Skip to content
2000
Volume 29, Issue 5
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Perlin’s aldehyde is an α,β-unsaturated carbonyl compound with two well-defined chiral centres and a free hydroxy group. Since its discovery and synthesis by A. S. Perlin in 1975, it has been used as a flexible chiral synthon for synthesising natural products, their scaffolds and biologically significant compounds. Perlin’s aldehydes serve as useful starting materials in diversity-oriented synthesis (DOS) and chiral building blocks in organic synthesis. Currently, synthesising frameworks based on carbohydrates is at the forefront of organic synthesis. Inspired by the reactivity of Perlin’s aldehyde, various research groups worldwide used this molecule as a chiral synthon and published a number of research papers and a review article covering literature until 2012. This review covers recent advances in the synthesis of natural products, their scaffolds and other hetrocylic molecules, starting from perlin aldehyde, covering the literature from 2013 to till date.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728320618240711104927
2024-07-30
2025-01-18
Loading full text...

Full text loading...

References

  1. TolstikovA.G. KhakhalinaN.V. SpirikhinL.V. Benzyl esters of D- and L-Arabinals as chiral synthons in organic synthesis.Synthesis19881988322122210.1055/s‑1988‑27518
    [Google Scholar]
  2. McLaughlinM.J. HsungR.P. Total syntheses of pyranoquinoline alkaloids: Simulenoline, huajiaosimuline, and (+/-)-7-demethoxyzanthodioline.J. Org. Chem.20016631049105310.1021/jo001368h 11430073
    [Google Scholar]
  3. LeeY.R. KweonH.I. KohW.S. MinK.R. KimY. LeeS.H. One-pot preparation of pyranoquinolinones by ytterbium(III) trifluoromethanesulfonate-catalyzed reactions: Efficient synthesis of flindersine, N-methylflindersine, and zanthosimuline natural products.Synthesis20012001121851185510.1055/s‑2001‑17516
    [Google Scholar]
  4. ColemanM.A. BurchillL. SumbyC.J. GeorgeJ.H. Biomimetic synthesis enables the structure revision of furoerioaustralasine.Org. Lett.201921218776877810.1021/acs.orglett.9b03392 31603336
    [Google Scholar]
  5. SagarR. ParkJ. KohM. ParkS.B. Diastereoselective synthesis of polycyclic acetal-fused pyrano[3,2-c]pyran-5(2H)-one derivatives.J. Org. Chem.20097452171217410.1021/jo8023889 19193119
    [Google Scholar]
  6. SagarR. ParkS.B. Facile and efficient synthesis of carbohybrids as stereodivergent druglike small molecules.J. Org. Chem.20087383270327310.1021/jo800190v 18351781
    [Google Scholar]
  7. SagarR. KimM.J. ParkS.B. An improved synthesis of pyrimidine- and pyrazole-based acyclo-C-nucleosides as carbohybrids.Tetrahedron Lett.200849345080508310.1016/j.tetlet.2008.06.032
    [Google Scholar]
  8. GonzalezF. LesageS. PerlinA.S. Catalysis by mercuric ion of reactions of glycals with water.Carbohydr. Res.197542226727410.1016/S0008‑6215(00)84269‑X
    [Google Scholar]
  9. TamS.Y.K. Fraser-ReidB. The formation of α, β-unsaturated aldehydes in the hydrolysis of acetylated glycals.Carbohydr. Res.1975451294310.1016/S0008‑6215(00)85863‑2
    [Google Scholar]
  10. ReddyL.V.R. KumarV. SagarR. ShawA.K. Glycal-derived δ-hydroxy α, β-unsaturated aldehydes (Perlin aldehydes): Versatile building blocks in organic synthesis.Chem. Rev.201311353605363110.1021/cr200016m 23419115
