Skip to content
2000
Volume 29, Issue 5
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Glycosylation reactions are central to carbohydrate chemistry due to their broad applications in drug development and biological probes. Despite presenting significant challenges and often requiring substantial amounts of promoters, these reactions yield value-added products of immense biological importance. The incorporation of transition metal catalysis in glycosylation reactions offers advantages, such as mild reaction conditions and enhanced selectivity. Currently, synthetic chemists are particularly interested in - and -glycosides because their glycosidic linkages exhibit greater metabolic stability compared to the more vulnerable -glycosides. This review aims to explore recent advances in the synthesis of various structurally diverse and biologically relevant - and -glycosides, covering literature from 2019 to 2024.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728322447240718054734
2024-08-06
2025-01-18
Loading full text...

Full text loading...

References

  1. VarkiA. Biological roles of oligosaccharides: All of the theories are correct.Glycobiology1993329713010.1093/glycob/3.2.97 8490246
    [Google Scholar]
  2. Weymouth-WilsonA.C. The role of carbohydrates in biologically active natural products.Nat. Prod. Rep.19971429911010.1039/np9971400099 9149408
    [Google Scholar]
  3. WyssD.F. WagnerG. The structural role of sugars in glycoproteins.Curr. Opin. Biotechnol.19967440941610.1016/S0958‑1669(96)80116‑9 8768899
    [Google Scholar]
  4. DyezuoodN.Z. CI.-Colouring matters of the New Zealand dyewood puriri, Vitex littoralis. Part I.J. Chem. Soc. Trans.1898731019103110.1039/CT8987301019
    [Google Scholar]
  5. HeM. MinJ.W. KongW.L. HeX.H. LiJ.X. PengB.W. A review on the pharmacological effects of vitexin and isovitexin.Fitoterapia2016115748510.1016/j.fitote.2016.09.011 27693342
    [Google Scholar]
  6. RohrJ. ThierickeR. Angucycline group antibiotics.Nat. Prod. Rep.19929210313710.1039/np9920900103 1620493
    [Google Scholar]
  7. PalmuK. RosenqvistP. ThapaK. IlinaY. SiitonenV. BaralB. MäkinenJ. BelogurovG. VirtaP. NiemiJ. Metsä-KeteläM. Discovery of the showdomycin gene cluster from Streptomyces showdoensis ATCC 15227 yields insight into the biosynthetic logic of C-nucleoside antibiotics.ACS Chem. Biol.20171261472147710.1021/acschembio.7b00078 28418235
    [Google Scholar]
  8. NishikawaT. KoideY. KajiiS. WadaK. IshikawaM. IsobeM. Stereocontrolled syntheses of α-C-mannosyltryptophan and its analogues.Org. Biomol. Chem.20053468770010.1039/B414905J 15703809
    [Google Scholar]
  9. RyabovA.D. Mechanisms of intramolecular activation of carbon-hydrogen bonds in transition-metal complexes.Chem. Rev.199090240342410.1021/cr00100a004
    [Google Scholar]
  10. Wencel-DelordJ. DrögeT. LiuF. GloriusF. Towards mild metal-catalyzed C–H bond activation.Chem. Soc. Rev.20114094740476110.1039/c1cs15083a 21666903
    [Google Scholar]
  11. ShilovA.E. Shul’pinG.B. Activation of C−H bonds by metal complexes.Chem. Rev.19979782879293210.1021/cr9411886 11851481
    [Google Scholar]
  12. RitlengV. SirlinC. PfefferM. Ru-, Rh-, and Pd-catalyzed C-C bond formation involving C-H activation and addition on unsaturated substrates: Reactions and mechanistic aspects.Chem. Rev.200210251731177010.1021/cr0104330 11996548
    [Google Scholar]
  13. YiD. ZhuF. WalczakM.A. Glycosyl cross-coupling with diaryliodonium salts: access to aryl C -glycosides of biomedical relevance.Org. Lett.20182071936194010.1021/acs.orglett.8b00475 29528236
