021 6 24 15940 15947 10.1021/acsomega.1c01607 34179638
    [Google Scholar]
  113. Zhao H. Holladay J.E. Brown H. Zhang Z.C. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science 2007 316 5831 1597 1600 10.1126/science.1141199 17569858
    [Google Scholar]
  114. Binder J.B. Raines R.T. Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J. Am. Chem. Soc. 2009 131 5 1979 1985 10.1021/ja808537j 19159236
    [Google Scholar]
  115. Ren H. Zhou Y. Liu L. Selective conversion of cellulose to levulinic acid via microwave-assisted synthesis in ionic liquids. Bioresour. Technol. 2013 129 616 619 10.1016/j.biortech.2012.12.132 23337540
    [Google Scholar]
  116. Ukarde T.M. Pawar H.S. PolyE-IL an efficient and recyclable Bronsted acid catalyst for conversion of rice straw into Levulinic and other organic acids. Energy Fuels 2022 36 3 1592 1603 10.1021/acs.energyfuels.1c03773
    [Google Scholar]
  117. Huang X. Kudo S. Sperry J. Hayashi J. Clean Synthesis of 5-Hydroxymethylfurfural and Levulinic Acid by Aqueous Phase Conversion of Levoglucosenone over Solid Acid Catalysts. ACS Sustain. Chem. Eng. 2019 7 6 5892 5899 10.1021/acssuschemeng.8b05873
    [Google Scholar]
  118. Pyo S.H. Glaser S.J. Rehnberg N. Hatti-Kaul R. Clean Production of Levulinic Acid from Fructose and Glucose in Salt Water by Heterogeneous Catalytic Dehydration. ACS Omega 2020 5 24 14275 14282 10.1021/acsomega.9b04406 32596564
    [Google Scholar]
  119. Xiang M. Liu J. Fu W. Tang T. Wu D. Improved Activity for Cellulose Conversion to Levulinic Acid through Hierarchization of ETS-10 Zeolite. ACS Sustain. Chem.; Eng. 2017 5 7 5800 5809 10.1021/acssuschemeng.7b00529
    [Google Scholar]
  120. Mellmer M.A. Gallo J.M.R. Martin Alonso D. Dumesic J.A. Selective production of levulinic acid from furfuryl alcohol in THF solvent systems over H-ZSM-5. ACS Catal. 2015 5 6 3354 3359 10.1021/acscatal.5b00274
    [Google Scholar]
  121. Dwivedi A.D. Sahu V.K. Mobin S.M. Singh S.K. Cyclopentadienyl–Ru(II)–Pyridylamine Complexes: Synthesis, X-ray Structure, and Application in Catalytic Transformation of Bio-Derived Furans to Levulinic Acid and Diketones in Water. Inorg. Chem. 2018 57 8 4777 4787 10.1021/acs.inorgchem.8b00536 29620884
    [Google Scholar]
  122. Siregar Y.D.I. Saepudin E. Krisnandi Y.K. One-Pot Reaction Conversion of Delignified Sorghum Bicolor Biomass into Levulinic Acid using a Manganese Metal Based Catalyst. Int. J. Technol. 2020 11 4 852 861 10.14716/ijtech.v11i4.3955
    [Google Scholar]
  123. Dwivedi P. Singh M. Sehra N. Pandey N. Sangwan R.S. Mishra B.B. Processing of wet Kinnow mandarin (Citrus reticulata) fruit waste into novel Brønsted acidic ionic liquids and their application in hydrolysis of sucrose. Bioresour. Technol. 2018 250 621 624 10.1016/j.biortech.2017.11.100 29220805
    [Google Scholar]
  124. Singh M. Pandey N. Dwivedi P. Kumar V. Mishra B.B. Production of xylose, levulinic acid, and lignin from spent aromatic biomass with a recyclable Brønsted acid synthesized from d-limonene as renewable feedstock from citrus waste. Bioresour. Technol. 2019 293 122105 10.1016/j.biortech.2019.122105 31514116
