Skip to content
2000
Volume 29, Issue 6
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Chemistry is confronted with the pressing issues of depleting non-renewable fossil resources and the imperative to combat environmental pollution, which is crucial for a sustainable future. Biomass stands out as the sole organic carbon source in nature among the array of sustainable resources available, positioning it as a prime substitute for fossil-derived chemicals and fuels. Extensive research has been conducted on the abundant lignocelluloses as a potential source for biofuels, bioenergy, and various valuable products, wherein, the incorporation of various processes in biomass fractionation to separate biopolymers (such as lignin, cellulose, and hemicellulose) has the potential to enhance the overall value of the process. However, industrial demonstration of biomass utilization for commercial products has been limited due to the challenges posed by the recalcitrance and complexity of biomass. Therefore, there is a need for efficient reaction processes to enable the production of bio-chemicals and fuels from renewable lignocellulose. This review focuses on the latest chemical methods developed for producing value-added chemicals from biomass-derived cellulose as a renewable feedstock.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728325684240911063353
2024-10-04
2025-03-07
Loading full text...

Full text loading...

References

  1. HungN.T. Biomass energy consumption and economic growth: Insights from BRICS and developed countries.Environ. Sci. Pollut. Res. Int.20222920300553007210.1007/s11356‑021‑17721‑x 34997926
    [Google Scholar]
  2. AliH.S. LawS.H. YusopZ. ChinL. Dynamic implication of biomass energy consumption on economic growth in Sub-Saharan Africa: Evidence from panel data analysis.GeoJournal201782349350210.1007/s10708‑016‑9698‑y
    [Google Scholar]
  3. AjmiA.N. Inglesi-LotzR. Biomass energy consumption and economic growth nexus in OECD countries: A panel analysis.Renew. Energy20201621649165410.1016/j.renene.2020.10.002
    [Google Scholar]
  4. KonukF. ZerenF. AkpınarS. YıldızŞ. Biomass energy consumption and economic growth: Further evidence from NEXT-11 countries.Energy Rep.202174825483210.1016/j.egyr.2021.07.070
    [Google Scholar]
  5. XuJ. LiC. DaiL. XuC. ZhongY. YuF. SiC. Biomass fractionation and lignin fractionation towards lignin valorization.ChemSusChem202013174284429510.1002/cssc.202001491 32672385
    [Google Scholar]
  6. ZhengB. YuS. ChenZ. HuoY.X. A consolidated review of commercial-scale high-value products from lignocellulosic biomass.Front. Microbiol.20221393388210.3389/fmicb.2022.933882 36081794
    [Google Scholar]
  7. AntarM. LyuD. NazariM. ShahA. ZhouX. SmithD.L. Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization.Renew. Sustain. Energy Rev.202113911069110.1016/j.rser.2020.110691
    [Google Scholar]
  8. AshokkumarV. VenkatkarthickR. JayashreeS. ChuetorS. DharmarajS. KumarG. ChenW.H. NgamcharussrivichaiC. Recent advances in lignocellulosic biomass for biofuels and value-added bioproducts - A critical review.Bioresour. Technol.2022344Pt B12619510.1016/j.biortech.2021.126195 34710596
    [Google Scholar]
  9. ChandraR. IqbalH.M.N. VishalG. LeeH.S. NagraS. Algal biorefinery: A sustainable approach to valorize algal-based biomass towards multiple product recovery.Bioresour. Technol.201927834635910.1016/j.biortech.2019.01.104 30718075
    [Google Scholar]
  10. JavedM.U. MukhtarH. HayatM.T. RashidU. MumtazM.W. NgamcharussrivichaiC. Sustainable processing of algal biomass for a comprehensive biorefinery.J. Biotechnol.2022352475810.1016/j.jbiotec.2022.05.009 35613647
    [Google Scholar]
  11. MujtabaM. Fernandes FracetoL. FazeliM. MukherjeeS. SavassaS.M. Araujo de MedeirosG. do Espírito Santo PereiraA. ManciniS.D. LipponenJ. VilaplanaF. Lignocellulosic biomass from agricultural waste to the circular economy: A review with focus on biofuels, biocomposites and bioplastics.J. Clean. Prod.202340213681510.1016/j.jclepro.2023.136815
    [Google Scholar]
  12. KumarA. BhattacharyaT. Mozammil HasnainS.M. Kumar NayakA. HasnainM.S. Applications of biomass-derived materials for energy production, conversion, and storage.Mater. Sci. Energy Technol.2020390592010.1016/j.mset.2020.10.012
    [Google Scholar]
  13. MahapatraS. KumarD. SinghB. SachanP.K. Biofuels and their sources of production: A review on cleaner sustainable alternative against conventional fuel, in the framework of the food and energy nexus.Energy Nexus2021410003610.1016/j.nexus.2021.100036
    [Google Scholar]
  14. MehmandoustM. LiG. ErkN. Biomass-derived carbon materials as an emerging platform for advanced electrochemical sensors: Recent advances and future perspectives.Ind. Eng. Chem. Res.202362114628463510.1021/acs.iecr.2c03058
    [Google Scholar]
  15. HeH. ZhangR. ZhangP. WangP. ChenN. QianB. ZhangL. YuJ. DaiB. Functional carbon from nature: biomass-derived carbon materials and the recent progress of their applications.Adv. Sci.202310162205557
    [Google Scholar]
  16. GoodmanB.A. Utilization of waste straw and husks from rice production: A review.J. Biores. Bioprod.20205314316210.1016/j.jobab.2020.07.001
    [Google Scholar]
  17. NorfarhanaA.S. IlyasR.A. NgadiN. OthmanM.H.D. MisenanM.S.M. NorrrahimM.N.F. NorrrahimM.N.F. Revolutionizing lignocellulosic biomass: A review of harnessing the power of ionic liquids for sustainable utilization and extraction.Int. J. Biol. Macromol.2024256Pt 112825610.1016/j.ijbiomac.2023.128256 38000585
    [Google Scholar]