    [Google Scholar]
  11. TolstikovA.G. TolstikovG.A. Unsaturated sugars in enantiospecific synthesis of natural low-molecular bioregulators and their structural analogues.Bioorg. Khim.2007331727 17375656
    [Google Scholar]
  12. YadavY. TyagiR. YadavK. TiwariG. SagarR. Reinvestigation of SnCl4 catalyzed efficient synthesis of 2,3-unsaturated glycopyranosides.Carbohydr. Res.202353410898910.1016/j.carres.2023.108989 38016255
    [Google Scholar]
  13. TolstikovA.G. KhakhalinaN.V. OdinokovV.N. KhalilovV.M. SpirikhinL.V. TolstikovG.A. Glycals in stereospecific synthesis. I. Synthesis of (+)-cis-disparlure, the sex pheromone of the gypsy moth.Zh. Org. Khim.198925296299
    [Google Scholar]
  14. TolstikovA.G. ProkopenkoO.F. KhalilovL.M. OdinokovV.N. TolstikovG.A. Glycals in stereospecific synthesis. V. Chiral synthons for 13(R), 15(R)-lipoxine B and (-)-cis-disparlure from 6-substituted 6-desoxy-D-galactose.Zh. Org. Khim199127798802
    [Google Scholar]
  15. TolstikovA.G. KhakhalinaN.V. TolstikovG.A. SpirikhinL.V. KhalilovV.M. PanasenkoA.A. OdinokovV.N. Enantiospecific synthesis of (5R,6R)-6-acetoxy-5-hexadecanolide - a stereoisomer of oviposition attractant pheromone of the mosquito Culex pipiens fatigans.Bioorg. Khim.199218737739
    [Google Scholar]
  16. TolstikovA.G. KhakhalinaN.V. SavateevaE.E. SpirikhinL.V. OdinokovV.N. TolstikovG.A. Glycals in stereospecific synthesis. II. Di-O-benzyl-L-arabinal and di-O-benzoyl-L-arabinal in the synthesis of saturated and unsaturated terminal epoxides.Zh. Org. Khim.198925787791
    [Google Scholar]
  17. Rama RaoA.V. PurandareA.V. ReddyE.R. GurjarM.K. Synthesis of R(+)-α-lipoic acid.Synth. Commun.19871791095110210.1080/00397918708078791
    [Google Scholar]
  18. TolstikovA.G. KhakhalinaN.V. SavateevaE.E. SpirikhinL.V. KhalilovL.M. OdinokovV.N. TolstikovG.A. Enantiospecific synthesis of methyl esters of R-(+)-x-lipoic acid and its optical antipode.Bioorg. Khim.19901616701674
    [Google Scholar]
  19. HirataN. YamagiwaY. KamikawaT. A convenient stereoselective synthesis of D-erythro-C18-sphingosine from galactal.J. Chem. Soc.1991922792280
    [Google Scholar]
  20. HerdeisC. KüpperP. PléS. An expeditious stereoselective synthesis of natural (-)-Cassine via cascade HWE [3 + 2]-cycloaddition process.Org. Biomol. Chem.20064352452910.1039/B516888K 16446811
    [Google Scholar]
  21. RajanR. WallimannK. VasellaA. PaceD. GenazzaniA.A. CanonicoP.L. CondorelliF. Synthesis of 7-oxasphingosine and -ceramide analogues and their evaluation in a model for apoptosis.Chem. Biodivers.20041111785179910.1002/cbdv.200490134 17191816
    [Google Scholar]
  22. KokatlaH.P. SagarR. VankarY.D. Stereoselective synthesis of safingol and its natural stereoisomer from d-glycals.Tetrahedron Lett.200849324728473010.1016/j.tetlet.2008.05.112
    [Google Scholar]
  23. WalczakK. PedersenE.B. Synthesis of 3-(1,2,4-Triazol-1-yl)-2,3-dideoxy-D- arabino -hexopyranosyl and 3-(1,2,4-Triazol-1-yl)-2,3-dideoxy-D- ribo -hexofuranosyl uracils via an α, β-unsaturated aldehydohexose.Synthesis199119911195996210.1055/s‑1991‑26616
    [Google Scholar]
  24. WengelJ. PedersenE.B. VestergaardB.F. Synthesis of 2′,3′-Dideoxy-3′-piperidino- and 2′, 3′-Dideoxy-3′-pyrrolidino-D- ribo -hexofuranosyl Nucleosides from Tri- O -acetyl-D-glucal.Synthesis19921992331932210.1055/s‑1992‑26100