    [Google Scholar]
  125. Dutta S. De S. Alam M.I. Abu-Omar M.M. Saha B. Direct conversion of cellulose and lignocellulosic biomass into chemicals and biofuel with metal chloride catalysts. J. Catal. 2012 288 8 15 10.1016/j.jcat.2011.12.017
    [Google Scholar]
  126. Qu Y. Wei Q. Li H. Oleskowicz-Popiel P. Huang C. Xu J. Microwave-assisted conversion of microcrystalline cellulose to 5-hydroxymethylfurfural catalyzed by ionic liquids. Bioresour. Technol. 2014 162 358 364 10.1016/j.biortech.2014.03.081 24768890
    [Google Scholar]
  127. Wang S. Lin H. Chen J. Zhao Y. Ru B. Qiu K. Zhou J. Conversion of carbohydrates into 5-hydroxymethylfurfural in an advanced single-phase reaction system consisting of water and 1,2-dimethoxyethane. RSC Advances 2015 5 102 84014 84021 10.1039/C5RA18824E
    [Google Scholar]
  128. Ma Y. Ji W. Zhu X. Tian L. Wan X. Effect of extremely low AlCl3 on hydrolysis of cellulose in high temperature liquid water. Biomass Bioenergy 2012 39 106 111 10.1016/j.biombioe.2011.12.033
    [Google Scholar]
  129. Shen Y. Sun J. Yi Y. Li M. Wang B. Xu F. Sun R. InCl 3 -catalyzed conversion of carbohydrates into 5-hydroxymethylfurfural in biphasic system. Bioresour. Technol. 2014 172 457 460 10.1016/j.biortech.2014.09.077 25304730
    [Google Scholar]
  130. Li H. Zhang Q. Liu X. Chang F. Hu D. Zhang Y. Xue W. Yang S. InCl3-ionic liquid catalytic system for efficient and selective conversion of cellulose into 5-hydroxymethylfurfural. RSC Advances 2013 3 11 3648 3654 10.1039/c3ra23387a
    [Google Scholar]
  131. Zhang Y.R. Li N. Li M.F. Fan Y.M. Highly efficient conversion of microcrystalline cellulose to 5-hydroxymethyl furfural in a homogeneous reaction system. RSC Advances 2016 6 26 21347 21351 10.1039/C5RA22129C
    [Google Scholar]
  132. Su Y. Brown H.M. Huang X. Zhou X. Amonette J.E. Zhang Z.C. Single-step conversion of cellulose to 5-hydroxymethylfurfural (HMF), a versatile platform chemical. Appl. Catal. A Gen. 2009 361 1-2 117 122 10.1016/j.apcata.2009.04.002
    [Google Scholar]
  133. Abou-Yousef H. Hassan E.B. Steele P. Rapid conversion of cellulose to 5-hydroxymethylfurfural using single and combined metal chloride catalysts in ionic liquid. J. Fuel Chem. Technol. 2013 41 2 214 222 10.1016/S1872‑5813(13)60013‑4
    [Google Scholar]
  134. Shi N. Liu Q. Zhang Q. Wang T. Ma L. High yield production of 5-hydroxymethylfurfural from cellulose by high concentration of sulfates in biphasic system. Green Chem. 2013 15 7 1967 1974 10.1039/c3gc40667a
    [Google Scholar]
  135. Zhou L. Liang R. Ma Z. Wu T. Wu Y. Conversion of cellulose to HMF in ionic liquid catalyzed by bifunctional ionic liquids. Bioresour. Technol. 2013 129 450 455 10.1016/j.biortech.2012.11.015 23266845
    [Google Scholar]
  136. Yin S. Pan Y. Tan Z. Hydrothermal conversion of cellulose to 5-hydroxymethyl furfural. Int. J. Green Energy 2011 8 2 234 247 10.1080/15435075.2010.548888
    [Google Scholar]