  18. WangF. OuyangD. ZhouZ. PageS.J. LiuD. ZhaoX. Lignocellulosic biomass as sustainable feedstock and materials for power generation and energy storage.J. Energy Chem.20215724728010.1016/j.jechem.2020.08.060
    [Google Scholar]
  19. IsikgorF.H. BecerC.R. Lignocellulosic biomass: A sustainable platform for the production of bio-based chemicals and polymers.Polym. Chem.20156254497455910.1039/C5PY00263J
    [Google Scholar]
  20. XiaQ. ChenC. YaoY. LiJ. HeS. ZhouY. LiT. PanX. YaoY. HuL. A strong, biodegradable and recyclable lignocellulosic bioplastic.Nat. Sustain.20214762763510.1038/s41893‑021‑00702‑w
    [Google Scholar]
  21. FatmaS. HameedA. NomanM. AhmedT. ShahidM. TariqM. SohailI. TabassumR. Lignocellulosic biomass: A sustainable bioenergy source for the future.Protein Pept. Lett.201825214816310.2174/0929866525666180122144504 29359659
    [Google Scholar]
  22. KimJ.Y. LeeH.W. LeeS.M. JaeJ. ParkY.K. Overview of the recent advances in lignocellulose liquefaction for producing biofuels, bio-based materials and chemicals.Bioresour. Technol.201927937338410.1016/j.biortech.2019.01.055 30685133
    [Google Scholar]
  23. Rajesh BanuJ. Preethi; Kavitha, S.; Tyagi, V.K.; Gunasekaran, M.; Karthikeyan, O.P.; Kumar, G. Lignocellulosic biomass based biorefinery: A successful platform towards circular bioeconomy.Fuel202130212108610.1016/j.fuel.2021.121086
    [Google Scholar]
  24. ZhangB. GaoY. ZhangL. ZhouY. The plant cell wall: Biosynthesis, construction, and functions.J. Integr. Plant Biol.202163125127210.1111/jipb.13055 33325153
    [Google Scholar]
  25. ParreE. GeitmannA. Pectin and the role of the physical properties of the cell wall in pollen tube growth of Solanum chacoense.Planta2005220458259210.1007/s00425‑004‑1368‑5 15449057
    [Google Scholar]
  26. WangY. FanC. HuH. LiY. SunD. WangY. PengL. Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops.Biotechnol. Adv.2016345997101710.1016/j.biotechadv.2016.06.001 27269671
    [Google Scholar]
  27. DaherF.B. BraybrookS.A. How to let go: Pectin and plant cell adhesion.Front. Plant Sci.2015652310.3389/fpls.2015.00523 26236321
    [Google Scholar]
  28. DuJ. AndersonC.T. XiaoC. Dynamics of pectic homogalacturonan in cellular morphogenesis and adhesion, wall integrity sensing and plant development.Nat. Plants20228433234010.1038/s41477‑022‑01120‑2 35411046
    [Google Scholar]
  29. McCannM.C. CarpitaN.C. Biomass recalcitrance: A multi-scale, multi-factor, and conversion-specific property: Fig. 1.J. Exp. Bot.201566144109411810.1093/jxb/erv267 26060266
    [Google Scholar]
  30. ZoghlamiA. PaësG. Lignocellulosic biomass: Understanding recalcitrance and predicting hydrolysis.Front Chem.2019787410.3389/fchem.2019.00874 31921787
    [Google Scholar]
  31. BichotA. LerostyM. RadoiuM. MéchinV. BernetN. DelgenèsJ.P. García-BernetD. Decoupling thermal and non-thermal effects of the microwaves for lignocellulosic biomass pretreatment.Energy Convers. Manage.202020311222010.1016/j.enconman.2019.112220
    [Google Scholar]
  32. AtallaR.H. VanderHartD.L. The role of solid state NMR spectroscopy in studies of the nature of native celluloses.Solid State Nucl. Magn. Reson.199915111910.1016/S0926‑2040(99)00042‑9 10903080
    [Google Scholar]
  33. JarvisM.C. Structure of native cellulose microfibrils, the starting point for nanocellulose manufacture.Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci.201837621122017004510.1098/rsta.2017.0045 29277742
    [Google Scholar]
  34. LampugnaniE.R. Flores-SandovalE. TanQ.W. MutwilM. BowmanJ.L. PerssonS. Cellulose synthesis – central components and their evolutionary relationships.Trends Plant Sci.201924540241210.1016/j.tplants.2019.02.011 30905522
    [Google Scholar]
  35. GeorgeJ. S N, S. Cellulose nanocrystals: Synthesis, functional properties, and applications.Nanotechnol. Sci. Appl.20158455410.2147/NSA.S64386 26604715
    [Google Scholar]
  36. SeddiqiH. OliaeiE. HonarkarH. JinJ. GeonzonL.C. BacabacR.G. Klein-NulendJ. Cellulose and its derivatives: Towards biomedical applications.Cellulose20212841893193110.1007/s10570‑020‑03674‑w
    [Google Scholar]
  37. XiaoM. LiuY-J. BayerE.A. KosugiA. CuiQ. Cellulosomal hemicellulases: Indispensable players for ensuring effective lignocellulose bioconversion.Green Carbon202421576910.1016/j.greenca.2024.01.003
    [Google Scholar]
  38. TarasovD. LeitchM. FatehiP. Lignin–carbohydrate complexes: Properties, applications, analyses, and methods of extraction: A review.Biotechnol. Biofuels201811126910.1186/s13068‑018‑1262‑1 30288174
    [Google Scholar]
  39. FarhatW. VendittiR.A. HubbeM. TahaM. BecquartF. AyoubA. A review of water-resistant hemicellulose-based materials: Processing and applications.ChemSusChem201710230532310.1002/cssc.201601047 28029233
    [Google Scholar]
  40. de SouzaT.S.P. KawagutiH.Y. Cellulases, hemicellulases, and pectinases: Applications in the food and beverage industry.Food Bioprocess Technol.20211481446147710.1007/s11947‑021‑02678‑z
    [Google Scholar]
  41. VasileC. BaicanM. Lignins as promising renewable biopolymers and bioactive compounds for high-performance materials.Polymers (Basel)20231515317710.3390/polym15153177 37571069
    [Google Scholar]
  42. WatkinsD. NuruddinM. HosurM. Tcherbi-NartehA. JeelaniS. Extraction and characterization of lignin from different biomass resources.J. Mater. Res. Technol.201541263210.1016/j.jmrt.2014.10.009
    [Google Scholar]
  43. KangX. KiruiA. Dickwella WidanageM.C. Mentink-VigierF. CosgroveD.J. WangT. Lignin-polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR.Nat. Commun.201910134710.1038/s41467‑018‑08252‑0 30664653