    [Google Scholar]
  14. BokorÉ. KunS. GoyardD. TóthM. PralyJ.P. VidalS. SomsákL. C -glycopyranosyl arenes and hetarenes: Synthetic methods and bioactivity focused on antidiabetic potential.Chem. Rev.201711731687176410.1021/acs.chemrev.6b00475 28121130
    [Google Scholar]
  15. PałaszA. CieżD. TrzewikB. MiszczakK. TynorG. BazanB. In the search of glycoside-based molecules as antidiabetic agents.Top. Curr. Chem.201937741910.1007/s41061‑019‑0243‑6 31165274
    [Google Scholar]
  16. CavezzaA. BoulleC. GuéguiniatA. PichaudP. TrouilleS. RicardL. Dalko-CsibaM. Synthesis of pro-XylaneTM: A new biologically active C-glycoside in aqueous media.Bioorg. Med. Chem. Lett.200919384584910.1016/j.bmcl.2008.12.037 19135365
    [Google Scholar]
  17. YangG. SchmiegJ. TsujiM. FranckR.W. The C-glycoside analogue of the immunostimulant alpha-galactosylceramide (KRN7000): Synthesis and striking enhancement of activity.Angew. Chem. Int. Ed.200443293818382210.1002/anie.200454215 15258945
    [Google Scholar]
  18. AL-ShuaeebR.A.A. MontoirD. AlamiM. MessaoudiS. Synthesis of (1 → 2)-S-linked saccharides and S-linked glycoconjugates via a palladium-G3-XantPhos precatalyst catalysis.J. Org. Chem.201782136720672810.1021/acs.joc.7b00861 28598170
    [Google Scholar]
  19. YangY. YuB. Recent advances in the chemical synthesis of C -glycosides.Chem. Rev.201711719122811235610.1021/acs.chemrev.7b00234 28915018
    [Google Scholar]
  20. ParidaS.P. DasT. AhemadM.A. PatiT. MohapatraS. NayakS. Recent advances on synthesis of C-glycosides.Carbohydr. Res.202353010885610.1016/j.carres.2023.108856 37315353
    [Google Scholar]
  21. GenschT. JamesM.J. DaltonT. GloriusF. Increasing catalyst efficiency in C−H activation catalysis.Angew. Chem. Int. Ed.20185792296230610.1002/anie.201710377 29205745
    [Google Scholar]
  22. JazzarR. HitceJ. RenaudatA. Sofack-KreutzerJ. BaudoinO. Functionalization of organic molecules by transition-metal-catalyzed C(sp3)-H activation.Chemistry20101692654267210.1002/chem.200902374 20143359
    [Google Scholar]
  23. TiwariB. PandeyR.P. HussainN. TFA-induced conversion of glycals to 2-deoxy-sugars and their utility in synthesizing 2-deoxy-glycosyl esters.New J. Chem.202448219680968410.1039/D4NJ00945B
    [Google Scholar]
  24. MilliganJ.A. PhelanJ.P. BadirS.O. MolanderG.A. Alkyl carbon–carbon bond formation by nickel/photoredox cross‐coupling.Angew. Chem. Int. Ed.201958196152616310.1002/anie.201809431 30291664
    [Google Scholar]
  25. ZhuC. YueH. ChuL. RuepingM. Recent advances in photoredox and nickel dual-catalyzed cascade reactions: Pushing the boundaries of complexity.Chem. Sci.202011164051406410.1039/D0SC00712A 32864080
    [Google Scholar]
  26. JanaR. PathakT.P. SigmanM.S. Advances in transition metal (Pd, Ni, Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners.Chem. Rev.201111131417149210.1021/cr100327p 21319862
    [Google Scholar]
  27. HussainN. TiwariB. SharmaM.K. PandeyR.P. Site-selective lewis acid mediated transformation of pseudo glycals to 1-Deoxy-2-thioaryl/alkyl glycosides.Synthesis2023560694495210.1055/a‑2126‑0815
    [Google Scholar]
  28. PandeyR.P. MaheshwariM. HussainN. Synthesis of chiral azides from C-2 substituted glycals and their transformation to C3-glycoconjugates and α-triazolo-naphthalene polyol.Chem. Commun.202359659900990310.1039/D3CC02423G 37498546
    [Google Scholar]