  137. Weingarten R. Rodriguez-Beuerman A. Cao F. Luterbacher J.S. Alonso D.M. Dumesic J.A. Huber G.W. Selective conversion of cellulose to hydroxymethylfurfural in polar aprotic solvents. ChemCatChem 2014 6 8 2229 2234 10.1002/cctc.201402299
    [Google Scholar]
  138. Singh M. Pandey N. Mishra B.B. A divergent approach for the synthesis of (hydroxymethyl)furfural (HMF) from spent aromatic biomass-derived (chloromethyl)furfural (CMF) as a renewable feedstock. RSC Advances 2020 10 73 45081 45089 10.1039/D0RA09310F 35516261
    [Google Scholar]
  139. Mascal M. 5-(Chloromethyl)furfural (CMF): A Platform for Transforming Cellulose into Commercial Products. ACS Sustain. Chem.; Eng. 2019 7 6 5588 5601 10.1021/acssuschemeng.8b06553
    [Google Scholar]
  140. Mascal M. 5-(Chloromethyl)furfural is the New HMF: Functionally equivalent but more practical in terms of its production from biomass. ChemSusChem 2015 8 20 3391 3395 10.1002/cssc.201500940 26373463
    [Google Scholar]
  141. Mascal M. Nikitin E.B. Dramatic advancements in the saccharide to 5-(chloromethyl)furfural conversion reaction. ChemSusChem 2009 2 9 859 861 10.1002/cssc.200900136 19725092
    [Google Scholar]
  142. Lane D.R. Mascal M. Stroeve P. Experimental studies towards optimization of the production of 5-(chloromethyl)furfural (CMF) from glucose in a two-phase reactor. Renew. Energy 2016 85 994 1001 10.1016/j.renene.2015.07.032
    [Google Scholar]
  143. Bredihhin A. Mäeorg U. Vares L. Evaluation of carbohydrates and lignocellulosic biomass from different wood species as raw material for the synthesis of 5-bromomethyfurfural. Carbohydr. Res. 2013 375 63 67 10.1016/j.carres.2013.04.002 23688609
    [Google Scholar]
  144. Gao W. Li Y. Xiang Z. Chen K. Yang R. Argyropoulos D. Efficient one-pot synthesis of 5-chloromethylfurfural (CMF) from carbohydrates in mild biphasic systems. Molecules 2013 18 7 7675 7685 10.3390/molecules18077675 23884120
    [Google Scholar]
  145. Zuo M. Li Z. Jiang Y. Tang X. Zeng X. Sun Y. Lin L. Green catalytic conversion of bio-based sugars to 5-chloromethyl furfural in deep eutectic solvent, catalyzed by metal chlorides. RSC Advances 2016 6 32 27004 27007 10.1039/C6RA00267F
    [Google Scholar]
  146. Breeden S.W. Clark J.H. Farmer T.J. Macquarrie D.J. Meimoun J.S. Nonne Y. Reid J.E.S.J. Microwave heating for rapid conversion of sugars and polysaccharides to 5-chloromethyl furfural. Green Chem. 2013 15 1 72 75 10.1039/C2GC36290B
    [Google Scholar]
  147. Howard J. Rackemann D.W. Zhang Z. Moghaddam L. Bartley J.P. Doherty W.O.S. Effect of pretreatment on the formation of 5-chloromethyl furfural derived from sugarcane bagasse. RSC Advances 2016 6 7 5240 5248 10.1039/C5RA20203E
    [Google Scholar]
  148. Meller E. Aviv A. Aizenshtat Z. Sasson Y. Preparation of halogenated furfurals as intermediates in the carbohydrates to biofuel process. RSC Advances 2016 6 42 36069 36076 10.1039/C6RA06050A
    [Google Scholar]
  149. Chen B. Li Z. Feng Y. Hao W. Sun Y. Tang X. Zeng X. Lin L. Green Process for 5‐(Chloromethyl)furfural Production from Biomass in Three‐Constituent Deep Eutectic Solvent. ChemSusChem 2021 14 3 847 851 10.1002/cssc.202002631 33347742