    [Google Scholar]
  44. LiuQ. LuoL. ZhengL. Lignins: Biosynthesis and biological functions in plants.Int. J. Mol. Sci.201819233510.3390/ijms19020335 29364145
    [Google Scholar]
  45. JaziM.E. Structure, chemistry and physicochemistry of lignin for material functionalization.SN Appl. Sci.201911094
    [Google Scholar]
  46. RaoX. BarrosJ. Modeling lignin biosynthesis: A pathway to renewable chemicals.Trends Plant Sci.2023295546559
    [Google Scholar]
  47. del RíoJ.C. RencoretJ. GutiérrezA. ElderT. KimH. RalphJ. Lignin monomers from beyond the canonical monolignol biosynthetic pathway: Another brick in the wall.ACS Sustain. Chem. Eng.20208134997501210.1021/acssuschemeng.0c01109
    [Google Scholar]
  48. VanholmeR. DemedtsB. MorreelK. RalphJ. BoerjanW. Lignin biosynthesis and structure.Plant Physiol.2010153389590510.1104/pp.110.155119 20472751
    [Google Scholar]
  49. SuotaM.J. da SilvaT.A. ZawadzkiS.F. SassakiG.L. HanselF.A. PaleologouM. RamosL.P. Chemical and structural characterization of hardwood and softwood LignoForce™ lignins.Ind. Crops Prod.202117311413810.1016/j.indcrop.2021.114138
    [Google Scholar]
  50. GellerstedtG. Softwood kraft lignin: Raw material for the future.Ind. Crops Prod.20157784585410.1016/j.indcrop.2015.09.040
    [Google Scholar]
  51. MartinA.F. TobimatsuY. KusumiR. MatsumotoN. MiyamotoT. LamP.Y. YamamuraM. KoshibaT. SakamotoM. UmezawaT. Altered lignocellulose chemical structure and molecular assembly in cinnamyl alcohol dehydrogenase-deficient rice.Sci. Rep.2019911715310.1038/s41598‑019‑53156‑8 31748605
    [Google Scholar]
  52. KiruiA. ZhaoW. DeligeyF. YangH. KangX. Mentink-VigierF. WangT. Carbohydrate-aromatic interface and molecular architecture of lignocellulose.Nat. Commun.202213153810.1038/s41467‑022‑28165‑3 35087039
    [Google Scholar]
  53. SantosM.B. SilleroL. GattoD.A. LabidiJ. Bioactive molecules in wood extractives: Methods of extraction and separation, a review.Ind. Crops Prod.202218611523110.1016/j.indcrop.2022.115231
    [Google Scholar]
  54. N’GuessanJ.L.L. NiamkéB.F. YaoN.J.C. AmusantN. Wood extractives: Main families, functional properties. Fields of application and interest of wood waste.For. Prod. J.202373319420810.13073/FPJ‑D‑23‑00015
    [Google Scholar]
  55. SinghA. PrajapatiP. VyasS. GaurV.K. SindhuR. BinodP. KumarV. SinghaniaR.R. AwasthiM.K. ZhangZ. VarjaniS. A comprehensive review of feedstocks as sustainable substrates for next-generation biofuels.BioEnergy Res.202316110512210.1007/s12155‑022‑10440‑2
    [Google Scholar]
  56. Tortosa MasiáA.A. BuhreB.J.P. GuptaR.P. WallT.F. Characterising ash of biomass and waste.Fuel Process. Technol.20078811-121071108110.1016/j.fuproc.2007.06.011
    [Google Scholar]
  57. PhiriR. Mavinkere RangappaS. SiengchinS. Agro-waste for renewable and sustainable green production: A review.J. Clean. Prod.202443413998910.1016/j.jclepro.2023.139989
    [Google Scholar]
  58. ReddyK.V. SreeN.R.S. RanjitP. MaddelaN.R. Biomass waste and feedstock as a source of renewable energy. Green Approach to Alternative Fuel for a Sustainable Future.AmsterdamElsevier2024325334
    [Google Scholar]
  59. MäkeläM. FullanaA. YoshikawaK. Ash behavior during hydrothermal treatment for solid fuel applications. Part 1: Overview of different feedstock.Energy Convers. Manage.201612140240810.1016/j.enconman.2016.05.016
    [Google Scholar]
  60. MankarA.R. PandeyA. ModakA. PantK.K. Pretreatment of lignocellulosic biomass: A review on recent advances.Bioresour. Technol.202133412523510.1016/j.biortech.2021.125235 33957458
    [Google Scholar]
  61. ZakariaM.R. FujimotoS. HirataS. HassanM.A. Ball milling pretreatment of oil palm biomass for enhancing enzymatic hydrolysis.Appl. Biochem. Biotechnol.201417371778178910.1007/s12010‑014‑0964‑5 24908052
    [Google Scholar]
  62. ZhaoX. LiS. WuR. LiuD. Organosolv fractionating pre‐treatment of lignocellulosic biomass for efficient enzymatic saccharification: Chemistry, kinetics, and substrate structures.Biofuels Bioprod. Biorefin.201711356759010.1002/bbb.1768
    [Google Scholar]
  63. BrodeurG. YauE. BadalK. CollierJ. RamachandranK.B. RamakrishnanS. Chemical and physicochemical pretreatment of lignocellulosic biomass: A review.Enzyme Res.2011201111710.4061/2011/787532 21687609
    [Google Scholar]
  64. ChandelH. KumarP. ChandelA.K. VermaM.L. Biotechnological advances in biomass pretreatment for bio-renewable production through nanotechnological intervention.Biomass Convers. Biorefin.202214123 35529175
    [Google Scholar]
  65. YuY. WuJ. RenX. LauA. RezaeiH. TakadaM. BiX. SokhansanjS. Steam explosion of lignocellulosic biomass for multiple advanced bioenergy processes: A review.Renew. Sustain. Energy Rev.202215411187110.1016/j.rser.2021.111871
    [Google Scholar]
  66. ZhaoC. ShaoQ. ChundawatS.P.S. Recent advances on ammonia-based pretreatments of lignocellulosic biomass.Bioresour. Technol.202029812244610.1016/j.biortech.2019.122446 31791921
    [Google Scholar]
  67. MartínezS.A.H. Melchor-MartínezE.M. HernándezJ.A.R. Parra-SaldívarR. IqbalH.M.N. Magnetic nanomaterials assisted nanobiocatalysis systems and their applications in biofuels production.Fuel202231212292710.1016/j.fuel.2021.122927
    [Google Scholar]
  68. VeluchamyC. KalamdhadA.S. GilroyedB.H. Advanced pretreatment strategies for bioenergy production from biomass and biowaste. Handbook of Environmental Materials Management.ChamSpringer2018119
    [Google Scholar]