  29. GreisK. KirschbaumC. LeichnitzS. GewinnerS. SchöllkopfW. von HeldenG. MeijerG. SeebergerP.H. PagelK. Direct experimental characterization of the ferrier glycosyl cation in the gas phase.Org. Lett.202022228916891910.1021/acs.orglett.0c03301 33151077
    [Google Scholar]
  30. BhumaN. LebedelL. YamashitaH. ShimizuY. AbadaZ. ArdáA. DésiréJ. MicheletB. Martin-MingotA. Abou-HassanA. TakumiM. MarrotJ. Jiménez-BarberoJ. NagakiA. BlériotY. ThibaudeauS. Insight into the ferrier rearrangement by combining flash chemistry and superacids.Angew. Chem. Int. Ed.20216042036204110.1002/anie.202010175 33044791
    [Google Scholar]
  31. MaikhuriV.K. KhatriV. KumarA. SinghB. PrasadA.K. Synthesis of sugar diene and its Pd-catalysed transformation into chromanes.J. Org. Chem.202085117068707610.1021/acs.joc.0c00432 32402192
    [Google Scholar]
  32. MaikhuriV.K. KhatriV. KumarA. SinghB. PrasadA.K. Synthesis of sugar diene and its pd-catalyzed transformation into chromanes.J. Org. Chem.202085117068707610.1021/acs.joc.0c00432 32402192
    [Google Scholar]
  33. WangQ. AnS. DengZ. ZhuW. HuangZ. HeG. ChenG. Palladium-catalysed C−H glycosylation for synthesis of C-aryl glycosides.Nat. Catal.20192979380010.1038/s41929‑019‑0324‑5
    [Google Scholar]
  34. SakamotoK. NagaiM. EbeY. YorimitsuH. NishimuraT. Iridium-catalyzed direct hydroarylation of glycals via C–H activation: Ligand-controlled stereoselective synthesis of α- and β- C -glycosyl arenes.ACS Catal.2019921347135210.1021/acscatal.8b04686
    [Google Scholar]
  35. LiuY. WangY. DaiW. HuangW. LiY. LiuH. Palladium‐catalysed C(sp 3)−H glycosylation for the synthesis of C‐alkyl glycoamino acids.Angew. Chem. Int. Ed.20205993491349410.1002/anie.201914184 31901005
    [Google Scholar]
  36. DaiY. TianB. ChenH. ZhangQ. Palladium-catalyzed stereospecific C -glycosylation of glycals with vinylogous acceptors.ACS Catal.2019942909291510.1021/acscatal.9b00336
    [Google Scholar]
  37. LiuY. JiaoY. LuoH. HuangN. LaiM. ZouK. YaoH. Catalyst-controlled regiodivergent synthesis of 1- and 3-thiosugars with high stereoselectivity and chemoselectivity.ACS Catal.20211195287529310.1021/acscatal.1c00225
    [Google Scholar]
  38. ReddyV.V. ReddyB.V.S. Azomethine ylide cycloaddition of 2-C-formyl glycals with α-amino acids for the synthesis of substituted pyrroles.Tetrahedron20219713238910.1016/j.tet.2021.132389
    [Google Scholar]
  39. GhouilemJ. FrancoR. RetailleauP. AlamiM. GandonV. MessaoudiS. Regio- and diastereoselective Pd-catalyzed synthesis of C2-aryl glycosides.Chem. Commun.202056527175717810.1039/D0CC02175J 32463030
    [Google Scholar]
  40. MaheshwariM. PandeyR.P. HussainN. Pd-catalyzed direct functionalization of glycals with cycloalkenones: Application to the synthesis of chiral phenanthrenones.Chem. Commun.202359562763010.1039/D2CC05255E 36533688
    [Google Scholar]
  41. GongL. SunH.B. DengL.F. ZhangX. LiuJ. YangS. NiuD. Ni-catalyzed suzuki–miyaura cross-coupling of α-oxo-vinylsulfones to prepare C -aryl glycals and acyclic vinyl ethers.J. Am. Chem. Soc.2019141197680768610.1021/jacs.9b02312 31025860
    [Google Scholar]
  42. ShiH. YinG. LuX. LiY. Stereoselective synthesis of 2-deoxy-α-C-glycosides from glycals.Chin. Chem. Lett.2024351210967410.1016/j.cclet.2024.109674
    [Google Scholar]
  43. YuanL. FangY. ZhouZ. LvT. SuY. LiuJ. WangX. Highly diastereoselective synthesis of C -glycosides from glycal anomers.Org. Lett.202325234394439910.1021/acs.orglett.3c01605 37272658
    [Google Scholar]
  44. WangY. CaoZ. WangN. LiuM. ZhouH. WangL. HuangN. YaoH. Palladium‐catalyzed stereospecific S ‐glycosylation by allylic substitution.Adv. Synth. Catal.2023365101699170410.1002/adsc.202300129