    [Google Scholar]
  150. Onkarappa S.B. Dutta S. Phase Transfer Catalyst Assisted One‐Pot Synthesis of 5‐(Chloromethyl)furfural from Biomass‐Derived Carbohydrates in a Biphasic Batch Reactor. ChemistrySelect 2019 4 25 7502 7506 10.1002/slct.201901347
    [Google Scholar]
  151. Smith B.A. Champagne P. Jessop P.G. A Semi‐Batch Flow System for the Production of 5‐Chloromethylfurfural. Chem. Methods 2021 1 10 438 443 10.1002/cmtd.202100031
    [Google Scholar]
  152. Balamurugan S. Lakshmanan P. Piramuthu L. Geetha D. Novelty of glycoside surfactant derivatives for sustainable development: A new perspective. Vietnam J. Chem. 2023 61 2 135 146 10.1002/vjch.202200091
    [Google Scholar]
  153. Fiume M.M. Heldreth B. Bergfeld W.F. Belsito D.V. Hill R.A. Klaassen C.D. Liebler D. Marks J.G. Jr Shank R.C. Slaga T.J. Snyder P.W. Andersen F.A. Safety assessment of decyl glucoside and other alkyl glucosides as used in cosmetics. Int. J. Toxicol. 2013 32 5_suppl 22S 48S 10.1177/1091581813497764 24174472
    [Google Scholar]
  154. Villandier N. Corma A. One pot catalytic conversion of cellulose into biodegradable surfactants. Chem. Commun. (Camb.) 2010 46 24 4408 4410 10.1039/c0cc00031k 20480120
    [Google Scholar]
  155. Hausser N. Marinkovic S. Estrine B. New method for lignocellulosic biomass polysaccharides conversion in butanol, an efficient route for the production of butyl glycosides from wheat straw or poplar wood. Cellulose 2013 20 5 2179 2184 10.1007/s10570‑013‑9990‑7
    [Google Scholar]
  156. Puga A.V. Corma A. Direct conversion of cellulose into alkyl glycoside surfactants. ChemistrySelect 2017 2 8 2495 2498 10.1002/slct.201700389
    [Google Scholar]
  157. Climent M.J. Corma A. Iborra S. Martínez-Silvestre S. Transformation of cellulose into nonionic surfactants using a one-pot catalytic process. ChemSusChem 2016 9 24 3492 3502 10.1002/cssc.201600977 27882684
    [Google Scholar]
  158. Boissou F. Sayoud N. De Oliveira Vigier K. Barakat A. Marinkovic S. Estrine B. Jérôme F. Acid‐Assisted Ball Milling of Cellulose as an Efficient Pretreatment Process for the Production of Butyl Glycosides. ChemSusChem 2015 8 19 3263 3269 10.1002/cssc.201500700 26346950
    [Google Scholar]
  159. Deng W. Liu M. Zhang Q. Wang Y. Direct transformation of cellulose into methyl and ethyl glucosides in methanol and ethanol media catalyzed by heteropolyacids. Catal. Today 2011 164 1 461 466 10.1016/j.cattod.2010.10.055
    [Google Scholar]
  160. Ma Y. Tan W. Wang K. Wang J. Jiang J. Xu J. An Insight into the Selective Conversion of Bamboo Biomass to Ethyl Glycosides. ACS Sustain. Chem.; Eng. 2017 5 7 5880 5886 10.1021/acssuschemeng.7b00618
    [Google Scholar]
  161. Singh M. Pandey N. Negi P. Jyoti Larroche C. Mishra B.B. Solvothermal conversion of spent aromatic waste to ethyl glucosides. Chemosphere 2022 292 133428 10.1016/j.chemosphere.2021.133428 34968518
    [Google Scholar]
