Skip to content
2000
Volume 29, Issue 5
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

1-Thiosugars and their glycosides play crucial roles in carbohydrate chemistry, primarily due to their stability and potential for mimicking -glycosides. The synthetic methodologies for thioglycosides pose ongoing challenges. In recent years, researchers have shown a growing interest in exploring the applications of thiosugars in various fields, including the development of natural product derivatives, oligo- and polysaccharide mimics, metallodrugs, and dendrimers. Numerous approaches and protocols have been devised for the synthesis of thiosugars. This review aims to comprehensively cover the efforts towards preparing thiosugars and their application as synthetic precursors.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728314452240524112438
2024-06-14
2025-01-18
Loading full text...

Full text loading...

References

  1. VarkiA. CummingsR.D. EskoJ.D. StanleyP. HartG.W. AebiM. MohnenD. KinoshitaT. PackerN.H. PrestegardJ.H. SchnaarR.L. SeebergerP.H. Eds.; Essentials of Glycobiology4th edCold Spring Harbor, NYCold Sprin Harbor Laboratory Press2022
    [Google Scholar]
  2. ErnstB. HartG.W. SinayP. Eds.; Carbohydrates in Chemistry and Biology.Wiley Blackwell200010.1002/9783527618255
    [Google Scholar]
  3. XieJ. BogliottiN. Synthesis and applications of carbohydrate-derived macrocyclic compounds.Chem. Rev.2014114157678773910.1021/cr400035j 25007213
    [Google Scholar]
  4. MelvilleL. WolfromR.S.T. Emile Bourquelot.Adv. Carbohydr. Chem.1963181810.1016/S0096‑5332(08)60238‑6 14272316
    [Google Scholar]
  5. CoultateT. Food: The Chemistry of its Components.RSC201562010.1039/9781839169168
    [Google Scholar]
  6. BennettC.S. NguyenT-A.V. Carbohydrate Synthesis.ACS202310.1021/acsinfocus.7e7027
    [Google Scholar]
  7. Brito-AriasM. Synthesis and Characterization of Glycosides.Springer202222928410.1007/978‑3‑030‑97854‑9_3
    [Google Scholar]
  8. AtiJ. LafiteP. DaniellouR. Enzymatic synthesis of glycosides: from natural O - and N -glycosides to rare C - and S -glycosides.Beilstein J. Org. Chem.2017131857186510.3762/bjoc.13.180 29062404
    [Google Scholar]
  9. ShivatareS.S. WongC.H. Synthetic carbohydrate chemistry and translational medicine.J. Org. Chem.20208524157801580010.1021/acs.joc.0c01834 33125238
    [Google Scholar]
  10. HortonD. HutsonD.H. Developments in the chemistry of thio sugars.Adv. Carbohydr. Chem.19631812319910.1016/S0096‑5332(08)60242‑8
    [Google Scholar]
  11. KaltnerH. SzabóT. FehérK. AndréS. BallaS. ManningJ.C. SzilágyiL. GabiusH.J. Bivalent O -glycoside mimetics with S/disulfide/Se substitutions and aromatic core: Synthesis, molecular modeling and inhibitory activity on biomedically relevant lectins in assays of increasing physiological relevance.Bioorg. Med. Chem.201725123158317010.1016/j.bmc.2017.04.011 28483453
    [Google Scholar]
  12. LianG. ZhangX. YuB. Thioglycosides in carbohydrate research.Carbohydr. Res.2015403132210.1016/j.carres.2014.06.009 25015586
    [Google Scholar]
  13. NovakovaM. DasA. AlexC. DemchenkoA.V. Synthesis and glycosidation of building blocks of D-altrosamine.Front Chem.20221094577910.3389/fchem.2022.945779 36226114
    [Google Scholar]