    [Google Scholar]
  25. TurnerC.I. WilliamsonR.M. TurnerP. SherburnM.S. The domino intramolecular Diels–Alder approach to 16-oxasteroids.Chem. Commun. (Camb.)200313131610161110.1039/B303362G
    [Google Scholar]
  26. GalánE.R. ChamizoM.J. SerranoJ.A. Diels-Alder reactions with an α, β-unsaturated aldehydo-sugar. A route to 6-oxabicyclo[3.2.1]octanes.Tetrahedron Lett.199334111811181410.1016/S0040‑4039(00)60786‑4
    [Google Scholar]
  27. SagarR. SinghP. KumarR. MaulikP.R. ShawA.K. Diastereoselective annulation of 4-hydroxypyran-2H-ones with enantiopure 2,3-dideoxy-α, β-unsaturated sugar aldehydes derived from respective glycals.Carbohydr. Res.200534071287130010.1016/j.carres.2005.02.018 15854598
    [Google Scholar]
  28. SydorenkoN. HsungR.P. VeraE.L. Torquoselective 6π-electron electrocyclic ring closure of 1-azatrienes containing acyclic chirality at the C-terminus.Org. Lett.20068122611261410.1021/ol060932t 16737326
    [Google Scholar]
  29. GhoshS.K. BuchananG.S. LongQ.A. WeiY. Al-RashidZ.F. SklenickaH.M. HsungR.P. Aza- and carbo-[3+3] annulations of exo-cyclic vinylogous amides and urethanes. Synthesis of tetrahydroindolizidines and an unexpected formation of hexahydroquinolines.Tetrahedron200864588389310.1016/j.tet.2007.09.089 19180170
    [Google Scholar]
  30. ArecesP. CarrascoE. MonterdeM. LightM.E. PlumetJ. Synthesis of optically pure 4-hydroxymethyl-3-phenoxy-2-azetidinone from D-glucal.J. Heterocycles20077385786210.3987/COM‑07‑S(U)18
    [Google Scholar]
  31. PathakR. ShawA.K. BhaduriA.P. Syntheses of Tri- and Tetrahydroxylated 1-Amino-Heptanes.Synth. Commun.200030193595360510.1080/00397910008087276
    [Google Scholar]
  32. PathakR. ShawA.K. BhaduriA.P. ChandrasekharK.V.G. SrivastavaA. SrivastavaK.K. ChaturvediV. SrivastavaR. SrivastavaB.S. AroraS. SinhaS. Higher acyclic nitrogen containing deoxy sugar derivatives: A new lead in the generation of antimycobacterial chemotherapeutics.Bioorg. Med. Chem.20021061695170210.1016/S0968‑0896(02)00045‑7 11937328
    [Google Scholar]
  33. SagarR. PathakR. ShawA.K. Reinvestigation of the mercuration–demercuration reaction on alkylated glycals: An improved method for the preparation of 2,3-dideoxy-α, β-unsaturated carbohydrate enals.Carbohydr. Res.2004339112031203510.1016/j.carres.2004.05.027 15261597
    [Google Scholar]
  34. SaquibM. SagarR. ShawA.K. An efficient synthesis of 2,3-dideoxy-α, β-unsaturated carbohydrate enals by mixed Lewis acid (HfCl4 and ZnI2) catalyzed hydration of glycals.Carbohydr. Res.200634181052105610.1016/j.carres.2006.02.031 16564512
    [Google Scholar]
  35. NagarajP. GanesanM. RameshN.G. InCl3–CH3CN–H2O: an efficient catalyst-solvent combination for the synthesis of Perlin aldehydes and related compounds. Application in the synthesis of unnatural l-azasugars.Tetrahedron201167476977610.1016/j.tet.2010.11.050
    [Google Scholar]
  36. SinghK. BeheraS.S. TyagiR. TiwariG. SagarR. Metal free synthesis of 2,3-dideoxy-α, β-unsaturated carbohydrate enals (Perlin aldehydes).Carbohydr. Res.202353110889010.1016/j.carres.2023.108890 37406515
    [Google Scholar]
  37. HalderS. MoktanS. SreeramV. KancharlaP.K. Synthesis of chiral functional polyhydroxylated arenes via Mukaiyama aldol reaction from Perlin aldehydes.Carbohydr. Res.202453510900410.1016/j.carres.2023.109004 38091696
    [Google Scholar]