  69. GalbeM. WallbergO. Pretreatment for biorefineries: A review of common methods for efficient utilisation of lignocellulosic materials.Biotechnol. Biofuels201912129410.1186/s13068‑019‑1634‑1 31890022
    [Google Scholar]
  70. PińkowskaH. KrzywonosM. WolakP. Valorization of rapeseed meal by hydrothermal treatment—effect of reaction parameters on low molecular products distribution.Cellul. Chem. Technol.2019537-875576510.35812/CelluloseChemTechnol.2019.53.74
    [Google Scholar]
  71. LêH.Q. MaY. BorregaM. SixtaH. Wood biorefinery based on γ-valerolactone/water fractionation.Green Chem.201618205466547610.1039/C6GC01692H
    [Google Scholar]
  72. BozellJ.J. BlackS.K. MyersM. CahillD. MillerW.P. ParkS. Solvent fractionation of renewable woody feedstocks: Organosolv generation of biorefinery process streams for the production of biobased chemicals.Biomass Bioenergy201135104197420810.1016/j.biombioe.2011.07.006
    [Google Scholar]
  73. GeilenF.M.A. EngendahlB. HarwardtA. MarquardtW. KlankermayerJ. LeitnerW. Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system.Angew. Chem. Int. Ed.201049325510551410.1002/anie.201002060 20586088
    [Google Scholar]
  74. GomesJ.M. SilvaS.S. ReisR.L. Biocompatible ionic liquids: Fundamental behaviours and applications.Chem. Soc. Rev.201948154317433510.1039/C9CS00016J 31225558
    [Google Scholar]
  75. CostaS.P.F. AzevedoA.M.O. PintoP.C.A.G. SaraivaM.L.M.F.S. Environmental impact of ionic liquids: Recent advances in (Eco)toxicology and (Bio) degradability.ChemSusChem201710112321234710.1002/cssc.201700261 28394478
    [Google Scholar]
  76. Klein-MarcuschamerD. SimmonsB.A. BlanchH.W. Techno‐economic analysis of a lignocellulosic ethanol biorefinery with ionic liquid pre‐treatment.Biofuels Bioprod. Biorefin.20115556256910.1002/bbb.303
    [Google Scholar]
  77. GorkeJ.T. SriencF. KazlauskasR.J. Hydrolase-catalyzed biotransformations in deep eutectic solvents.Chem. Commun. (Camb.)200810101235123710.1039/b716317g 18309428
    [Google Scholar]
  78. SatlewalA. AgrawalR. BhagiaS. SangoroJ. RagauskasA.J. Natural deep eutectic solvents for lignocellulosic biomass pretreatment: Recent developments, challenges and novel opportunities.Biotechnol. Adv.20183682032205010.1016/j.biotechadv.2018.08.009 30193965
    [Google Scholar]
  79. AkyolÇ. InceO. BozanM. OzbayramE.G. InceB. Biological pretreatment with Trametes versicolor to enhance methane production from lignocellulosic biomass: A metagenomic approach.Ind. Crops Prod.201914011165910.1016/j.indcrop.2019.111659
    [Google Scholar]
  80. AliS.S. Al-TohamyR. ManniA. LuzF.C. ElsamahyT. SunJ. Enhanced digestion of bio-pretreated sawdust using a novel bacterial consortium: Microbial community structure and methane-producing pathways.Fuel201925411560410.1016/j.fuel.2019.06.012
    [Google Scholar]
  81. KarunanithyC. MuthukumarappanK. GibbonsW.R. Effect of extruder screw speed, temperature, and enzyme levels on sugar recovery from different biomasses.ISRN Biotechnol.201220131942810 25969784
    [Google Scholar]
  82. BudarinV.L. ClarkJ.H. LaniganB.A. ShuttleworthP. MacquarrieD.J. Microwave assisted decomposition of cellulose: A new thermochemical route for biomass exploitation.Bioresour. Technol.2010101103776377910.1016/j.biortech.2009.12.110 20093017
    [Google Scholar]
  83. MauryaD.P. VatsS. RaiS. NegiS. Optimization of enzymatic saccharification of microwave pretreated sugarcane tops through response surface methodology for biofuel.Indian J. Exp. Biol.20135111992996 24416936
    [Google Scholar]
  84. VelmuruganR. MuthukumarK. Ultrasound-assisted alkaline pretreatment of sugarcane bagasse for fermentable sugar production: Optimization through response surface methodology.Bioresour. Technol.201211229329910.1016/j.biortech.2012.01.168 22418083
    [Google Scholar]
  85. FallsM. MadisonM. LiangC. KarimM.N. Sierra-RamirezR. HoltzappleM.T. Mechanical pretreatment of biomass – Part II: Shock treatment.Biomass Bioenergy2019126475610.1016/j.biombioe.2019.04.016
    [Google Scholar]
  86. JohnI. PolaJ. AppusamyA. Optimization of ultrasonic assisted saccharification of sweet lime peel for bioethanol production using Box-Behnken method.Waste Biomass Valoriz.201910244145310.1007/s12649‑017‑0072‑1
    [Google Scholar]
  87. ZhengJ. ZhuJ. XuX. WangW. LiJ. ZhaoY. TangK. SongQ. QiX. KongD. TangY. Continuous hydrogenation of ethyl levulinate to γ-valerolactone and 2-methyl tetrahydrofuran over alumina doped Cu/SiO2 catalyst: The potential of commercialization.Sci. Rep.2016612889810.1038/srep28898 27377401
    [Google Scholar]
  88. JulioA. SilvaC. GriloL.M. VasconcelosM.H. LacerdaT.M. Levulinic acid: Perspectives of its biobased production and most promising derivatives. Production of Top 12 Biochemicals Selected by USDOE from Renewable Resources.AmsterdamElsevier2022387414
    [Google Scholar]
  89. SajidM. FarooqU. BaryG. AzimM.M. ZhaoX. Sustainable production of levulinic acid and its derivatives for fuel additives and chemicals: Progress, challenges, and prospects.Green Chem.202123239198923810.1039/D1GC02919C
    [Google Scholar]
  90. RajendarenV. SaufiS.M. ZahariM.A.K.M. A review of the methods for levulinic acid separation and extraction.Biomass Conv. Biorefi.2022140344403447
    [Google Scholar]
  91. MthembuL.D. GuptaR. DeenadayaluN. Advances in biomass-based levulinic acid production.Waste Biomass Valoriz.202314112210.1007/s12649‑022‑01948‑x
    [Google Scholar]
  92. FachriB.A. AbdillaR.M. BovenkampH.H. RasrendraC.B. HeeresH.J. Experimental and kinetic modeling studies on the sulfuric acid catalyzed conversion of d -fructose to 5-hydroxymethylfurfural and levulinic acid in water.ACS Sustain. Chem. Eng.20153123024303410.1021/acssuschemeng.5b00023