  14. (a LiuY. JiaoY. LuoH. HuangN. LaiM. ZouK. YaoH. Catalyst-controlled regiodivergent synthesis of 1- and 3-thiosugars with high stereoselectivity and chemoselectivity.ACS Catal.20211195287529310.1021/acscatal.1c00225
    [Google Scholar]
  15. (b XiongT. XieR. HuangC. LanX. HuangN. YaoH. Recent advances in the synthesis of thiosugars using glycal donors.J. Carbohydr. Chem.2021407-940143910.1080/07328303.2022.2027433
    [Google Scholar]
  16. HortonD. WolfromM.L. ThiosugarsI. Synthesis of derivatives of 2-amino-2-deoxy-1-thio-D-glucose.J. Org. Chem.19622751794180010.1021/jo01052a075
    [Google Scholar]
  17. LiuZ. LiuD. ZhuD. YuB. Stereoselective synthesis of β-glycosyl esters via 1-hydroxybenzotriazole mediated acylation of glycosyl hemiacetals.Org. Lett.202325285372537710.1021/acs.orglett.3c01750 37436734
    [Google Scholar]
  18. CicchilloR.M. NorrisP. A convenient synthesis of glycosyl chlorides from sugar hemiacetals using triphosgene as the chlorine source.Carbohydr. Res.2000328343143410.1016/S0008‑6215(00)00115‑4 11072851
    [Google Scholar]
  19. PozsgayV. JenningsH.J. Synthesis of glycosyl esters and glycosyl hemiacetals from methylthioglycosides.J. Carbohydr. Chem.199092-333334310.1080/07328309008543836
    [Google Scholar]
  20. BorbásA. Photoinitiated thiol-ene reactions of enoses: A powerful tool for stereoselective synthesis of glycomimetics with challenging glycosidic linkages.Chemistry202026286090610110.1002/chem.201905408 31910299
    [Google Scholar]
  21. LázárL. BorbásA. SomsákL. Synthesis of thiomaltooligosaccharides by a thio-click approach.Carbohydr. Res.201847081210.1016/j.carres.2018.09.005 30286336
    [Google Scholar]
  22. BurykinaJ.V. KobelevA.D. ShlapakovN.S. KostyukovichA.Y. FakhrutdinovA.N. KönigB. AnanikovV.P. Intermolecular photocatalytic chemo‐, stereo-and regioselective thiol-yne-ene coupling reaction.Angew. Chem. Int. Ed.20226117e20211688810.1002/anie.202116888 35147284
    [Google Scholar]
  23. MerillonJ-M. RamawatK.G. Glucosinolates.NY, USASpringer New York201710.1007/978‑3‑319‑25462‑3
    [Google Scholar]
  24. BuskasT. IngaleS. BoonsG.J. Glycopeptides as versatile tools for glycobiology.Glycobiology2006168113R136R10.1093/glycob/cwj125 16675547
    [Google Scholar]
  25. KunzH. Synthesis of glycopeptides, partial structures of biological recognition components.Angew. Chem. Int. Ed. Engl.198726429430810.1002/anie.198702941
    [Google Scholar]
  26. TurnbullW.B. StoddartJ.F. Design and synthesis of glycodendrimers.J. Biotechnol.2002903-4231255 12071227
    [Google Scholar]
  27. PettenuzzoA. PigotR. RonconiL. Metal-based glycoconjugates and their potential in targeted anticancer chemotherapy.Metallodrugs201513661
    [Google Scholar]
  28. SugiyamaS. DiakurJ.M. A convenient preparation of glycosyl chlorides from aryl/alkyl thioglycosides.Org. Lett.20002172713271510.1021/ol0063050 10990435
    [Google Scholar]
  29. JensenD.L. TrinderupH.H. SkovboF. JensenH.H. Solvent free, catalytic and diastereoselective preparation of aryl and alkyl thioglycosides as key components for oligosaccharide synthesis.Org. Biomol. Chem.202220244915492510.1039/D2OB00939K 35678647
    [Google Scholar]
  30. FarkasI. SzabóI.F. BognárR. AnderleD. Synthesis of 1,2-transglycopyranosyl chlorides using the dichloromethyl methyl ether boron trifluoride etherate reagent.Carbohydr. Res.197648113613810.1016/S0008‑6215(00)83522‑3
    [Google Scholar]