  38. HalderS. AddankiR.B. KancharlaP.K. Three-step synthesis of protected L-altrose from D-galactose derived Perlin aldehyde.J. Indian Chem. Soc.202097243250
    [Google Scholar]
  39. VankarY. RajasekaranP. MallikharjunaraoY. Synthesis of 1C-Aryl/Alkyl 2C-branched sugar-fused isochroman derivatives by sequential prins and friedel–crafts cyclizations on a perlin aldehyde derived substrate.Synlett201728111346135210.1055/s‑0036‑1588156
    [Google Scholar]
  40. MadhubabuT. YousufS.K. KusunuruA.K. MukherjeeD. Transformation of glycals into α, β,γ,δ‐conjugated chirons under metal‐free conditions.Eur. J. Org. Chem.20142014337333733810.1002/ejoc.201403041
    [Google Scholar]
  41. DasP. KundooruS. ShawA.K. ‘Chiron’ approach to stereoselective synthesis of sphinganine and unnatural safingol, an antineoplastic and antipsoriatic agent.RSC Advances2016618145051451110.1039/C5RA27342K
    [Google Scholar]
  42. KundooruS. DasP. MeenaS. KumarV. SiddiqiM.I. DattaD. ShawA.K. Substrate and stereocontrolled iodocycloetherification of highly functionalized enantiomerically pure allylic alcohols: Application to synthesis of cytotoxic 2-epi jaspine B and its biological evaluation.Org. Biomol. Chem.201513308241825010.1039/C5OB01123J 26133669
    [Google Scholar]
  43. DubbuS. BardhanA. ChennaiahA. VankarY.D. A cascade of prins reaction and pinacol‐type rearrangement: Access to 2,3‐Dideoxy‐3C‐Formyl β‐C‐Aryl/Alkyl Furanosides and 2‐Deoxy‐2C‐Branched β‐C‐Aryl Furanoside.Eur. J. Org. Chem.20182018476800680810.1002/ejoc.201801318
    [Google Scholar]
  44. WilliamR. WangS. DingF. ArvianaE.N. LiuX.W. Interrupted imino-Nazarov cyclization of 1-aminopentadienyl cation and related cascade process.Angew. Chem. Int. Ed.20145340107421074610.1002/anie.201405251 25112885
    [Google Scholar]
  45. AlblerC. HollausR. KähligH. SchmidW. Indium-mediated allylation in carbohydrate synthesis: A short and efficient approach towards higher 2-acetamido-2-deoxy sugars.Beilstein J. Org. Chem.2014102230223410.3762/bjoc.10.231 25246982
    [Google Scholar]
  46. MalK. SharmaA. DasI. Gold(III) chloride catalyzed synthesis of chiral substituted 3-formyl furans from carbohydrates: application in the synthesis of 1,5-dicarbonyl derivatives and furo[3,2-c]pyridine.Chemistry20142037119321194510.1002/chem.201402286 25077819
    [Google Scholar]
  47. KinfeH.H. MebrahtuF.M. MakoloF.L. MoshapoP.T. MananaM.M. Stereoselective synthesis of thiochromenes via intramolecular tandem thio-Michael addition of in situ generated α, β-unsaturated aldehydes.J. Org. Chem.20147973111311810.1021/jo5002164 24606120
    [Google Scholar]
  48. SinghB.K. KumarS. AroraA. KumarS. KumariP. SinghS.K. Diastereoselective synthesis of carbohydrate conjugates: Pyrano[3,2-c]quinolones.Synthesis20245671157116610.1055/s‑0042‑1751505
    [Google Scholar]
  49. AroraI. KashyapV.K. SinghA.K. DasguptaA. KumarB. ShawA.K. Design, synthesis and biological evaluation of bicyclic iminosugar hybrids: Conformational constraint as an effective tool for tailoring the selectivity of α-glucosidase inhibitors.Org. Biomol. Chem.201412356855686810.1039/C4OB00486H 25050482
    [Google Scholar]
/content/journals/coc/10.2174/0113852728320618240711104927
Loading
/content/journals/coc/10.2174/0113852728320618240711104927
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test