    [Google Scholar]
  93. SignorettoM. TaghaviS. GhediniE. MenegazzoF. Catalytic production of levulinic acid (LA) from actual biomass.Molecules20192415276010.3390/molecules24152760 31366018
    [Google Scholar]
  94. KangS. FuJ. ZhangG. From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis.Renew. Sustain. Energy Rev.20189434036210.1016/j.rser.2018.06.016
    [Google Scholar]
  95. MoroneA. ApteM. PandeyR.A. Levulinic acid production from renewable waste resources: Bottlenecks, potential remedies, advancements and applications.Renew. Sustain. Energy Rev.20155154856510.1016/j.rser.2015.06.032
    [Google Scholar]
  96. ZhangX. WilsonK. LeeA.F. Heterogeneously catalyzed hydrothermal processing of C5-C6 sugars.Chem. Rev.201611619123281236810.1021/acs.chemrev.6b00311 27680093
    [Google Scholar]
  97. PileidisF.D. TitiriciM.M. Levulinic acid biorefineries: New challenges for efficient utilization of biomass.ChemSusChem20169656258210.1002/cssc.201501405 26847212
    [Google Scholar]
  98. ChangC. MaX. CenP. Kinetic studies on wheat straw hydrolysis to levulinic acid.Chin. J. Chem. Eng.200917583583910.1016/S1004‑9541(08)60284‑0
    [Google Scholar]
  99. BevilaquaD.B. RamboM.K.D. RizzettiT.M. CardosoA.L. MartinsA.F. Cleaner production: Levulinic acid from rice husks.J. Clean. Prod.2013479610110.1016/j.jclepro.2013.01.035
    [Google Scholar]
  100. YangZ. KangH. GuoY. ZhuangG. BaiZ. ZhangH. FengC. DongY. Dilute-acid conversion of cotton straw to sugars and levulinic acid via 2-stage hydrolysis.Ind. Crops Prod.20134620520910.1016/j.indcrop.2013.01.031
    [Google Scholar]
  101. OmariK.W. BesawJ.E. KertonF.M. Hydrolysis of chitosan to yield levulinic acid and 5-hydroxymethylfurfural in water under microwave irradiation.Green Chem.20121451480148710.1039/c2gc35048c
    [Google Scholar]
  102. KhanM.A. DharmalingamB. ChuetorS. ChengY-S. SriariyanunM. Comprehensive review on effective conversion of lignocellulosic biomass to levulinic acid.Biomass Conv. Biorefi.2023202304663210.1007/s13399‑023‑04663‑2
    [Google Scholar]
  103. LiuX. YangW. ZhangQ. LiC. WuH. Current approaches to alkyl levulinates via efficient valorization of biomass derivatives.Front Chem.2020879410.3389/fchem.2020.00794 33195025
    [Google Scholar]
  104. GürbüzE.I. WettsteinS.G. DumesicJ.A. Conversion of hemicellulose to furfural and levulinic acid using biphasic reactors with alkylphenol solvents.ChemSusChem20125238338710.1002/cssc.201100608 22275334
    [Google Scholar]
  105. LiJ. JiangZ. HuL. HuC. Selective conversion of cellulose in corncob residue to levulinic acid in an aluminum trichloride-sodium chloride system.ChemSusChem2014792482248810.1002/cssc.201402384 25045141
    [Google Scholar]
  106. PhachwisootG. NakasonK. ChanthadC. KhemthongP. KraithongW. YoungjanS. PanyapinyopolB. Sequential production of levulinic acid and supercapacitor electrode materials from cassava rhizome through an integrated biorefinery process.ACS Sustain. Chem. Eng.20219237824783610.1021/acssuschemeng.1c01335
    [Google Scholar]
  107. ChenX. ZhangK. XiaoL.P. SunR.C. SongG. Total utilization of lignin and carbohydrates in Eucalyptus grandis: An integrated biorefinery strategy towards phenolics, levulinic acid, and furfural.Biotechnol. Biofuels2020131210.1186/s13068‑019‑1644‑z 31921351
    [Google Scholar]
  108. WangC. ZhangQ. ChenY. ZhangX. XuF. Highly efficient conversion of xylose residues to levulinic acid over FeCl3 catalyst in green salt solutions.ACS Sustain. Chem. Eng.2018633154316110.1021/acssuschemeng.7b03183
    [Google Scholar]
  109. ZhaoP. ZhouC. LiJ. XuS. HuC. Synergistic effect of different species in stannic chloride solution on the production of levulinic acid from biomass.ACS Sustain. Chem. Eng.2019755176518310.1021/acssuschemeng.8b06062
    [Google Scholar]
  110. WangK. LiuY. WuW. ChenY. FangL. LiW. JiH. Production of levulinic acid via cellulose conversion over metal oxide-loaded MOF catalysts in aqueous medium.Catal. Lett.2020150232233110.1007/s10562‑019‑03023‑y
    [Google Scholar]
  111. ShenF. SmithR.L.Jr LiL. YanL. QiX. Eco-friendly method for efficient conversion of cellulose into levulinic acid in pure water with cellulase-mimetic solid acid catalyst.ACS Sustain. Chem. Eng.2017532421242710.1021/acssuschemeng.6b02765
    [Google Scholar]
  112. LiuS. ChengX. SunS. ChenY. BianB. LiuY. TongL. YuH. NiY. YuS. High-yield and high-efficiency conversion of HMF to levulinic acid in a green and facile catalytic process by a dual-function brønsted-lewis acid HScCl4 catalyst.ACS Omega2021624159401594710.1021/acsomega.1c01607 34179638
    [Google Scholar]
  113. ZhaoH. HolladayJ.E. BrownH. ZhangZ.C. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural.Science200731658311597160010.1126/science.1141199 17569858
    [Google Scholar]
  114. BinderJ.B. RainesR.T. Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals.J. Am. Chem. Soc.200913151979198510.1021/ja808537j 19159236
    [Google Scholar]
  115. RenH. ZhouY. LiuL. Selective conversion of cellulose to levulinic acid via microwave-assisted synthesis in ionic liquids.Bioresour. Technol.201312961661910.1016/j.biortech.2012.12.132 23337540
    [Google Scholar]
  116. UkardeT.M. PawarH.S. PolyE-IL an efficient and recyclable Bronsted acid catalyst for conversion of rice straw into levulinic and other organic acids.Energy Fuels20223631592160310.1021/acs.energyfuels.1c03773
    [Google Scholar]