  162. Karam A. De Oliveira Vigier K. Marinkovic S. Estrine B. Oldani C. Jérôme F. Conversion of cellulose into amphiphilic alkyl glycosides catalyzed by aquivion, a perfluorosulfonic acid polymer. ChemSusChem 2017 10 18 3604 3610 10.1002/cssc.201700903 28696071
    [Google Scholar]
  163. Pereira C.S.M. Silva V.M.T.M. Rodrigues A.E. Ethyl lactate as a solvent: Properties, applications and production processes – a review. Green Chem. 2011 13 10 2658 2671 10.1039/c1gc15523g
    [Google Scholar]
  164. Li Y. Bhagwat S.S. Cortés-Peña Y.R. Ki D. Rao C.V. Jin Y.S. Guest J.S. Sustainable lactic acid production from lignocellulosic biomass. ACS Sustain. Chem.; Eng. 2021 9 3 1341 1351 10.1021/acssuschemeng.0c08055
    [Google Scholar]
  165. Wang Y. Tashiro Y. Sonomoto K. Fermentative production of lactic acid from renewable materials: Recent achievements, prospects, and limits. J. Biosci. Bioeng. 2015 119 1 10 18 10.1016/j.jbiosc.2014.06.003 25077706
    [Google Scholar]
  166. Li C. Gao M. Zhu W. Wang N. Ma X. Wu C. Wang Q. Recent advances in the separation and purification of lactic acid from fermentation broth. Process Biochem. 2021 104 142 151 10.1016/j.procbio.2021.03.011
    [Google Scholar]
  167. Gezae Daful A. Görgens J.F. Techno-economic analysis and environmental impact assessment of lignocellulosic lactic acid production. Chem. Eng. Sci. 2017 162 53 65 10.1016/j.ces.2016.12.054
    [Google Scholar]
  168. Yan X. Jin F. Tohji K. Kishita A. Enomoto H. Hydrothermal conversion of carbohydrate biomass to lactic acid. AIChE J. 2010 56 10 2727 2733 10.1002/aic.12193
    [Google Scholar]
  169. Wang Y. Deng W. Wang B. Zhang Q. Wan X. Tang Z. Wang Y. Zhu C. Cao Z. Wang G. Wan H. Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water. Nat. Commun. 2013 4 1 2141 10.1038/ncomms3141 23846730
    [Google Scholar]
  170. Younas R. Zhang S. Zhang L. Luo G. Chen K. Cao L. Liu Y. Hao S. Lactic acid production from rice straw in alkaline hydrothermal conditions in presence of NiO nanoplates. Catal. Today 2016 274 40 48 10.1016/j.cattod.2016.03.052
    [Google Scholar]
  171. Shen Z. Gao Y. Kong L. Gu M. Xia M. Dong W. Zhang W. Zhou X. Zhang Y. Selective conversion of scenedesmus into lactic acid over amine-modified Sn-β. ACS Omega 2021 6 1 284 293 10.1021/acsomega.0c04561 33458480
    [Google Scholar]
  172. Kim K.H. Kim C.S. Wang Y. Yoo C.G. An integrated process for the production of lactic acid from lignocellulosic biomass: From biomass fractionation and characterization to chemocatalytic conversion with lanthanum (III) triflate. Ind. Eng. Chem. Res. 2020 59 23 10832 10839 10.1021/acs.iecr.0c01666
    [Google Scholar]
  173. Liu D. Kim K.H. Sun J. Simmons B.A. Singh S. Cascade production of lactic acid from universal types of sugars catalyzed by lanthanum triflate. ChemSusChem 2018 11 3 598 604 10.1002/cssc.201701902 29178399
    [Google Scholar]
  174. Li S. Deng W. Li Y. Zhang Q. Wang Y. Catalytic conversion of cellulose-based biomass and glycerol to lactic acid. J. Energy Chem. 2019 32 138 151 10.1016/j.jechem.2018.07.012
    [Google Scholar]