  31. Blanc-MuesserM. DefayeJ. DriguezH. Synthèses stéréosélectives de 1-thioglycosides.Carbohydr. Res.197867230532810.1016/S0008‑6215(00)84121‑X
    [Google Scholar]
  32. XueW. ChengX. FanJ. DiaoH. WangC. DongL. LuoY. ChenJ. ZhangJ. A novel stereoselective synthesis of 1,2-trans-thioaldoses.Tetrahedron Lett.200748356092609510.1016/j.tetlet.2007.07.003
    [Google Scholar]
  33. (a TejimaS. MakiT. AkagiM. Synthesis of 1-thio-β-D-ribopyranose and 1-thio-β-D-mannopyranose derivatives.Chem. Pharm. Bull.196412552853210.1248/cpb.12.528 14192412
    [Google Scholar]
  34. (b BielskiR. MencerD. New syntheses of thiosaccharides utilizing substitution reactions.Carbohydr. Res.202353210891510.1016/j.carres.2023.108915 37597327
    [Google Scholar]
  35. GuoJ.R. HuangH.Y. YanY.L. LiangC.F. Selective S-deacetylation of functionalized thioacetates catalyzed by Dy(OTf)3.Asian J. Org. Chem.20187117918810.1002/ajoc.201700481
    [Google Scholar]
  36. TojinoM. HiroseY. MizunoM. Convenient synthesis of glycosyl bromide from 1-O-acetyl sugars by photo-irradiative phase-vanishing reaction of molecular bromine.Tetrahedron Lett.201354527124712610.1016/j.tetlet.2013.10.088
    [Google Scholar]
  37. DuretteP.L. ShenT.Y. Synthesis of 1-thio-β-cellobiosides.Carbohydr. Res.197867248449010.1016/S0008‑6215(00)84136‑1
    [Google Scholar]
  38. ČernýM. VrkočJ. StaněkJ. Uber die darstellung von acylierten derivaten der glucopyranosylmercaptane.Collect. Czech. Chem. Commun.1959241646910.1135/cccc19590064
    [Google Scholar]
  39. BernardesG.J.L. GamblinD.P. DavisB.G. The direct formation of glycosyl thiols from reducing sugars allows one-pot protein glycoconjugation.Angew. Chem. Int. Ed.200645244007401110.1002/anie.200600685 16673441
    [Google Scholar]
  40. CaiY. RobertsB.P. TocherD.A. Carbohydrate-derived thiols as protic polarity-reversal catalysts for enantioselective radical-chain reactions.J. Chem. Soc., Perkin Trans. 12002111376138610.1039/b202022j
    [Google Scholar]
  41. ShuP. ZengJ. TaoJ. ZhaoY. YaoG. WanQ. Selective S-deacetylation inspired by native chemical ligation: practical syntheses of glycosyl thiols and drug mercapto-analogues.Green Chem.20151742545255110.1039/C5GC00084J
    [Google Scholar]
  42. DefayeJ. DriguezH. PoncetS. ChambertR. Petit-GlatronM.F. Synthesis of 1-thiosucrose and anomers, and the behavior of levansucrase and invertase with this substrate analog.Carbohydr. Res.198413029931510.1016/0008‑6215(84)85287‑8
    [Google Scholar]
  43. DefayeJ. GuillotJ.M. A convenient synthesis for anomeric 2-thioglucobioses, 2-thiokojibiose and 2-thiosophorose.Carbohydr. Res.199425318519410.1016/0008‑6215(94)80064‑2 8156547
    [Google Scholar]
  44. FengG.J. WangS.S. LvJ. LuoT. WuY. DongH. Improved synthesis of 1-glycosyl thioacetates and Its application in the synthesis of thioglucoside gliflozin analogues.Eur. J. Org. Chem.20212021212940294910.1002/ejoc.202100357
    [Google Scholar]
  45. AkagiM. TejimaS. HagaM. Biochemical studies on thiosugars. IV. synthesis of 1,6-anhydro-1,6-sulfide-β-D-glucopyranose(thiolevoglucosan) and 6-deoxy-6-mercapto-1-thio-D-glucose.Chem. Pharm. Bull.1963111586110.1248/cpb.11.58 14011481
    [Google Scholar]
  46. DefayeJ. DriguezH. OhleyerE. OrgeretC. VietC. Stereoselective syntheses of 1,2-trans-related 1-thioglycoses.Carbohydr. Res.198413031732110.1016/0008‑6215(84)85288‑X