  117. HuangX. KudoS. SperryJ. HayashiJ. Clean synthesis of 5-hydroxymethylfurfural and levulinic acid by aqueous phase conversion of levoglucosenone over solid acid catalysts.ACS Sustain. Chem. Eng.2019765892589910.1021/acssuschemeng.8b05873
    [Google Scholar]
  118. PyoS.H. GlaserS.J. RehnbergN. Hatti-KaulR. Clean production of levulinic acid from fructose and glucose in salt water by heterogeneous catalytic dehydration.ACS Omega2020524142751428210.1021/acsomega.9b04406 32596564
    [Google Scholar]
  119. XiangM. LiuJ. FuW. TangT. WuD. Improved activity for cellulose conversion to levulinic acid through hierarchization of ETS-10 zeolite.ACS Sustain. Chem. Eng.2017575800580910.1021/acssuschemeng.7b00529
    [Google Scholar]
  120. MellmerM.A. GalloJ.M.R. Martin AlonsoD. DumesicJ.A. Selective production of levulinic acid from furfuryl alcohol in THF solvent systems over H-ZSM-5.ACS Catal.2015563354335910.1021/acscatal.5b00274
    [Google Scholar]
  121. DwivediA.D. SahuV.K. MobinS.M. SinghS.K. Cyclopentadienyl–Ru(II)–pyridylamine complexes: Synthesis, X-ray structure, and application in catalytic transformation of bio-derived furans to levulinic acid and diketones in water.Inorg. Chem.20185784777478710.1021/acs.inorgchem.8b00536 29620884
    [Google Scholar]
  122. SiregarY.D.I. SaepudinE. KrisnandiY.K. One-pot reaction conversion of delignified sorghum bicolor biomass into levulinic acid using a manganese metal based catalyst.Int. J. Technol.202011485286110.14716/ijtech.v11i4.3955
    [Google Scholar]
  123. DwivediP. SinghM. SehraN. PandeyN. SangwanR.S. MishraB.B. Processing of wet Kinnow mandarin (Citrus reticulata) fruit waste into novel Brønsted acidic ionic liquids and their application in hydrolysis of sucrose.Bioresour. Technol.201825062162410.1016/j.biortech.2017.11.100 29220805
    [Google Scholar]
  124. SinghM. PandeyN. DwivediP. KumarV. MishraB.B. Production of xylose, levulinic acid, and lignin from spent aromatic biomass with a recyclable Brønsted acid synthesized from d-limonene as renewable feedstock from citrus waste.Bioresour. Technol.201929312210510.1016/j.biortech.2019.122105 31514116
    [Google Scholar]
  125. DuttaS. DeS. AlamM.I. Abu-OmarM.M. SahaB. Direct conversion of cellulose and lignocellulosic biomass into chemicals and biofuel with metal chloride catalysts.J. Catal.201228881510.1016/j.jcat.2011.12.017
    [Google Scholar]
  126. QuY. WeiQ. LiH. Oleskowicz-PopielP. HuangC. XuJ. Microwave-assisted conversion of microcrystalline cellulose to 5-hydroxymethylfurfural catalyzed by ionic liquids.Bioresour. Technol.201416235836410.1016/j.biortech.2014.03.081 24768890
    [Google Scholar]
  127. WangS. LinH. ChenJ. ZhaoY. RuB. QiuK. ZhouJ. Conversion of carbohydrates into 5-hydroxymethylfurfural in an advanced single-phase reaction system consisting of water and 1,2-dimethoxyethane.RSC Advances20155102840148402110.1039/C5RA18824E
    [Google Scholar]
  128. MaY. JiW. ZhuX. TianL. WanX. Effect of extremely low AlCl3 on hydrolysis of cellulose in high temperature liquid water.Biomass Bioenergy20123910611110.1016/j.biombioe.2011.12.033
    [Google Scholar]
  129. ShenY. SunJ. YiY. LiM. WangB. XuF. SunR. InCl 3 -catalyzed conversion of carbohydrates into 5-hydroxymethylfurfural in biphasic system.Bioresour. Technol.201417245746010.1016/j.biortech.2014.09.077 25304730
    [Google Scholar]
  130. LiH. ZhangQ. LiuX. ChangF. HuD. ZhangY. XueW. YangS. InCl3-ionic liquid catalytic system for efficient and selective conversion of cellulose into 5-hydroxymethylfurfural.RSC Advances20133113648365410.1039/c3ra23387a
    [Google Scholar]
  131. ZhangY.R. LiN. LiM.F. FanY.M. Highly efficient conversion of microcrystalline cellulose to 5-hydroxymethyl furfural in a homogeneous reaction system.RSC Advances2016626213472135110.1039/C5RA22129C
    [Google Scholar]
  132. SuY. BrownH.M. HuangX. ZhouX. AmonetteJ.E. ZhangZ.C. Single-step conversion of cellulose to 5-hydroxymethylfurfural (HMF), a versatile platform chemical.Appl. Catal. A Gen.20093611-211712210.1016/j.apcata.2009.04.002
    [Google Scholar]
  133. Abou-YousefH. HassanE.B. SteeleP. Rapid conversion of cellulose to 5-hydroxymethylfurfural using single and combined metal chloride catalysts in ionic liquid.J. Fuel Chem. Technol.201341221422210.1016/S1872‑5813(13)60013‑4
    [Google Scholar]
  134. ShiN. LiuQ. ZhangQ. WangT. MaL. High yield production of 5-hydroxymethylfurfural from cellulose by high concentration of sulfates in biphasic system.Green Chem.20131571967197410.1039/c3gc40667a
    [Google Scholar]
  135. ZhouL. LiangR. MaZ. WuT. WuY. Conversion of cellulose to HMF in ionic liquid catalyzed by bifunctional ionic liquids.Bioresour. Technol.201312945045510.1016/j.biortech.2012.11.015 23266845
    [Google Scholar]
  136. YinS. PanY. TanZ. Hydrothermal conversion of cellulose to 5-hydroxymethyl furfural.Int. J. Green Energy20118223424710.1080/15435075.2010.548888
    [Google Scholar]
  137. WeingartenR. Rodriguez-BeuermanA. CaoF. LuterbacherJ.S. AlonsoD.M. DumesicJ.A. HuberG.W. Selective conversion of cellulose to hydroxymethylfurfural in polar aprotic solvents.ChemCatChem2014682229223410.1002/cctc.201402299
    [Google Scholar]
  138. SinghM. PandeyN. MishraB.B. A divergent approach for the synthesis of (hydroxymethyl)furfural (HMF) from spent aromatic biomass-derived (chloromethyl)furfural (CMF) as a renewable feedstock.RSC Advances20201073450814508910.1039/D0RA09310F 35516261
    [Google Scholar]
  139. MascalM. 5-(Chloromethyl)furfural (CMF): A platform for transforming cellulose into commercial products.ACS Sustain. Chem. Eng.2019765588560110.1021/acssuschemeng.8b06553