    [Google Scholar]
  45. LiJ. WangM. JiangX. Diastereoselective synthesis of thioglycosides via Pd-catalyzed allylic rearrangement.Org. Lett.202123239053905710.1021/acs.orglett.1c03302 34783571
    [Google Scholar]
  46. LaiM. OthmanK.A. YaoH. WangQ. FengY. HuangN. LiuM. ZouK. Open-air stereoselective construction of C -aryl glycosides.Org. Lett.20202231144114810.1021/acs.orglett.9b04665 31971808
    [Google Scholar]
  47. LopatickiS. YangA.S.P. JohnA. ScottN.E. LingfordJ.P. O’NeillM.T. EricksonS.M. McKenzieN.C. JennisonC. WhiteheadL.W. DouglasD.N. KnetemanN.M. Goddard-BorgerE.D. BoddeyJ.A. Protein O-fucosylation in Plasmodium falciparum ensures efficient infection of mosquito and vertebrate hosts.Nat. Commun.20178156110.1038/s41467‑017‑00571‑y 28916755
    [Google Scholar]
  48. ChenM.S. NarayanasamyP. LabenzN.A. WhiteM.C. Serial ligand catalysis: A highly selective allylic C-H oxidation.J. Am. Chem. Soc.2005127196970697110.1021/ja0500198 15884938
    [Google Scholar]
  49. ChenM.S. WhiteM.C. A sulfoxide-promoted, catalytic method for the regioselective synthesis of allylic acetates from monosubstituted olefins via C-H oxidation.J. Am. Chem. Soc.200412651346134710.1021/ja039107n 14759185
    [Google Scholar]
  50. XiangS. CaiS. ZengJ. LiuX.W. Regio- and stereoselective synthesis of 2-deoxy-C-aryl glycosides via palladium catalyzed decarboxylative reactions.Org. Lett.201113174608461110.1021/ol201820m 21815638
    [Google Scholar]
  51. JiaoY. ShiX. YuS. Photoredox-catalyzed C-heteroaryl glycosylation of biphenyl isocyanides with glycosyl bromides.Chem. Commun.20235989133361333910.1039/D3CC03812B 37869887
    [Google Scholar]
  52. GhouilemJ. BazziS. GrimblatN. RetailleauP. GandonV. MessaoudiS. Transient imine as a directing group for the Pd-catalyzed anomeric C(sp 3)–H arylation of 3-aminosugars.Chem. Commun.202359172497250010.1039/D3CC00046J 36752765
    [Google Scholar]
  53. OffenbacherA.R. HolmanT.R. Fatty acid allosteric regulation of C-H activation in plant and animal lipoxygenases.Molecules20202515337410.3390/molecules25153374 32722330
    [Google Scholar]
  54. MiuraT. YoritateM. HiraiG. Photoredox-catalyzed protecting-group-free C -glycosylation with glycosyl sulfinate via the Giese reaction.Chem. Commun.202359558564856710.1039/D3CC02361C 37338267
    [Google Scholar]
  55. FukuzumiS. KotaniH. OhkuboK. OgoS. TkachenkoN.V. LemmetyinenH. Electron-transfer state of 9-mesityl-10-methylacridinium ion with a much longer lifetime and higher energy than that of the natural photosynthetic reaction center.J. Am. Chem. Soc.200412661600160110.1021/ja038656q 14871068
    [Google Scholar]
  56. RomeroN.A. NicewiczD.A. Organic photoredox catalysis.Chem. Rev.201611617100751016610.1021/acs.chemrev.6b00057 27285582
    [Google Scholar]
  57. SharmaM.K. TiwariB. HussainN. Pd-catalyzed stereoselective synthesis of chromone C -glycosides.Chem. Commun.202460364838484110.1039/D4CC00486H 38619439
    [Google Scholar]
  58. LiuD. ZhangY. NiuD. Preparing glycosyl benzothiazoles from 2-isocyanoaryl thioethers and glycosyl radicals under thermal conditions.Chem. Commun.202460425498550110.1039/D4CC00648H 38696183
    [Google Scholar]
  59. BonfieldH.E. EdgeC.M. ReidM. KennedyA.R. PascoeD.D. LindsayD.M. ValetteD. Synthesis of 2,6- trans -tetrahydropyrans using a palladium-catalyzed oxidative heck redox-relay strategy.Org. Lett.202426142857286110.1021/acs.orglett.3c03866 38198695
    [Google Scholar]