  175. Mäki-Arvela P. Simakova I.L. Salmi T. Murzin D.Y. Production of lactic acid/lactates from biomass and their catalytic transformations to commodities. Chem. Rev. 2014 114 3 1909 1971 10.1021/cr400203v 24344682
    [Google Scholar]
  176. Zhu Z. Zhu J. Catalytic oxygen atom transfer from lignin to cellulose and hemicellulose and its importance in biorefining. Fuel 2015 148 226 230 10.1016/j.fuel.2015.01.109
    [Google Scholar]
  177. Tominaga K. Nemoto K. Kamimura Y. Hirano Y. Takahashi T. Tsuneki H. Sato K. Synthesis of methyl lactate from cellulose catalyzed by mixed Lewis acid systems. Fuel Process. Technol. 2020 199 106288 10.1016/j.fuproc.2019.106288
    [Google Scholar]
  178. Wang S. Chen K. Wang Q. Ytterbium triflate immobilized on sulfo-functionalized SBA-15 catalyzed conversion of cellulose to lactic acid. J. Porous Mater. 2018 25 5 1531 1539 10.1007/s10934‑018‑0566‑7
    [Google Scholar]
  179. Wang F.F. Liu C.L. Dong W.S. Highly efficient production of lactic acid from cellulose using lanthanide triflate catalysts. Green Chem. 2013 15 8 2091 2095 10.1039/c3gc40836a
    [Google Scholar]
  180. Zhang W. Xu S. Xiao Y. Qin D. Li J. Hu C. The insights into the catalytic performance of rare earth metal ions on lactic acid formation from biomass via microwave heating. Chem. Eng. J. 2021 421 130014 10.1016/j.cej.2021.130014
    [Google Scholar]
  181. Lei X. Wang F.F. Liu C.L. Yang R.Z. Dong W.S. One-pot catalytic conversion of carbohydrate biomass to lactic acid using an ErCl3 catalyst. Appl. Catal. A Gen. 2014 482 78 83 10.1016/j.apcata.2014.05.029
    [Google Scholar]
  182. Wang F. Wang Y. Jin F. Yao G. Huo Z. Zeng X. Jing Z. One-pot hydrothermal conversion of cellulose into organic acids with CuO as an oxidant. Ind. Eng. Chem. Res. 2014 53 19 7939 7946 10.1021/ie404311d
    [Google Scholar]
  183. Zhang S. Jin F. Hu J. Huo Z. Improvement of lactic acid production from cellulose with the addition of Zn/Ni/C under alkaline hydrothermal conditions. Bioresour. Technol. 2011 102 2 1998 2003 10.1016/j.biortech.2010.09.049 20934324
    [Google Scholar]
  184. Sánchez C. Egüés I. García A. Llano-Ponte R. Labidi J. Lactic acid production by alkaline hydrothermal treatment of corn cobs. Chem. Eng. J. 2012 181-182 655 660 10.1016/j.cej.2011.12.033
    [Google Scholar]
  185. Chambon F. Rataboul F. Pinel C. Cabiac A. Guillon E. Essayem N. Cellulose hydrothermal conversion promoted by heterogeneous Brønsted and Lewis acids: Remarkable efficiency of solid Lewis acids to produce lactic acid. Appl. Catal. B 2011 105 1-2 171 181 10.1016/j.apcatb.2011.04.009
    [Google Scholar]
  186. Jyoti P. Pandey N. Negi P. Singh M. Mishra B.B. Hydrothermal depolymerization of spent biomass for production of lactic acid and small aromatics. Cleaner Chem. Eng. 2024 9 100116 10.1016/j.clce.2024.100116
    [Google Scholar]
/content/journals/coc/10.2174/0113852728325684240911063353
Loading
/content/journals/coc/10.2174/0113852728325684240911063353
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: value added products ; cellulose ; Lignocelluloses ; pretreatment
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test