    [Google Scholar]
  140. MascalM. 5-(Chloromethyl)furfural is the New HMF: Functionally equivalent but more practical in terms of its production from biomass.ChemSusChem20158203391339510.1002/cssc.201500940 26373463
    [Google Scholar]
  141. MascalM. NikitinE.B. Dramatic advancements in the saccharide to 5-(chloromethyl)furfural conversion reaction.ChemSusChem20092985986110.1002/cssc.200900136 19725092
    [Google Scholar]
  142. LaneD.R. MascalM. StroeveP. Experimental studies towards optimization of the production of 5-(chloromethyl)furfural (CMF) from glucose in a two-phase reactor.Renew. Energy201685994100110.1016/j.renene.2015.07.032
    [Google Scholar]
  143. BredihhinA. MäeorgU. VaresL. Evaluation of carbohydrates and lignocellulosic biomass from different wood species as raw material for the synthesis of 5-bromomethyfurfural.Carbohydr. Res.2013375636710.1016/j.carres.2013.04.002 23688609
    [Google Scholar]
  144. GaoW. LiY. XiangZ. ChenK. YangR. ArgyropoulosD. Efficient one-pot synthesis of 5-chloromethylfurfural (CMF) from carbohydrates in mild biphasic systems.Molecules20131877675768510.3390/molecules18077675 23884120
    [Google Scholar]
  145. ZuoM. LiZ. JiangY. TangX. ZengX. SunY. LinL. Green catalytic conversion of bio-based sugars to 5-chloromethyl furfural in deep eutectic solvent, catalyzed by metal chlorides.RSC Advances2016632270042700710.1039/C6RA00267F
    [Google Scholar]
  146. BreedenS.W. ClarkJ.H. FarmerT.J. MacquarrieD.J. MeimounJ.S. NonneY. ReidJ.E.S.J. Microwave heating for rapid conversion of sugars and polysaccharides to 5-chloromethyl furfural.Green Chem.2013151727510.1039/C2GC36290B
    [Google Scholar]
  147. HowardJ. RackemannD.W. ZhangZ. MoghaddamL. BartleyJ.P. DohertyW.O.S. Effect of pretreatment on the formation of 5-chloromethyl furfural derived from sugarcane bagasse.RSC Advances2016675240524810.1039/C5RA20203E
    [Google Scholar]
  148. MellerE. AvivA. AizenshtatZ. SassonY. Preparation of halogenated furfurals as intermediates in the carbohydrates to biofuel process.RSC Advances2016642360693607610.1039/C6RA06050A
    [Google Scholar]
  149. ChenB. LiZ. FengY. HaoW. SunY. TangX. ZengX. LinL. Green process for 5‐(chloromethyl)furfural production from biomass in three‐constituent deep eutectic solvent.ChemSusChem202114384785110.1002/cssc.202002631 33347742
    [Google Scholar]
  150. OnkarappaS.B. DuttaS. Phase transfer catalyst assisted one‐pot synthesis of 5‐(chloromethyl)furfural from biomass‐derived carbohydrates in a biphasic batch reactor.ChemistrySelect20194257502750610.1002/slct.201901347
    [Google Scholar]
  151. SmithB.A. ChampagneP. JessopP.G. A Semi‐Batch Flow System for the Production of 5‐Chloromethylfurfural.Chem. Methods202111043844310.1002/cmtd.202100031
    [Google Scholar]
  152. BalamuruganS. LakshmananP. PiramuthuL. GeethaD. Novelty of glycoside surfactant derivatives for sustainable development: A new perspective.Vietnam J. Chem.202361213514610.1002/vjch.202200091
    [Google Scholar]
  153. FiumeM.M. HeldrethB. BergfeldW.F. BelsitoD.V. HillR.A. KlaassenC.D. LieblerD. MarksJ.G.Jr ShankR.C. SlagaT.J. SnyderP.W. AndersenF.A. Safety assessment of decyl glucoside and other alkyl glucosides as used in cosmetics.Int. J. Toxicol.2013325_suppl22S48S10.1177/1091581813497764 24174472
    [Google Scholar]
  154. VillandierN. CormaA. One pot catalytic conversion of cellulose into biodegradable surfactants.Chem. Commun. (Camb.)201046244408441010.1039/c0cc00031k 20480120
    [Google Scholar]
  155. HausserN. MarinkovicS. EstrineB. New method for lignocellulosic biomass polysaccharides conversion in butanol, an efficient route for the production of butyl glycosides from wheat straw or poplar wood.Cellulose20132052179218410.1007/s10570‑013‑9990‑7
    [Google Scholar]
  156. PugaA.V. CormaA. Direct conversion of cellulose into alkyl glycoside surfactants.ChemistrySelect2017282495249810.1002/slct.201700389
    [Google Scholar]
  157. ClimentM.J. CormaA. IborraS. Martínez-SilvestreS. Transformation of cellulose into nonionic surfactants using a one-pot catalytic process.ChemSusChem20169243492350210.1002/cssc.201600977 27882684
    [Google Scholar]
  158. BoissouF. SayoudN. De Oliveira VigierK. BarakatA. MarinkovicS. EstrineB. JérômeF. Acid‐assisted ball milling of cellulose as an efficient pretreatment process for the production of butyl glycosides.ChemSusChem20158193263326910.1002/cssc.201500700 26346950
    [Google Scholar]
  159. DengW. LiuM. ZhangQ. WangY. Direct transformation of cellulose into methyl and ethyl glucosides in methanol and ethanol media catalyzed by heteropolyacids.Catal. Today2011164146146610.1016/j.cattod.2010.10.055
    [Google Scholar]
  160. MaY. TanW. WangK. WangJ. JiangJ. XuJ. An insight into the selective conversion of bamboo biomass to ethyl glycosides.ACS Sustain. Chem. Eng.2017575880588610.1021/acssuschemeng.7b00618
    [Google Scholar]
  161. SinghM. PandeyN. NegiP. Jyoti; Larroche, C.; Mishra, B.B. Solvothermal conversion of spent aromatic waste to ethyl glucosides.Chemosphere202229213342810.1016/j.chemosphere.2021.133428 34968518
    [Google Scholar]
  162. KaramA. De Oliveira VigierK. MarinkovicS. EstrineB. OldaniC. JérômeF. Conversion of cellulose into amphiphilic alkyl glycosides catalyzed by aquivion, a perfluorosulfonic acid polymer.ChemSusChem201710183604361010.1002/cssc.201700903 28696071
    [Google Scholar]
  163. PereiraC.S.M. SilvaV.M.T.M. RodriguesA.E. Ethyl lactate as a solvent: Properties, applications and production processes – a review.Green Chem.201113102658267110.1039/c1gc15523g