  60. ColobertF. MazeryR.D. SolladiéG. CarreñoM.C. First enantioselective total synthesis of.(-)-Centrolobine. Org. Lett.20024101723172510.1021/ol025778z 12000283
    [Google Scholar]
  61. CarreñoM.C. Des MazeryR. UrbanoA. ColobertF. SolladiéG. Reductive cyclizations of hydroxysulfinyl ketones: Enantioselective access to tetrahydropyran and tetrahydrofuran derivatives.J. Org. Chem.200368207779778710.1021/jo034817x 14510555
    [Google Scholar]
  62. NagarjunaB. ThirupathiB. Venkata RaoC. MohapatraD.K. Chemoenzymatic total synthesis of four stereoisomers of centrolobine.Tetrahedron Lett.201556344916491810.1016/j.tetlet.2015.06.084
    [Google Scholar]
  63. DingW.Y. LiuH.H. ChengJ.K. YaoH. XiangS.H. TanB. Palladium catalyzed decarboxylative β- C -glycosylation of glycals with oxazol-5-(4 H)-ones as acceptors.Org. Chem. Front.20229226149615510.1039/D2QO01308H
    [Google Scholar]
  64. McAllisterG.D. PatersonD.E. TaylorR.J.K. A simplified Ramberg-Bäcklund approach to novel C-glycosides and C-linked disaccharides.Angew. Chem. Int. Ed.200342121387139110.1002/anie.200390356 12671976
    [Google Scholar]
  65. LiuL. PostemaM.H.D. A unified approach to differentially linked β-C-disaccharides by ring-closing metathesis.J. Am. Chem. Soc.2001123358602860310.1021/ja010641+ 11525671
    [Google Scholar]
  66. GemmellN. MeoP. OsbornH.M.I. Stereoselective entry to β-linked C-disaccharides using a carbon-ferrier reaction.Org. Lett.20035101649165210.1021/ol030023t 12735743
    [Google Scholar]
  67. de RaadtA. StützA.E. A one-step C-linked disaccharide synthesis from carbohydrate allylsilanes and tri-O-acetyl-d-glucal.Carbohydr. Res.199122010111510.1016/0008‑6215(91)80009‑C 1811852
    [Google Scholar]
  68. GulzarT. LiuY.H. XiaY.N. LiuW. LiuP. ZhuD. XuP. YuB. Synthesis of C -oligosaccharides via Ni-catalyzed reductive hydroglycosylation.Org. Lett.20242681718172210.1021/acs.orglett.4c00289 38380896
    [Google Scholar]
  69. HuL.Y. ZhangS.Y. ZhuL. LiY. LuoK. WuL. “Boomerang” strategy in carbohydrate chemistry: Diastereoselective synthesis of C -glycosylated benzothiazoles from ortho -isocyanophenyl thioglycosides.Org. Lett.202426121522010.1021/acs.orglett.3c03817 38117978
    [Google Scholar]
  70. LianG. ZhangX. YuB. Thioglycosides in carbohydrate research.Carbohydr. Res.2015403132210.1016/j.carres.2014.06.009 25015586
    [Google Scholar]
  71. XiaoX. ZhaoY. ShuP. ZhaoX. LiuY. SunJ. ZhangQ. ZengJ. WanQ. Remote activation of disarmed thioglycosides in latent-active glycosylation via interrupted pummerer reaction.J. Am. Chem. Soc.201613840134021340710.1021/jacs.6b08305 27617339
    [Google Scholar]
  72. JiaoY. ShiX. JuL. YuS. Photoredox-catalyzed synthesis of C -benzoselenazolyl/benzothiazolyl glycosides from 2-isocyanoaryl selenoethers/thioethers and glycosyl bromides.Org. Lett.202426139039510.1021/acs.orglett.3c04059 38165656
    [Google Scholar]
  73. LuoK. YangW.C. WeiK. LiuY. WangJ.K. WuL. Di- tert -butyl peroxide-mediated radical C(sp 2/sp 3)–S bond cleavage and group-transfer cyclization.Org. Lett.201921197851785610.1021/acs.orglett.9b02837 31524412
    [Google Scholar]
  74. XieR. XuJ. ShiH. XiaoC. WangN. HuangN. YaoH. YaoH. Stereocontrolled synthesis of aryl C -nucleosides under ambient conditions.Org. Lett.202426245162516610.1021/acs.orglett.4c01664 38832704
    [Google Scholar]
/content/journals/coc/10.2174/0113852728322447240718054734
Loading
/content/journals/coc/10.2174/0113852728322447240718054734
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test