    [Google Scholar]
  164. LiY. BhagwatS.S. Cortés-PeñaY.R. KiD. RaoC.V. JinY.S. GuestJ.S. Sustainable lactic acid production from lignocellulosic biomass.ACS Sustain. Chem. Eng.2021931341135110.1021/acssuschemeng.0c08055
    [Google Scholar]
  165. WangY. TashiroY. SonomotoK. Fermentative production of lactic acid from renewable materials: Recent achievements, prospects, and limits.J. Biosci. Bioeng.20151191101810.1016/j.jbiosc.2014.06.003 25077706
    [Google Scholar]
  166. LiC. GaoM. ZhuW. WangN. MaX. WuC. WangQ. Recent advances in the separation and purification of lactic acid from fermentation broth.Process Biochem.202110414215110.1016/j.procbio.2021.03.011
    [Google Scholar]
  167. Gezae DafulA. GörgensJ.F. Techno-economic analysis and environmental impact assessment of lignocellulosic lactic acid production.Chem. Eng. Sci.2017162536510.1016/j.ces.2016.12.054
    [Google Scholar]
  168. YanX. JinF. TohjiK. KishitaA. EnomotoH. Hydrothermal conversion of carbohydrate biomass to lactic acid.AIChE J.201056102727273310.1002/aic.12193
    [Google Scholar]
  169. WangY. DengW. WangB. ZhangQ. WanX. TangZ. WangY. ZhuC. CaoZ. WangG. WanH. Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water.Nat. Commun.201341214110.1038/ncomms3141 23846730
    [Google Scholar]
  170. YounasR. ZhangS. ZhangL. LuoG. ChenK. CaoL. LiuY. HaoS. Lactic acid production from rice straw in alkaline hydrothermal conditions in presence of NiO nanoplates.Catal. Today2016274404810.1016/j.cattod.2016.03.052
    [Google Scholar]
  171. ShenZ. GaoY. KongL. GuM. XiaM. DongW. ZhangW. ZhouX. ZhangY. Selective conversion of Scenedesmus into lactic acid over amine-modified Sn-β.ACS Omega20216128429310.1021/acsomega.0c04561 33458480
    [Google Scholar]
  172. KimK.H. KimC.S. WangY. YooC.G. An integrated process for the production of lactic acid from lignocellulosic biomass: From biomass fractionation and characterization to chemocatalytic conversion with lanthanum (III) triflate.Ind. Eng. Chem. Res.20205923108321083910.1021/acs.iecr.0c01666
    [Google Scholar]
  173. LiuD. KimK.H. SunJ. SimmonsB.A. SinghS. Cascade production of lactic acid from universal types of sugars catalyzed by lanthanum triflate.ChemSusChem201811359860410.1002/cssc.201701902 29178399
    [Google Scholar]
  174. LiS. DengW. LiY. ZhangQ. WangY. Catalytic conversion of cellulose-based biomass and glycerol to lactic acid.J. Energy Chem.20193213815110.1016/j.jechem.2018.07.012
    [Google Scholar]
  175. Mäki-ArvelaP. SimakovaI.L. SalmiT. MurzinD.Y. Production of lactic acid/lactates from biomass and their catalytic transformations to commodities.Chem. Rev.201411431909197110.1021/cr400203v 24344682
    [Google Scholar]
  176. ZhuZ. ZhuJ. Catalytic oxygen atom transfer from lignin to cellulose and hemicellulose and its importance in biorefining.Fuel201514822623010.1016/j.fuel.2015.01.109
    [Google Scholar]
  177. TominagaK. NemotoK. KamimuraY. HiranoY. TakahashiT. TsunekiH. SatoK. Synthesis of methyl lactate from cellulose catalyzed by mixed Lewis acid systems.Fuel Process. Technol.202019910628810.1016/j.fuproc.2019.106288
    [Google Scholar]
  178. WangS. ChenK. WangQ. Ytterbium triflate immobilized on sulfo-functionalized SBA-15 catalyzed conversion of cellulose to lactic acid.J. Porous Mater.20182551531153910.1007/s10934‑018‑0566‑7
    [Google Scholar]
  179. WangF.F. LiuC.L. DongW.S. Highly efficient production of lactic acid from cellulose using lanthanide triflate catalysts.Green Chem.20131582091209510.1039/c3gc40836a
    [Google Scholar]
  180. ZhangW. XuS. XiaoY. QinD. LiJ. HuC. The insights into the catalytic performance of rare earth metal ions on lactic acid formation from biomass via microwave heating.Chem. Eng. J.202142113001410.1016/j.cej.2021.130014
    [Google Scholar]
  181. LeiX. WangF.F. LiuC.L. YangR.Z. DongW.S. One-pot catalytic conversion of carbohydrate biomass to lactic acid using an ErCl3 catalyst.Appl. Catal. A Gen.2014482788310.1016/j.apcata.2014.05.029
    [Google Scholar]
  182. WangF. WangY. JinF. YaoG. HuoZ. ZengX. JingZ. One-pot hydrothermal conversion of cellulose into organic acids with CuO as an oxidant.Ind. Eng. Chem. Res.201453197939794610.1021/ie404311d
    [Google Scholar]
  183. ZhangS. JinF. HuJ. HuoZ. Improvement of lactic acid production from cellulose with the addition of Zn/Ni/C under alkaline hydrothermal conditions.Bioresour. Technol.201110221998200310.1016/j.biortech.2010.09.049 20934324
    [Google Scholar]
  184. SánchezC. EgüésI. GarcíaA. Llano-PonteR. LabidiJ. Lactic acid production by alkaline hydrothermal treatment of corn cobs.Chem. Eng. J.2012181-18265566010.1016/j.cej.2011.12.033
    [Google Scholar]
  185. ChambonF. RataboulF. PinelC. CabiacA. GuillonE. EssayemN. Cellulose hydrothermal conversion promoted by heterogeneous Brønsted and lewis acids: Remarkable efficiency of solid Lewis acids to produce lactic acid.Appl. Catal. B20111051-217118110.1016/j.apcatb.2011.04.009
    [Google Scholar]
  186. JyotiP. PandeyN. NegiP. SinghM. MishraB.B. Hydrothermal depolymerization of spent biomass for production of lactic acid and small aromatics.Cleaner Chem. Eng.2024910011610.1016/j.clce.2024.100116
    [Google Scholar]
/content/journals/coc/10.2174/0113852728325684240911063353
Loading
/content/journals/coc/10.2174/0113852728325684240911063353
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cellulose; hemicelluloses; lignin; Lignocelluloses; pretreatment; value added products
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test