    [Google Scholar]
  47. Blanc-MuesserM. DefayeJ. DriguezH. Stereoselective thioglycoside syntheses. Part 4. A new approach to 1,4-linked 1-thio-disaccharides and a synthesis of thiomaltose.J. Chem. Soc., Perkin Trans. 11982151810.1039/p19820000015
    [Google Scholar]
  48. YuH.N. LingC.C. BundleD.R. Efficient stereoselective synthesis of 1-thio-β-mannopyranosides.J. Chem. Soc., Perkin Trans. 12001883283710.1039/b009626l
    [Google Scholar]
  49. AkagiM. TejimaS. HagaM. Biochemical studies on thiosugars. I. Synthesis of 1-thio-D-glucuronic acid.Chem. Pharm. Bull.19608121114111610.1248/cpb.8.1114
    [Google Scholar]
  50. AkagiM. TejimaS. HagaM. Biochemical studies on thiosugars. II. Synthesis of N-acetyl-1-thio-D-glucosamine and its derivatives.Chem. Pharm. Bull.19619536036210.1248/cpb.9.360
    [Google Scholar]
  51. SakataM. HagaM. TejimaS. AkagiM. ThiosugarsV.I. Reaction products of potassium alkyl- and benzylxanthates with acetylated glucosyl halides.Chem. Pharm. Bull.196412665265610.1248/cpb.12.652 14199158
    [Google Scholar]
  52. FujihiraT. ChidaM. KamijoH. TakidoT. SenoM. Novel synthesis of 1-thioglycopyranoses via thioiminium salts.J. Carbohydr. Chem.200221428729210.1081/CAR‑120013495
    [Google Scholar]
  53. FujihiraT. ArakawaG. KamijoH. TakidoT. SenoM. Synthesis of tetra-O-acetyl‐1‐thio‐α-D-glucopyranose by reaction of tetra-O-acetyl‐α-D-glucopyranosyl bromide with N, N-dimethylthioformamide.J. Carbohydr. Chem.2003222737810.1081/CAR‑120020478
    [Google Scholar]
  54. JanaM. MisraA.K. Stereoselective synthesis of β-glycosyl thiols and their synthetic applications.J. Org. Chem.20137862680268610.1021/jo302115k 23421958
    [Google Scholar]
  55. RajanikanthB. SeshadriR. Stereoselective synthesis of 1,2-trans-1-thioglycoses using aluminium chloride: Evidence for 1,2-cis-1-chloroglycopyranosylperacetates as the actual reaction intermediates.Tetrahedron Lett.198728202295229610.1016/S0040‑4039(00)96105‑7
    [Google Scholar]
  56. HribernikN. TamburriniA. FallettaE. BernardiA. One pot synthesis of thio -glycosides via aziridine opening reactions.Org. Biomol. Chem.202119123324710.1039/D0OB01956A 33283815
    [Google Scholar]
  57. XieD. WangY. ZhangX. FuZ. NiuD. Alkyl/glycosyl sulfoxides as radical precursors and their use in the synthesis of pyridine derivatives.Angew. Chem. Int. Ed.20226131e20220492210.1002/anie.202204922 35641436
    [Google Scholar]
  58. KnappS. MyersD.S. α-GlcNAc thioconjugates.J. Org. Chem.200166103636363810.1021/jo010088e 11348163
    [Google Scholar]
  59. KnappS. MyersD.S. Synthesis of α-GalNAc thioconjugates from an α-GalNAc mercaptan.J. Org. Chem.20026792995299910.1021/jo0110909 11975558
    [Google Scholar]
  60. MakiT. NakamuraH. TejimaS. AkagiM. Thiosugars. VII. Synthesis of 1-thio-2-deoxy-beta-D-glucose derivatives.Chem. Pharm. Bull.196513776476910.1248/cpb.13.764 5867802
    [Google Scholar]
  61. GadelleA. DefayeJ. PedersenC. A simple preparation of 2,3,4,6-tetra-O-acetyl-1-S-acetyl-1-thio-α-D-glucopyranose.Carbohydr. Res.199020049749810.1016/0008‑6215(90)84217‑I
    [Google Scholar]
  62. DereR.T. KumarA. KumarV. ZhuX. SchmidtR.R. Synthesis of glycosylthiols and reactivity studies.J. Org. Chem.201176187539754510.1021/jo200624e 21800823
    [Google Scholar]
  63. Megia-FernandezA. de la Torre-GonzalezD. Parada-AlisteJ. Lopez-JaramilloF.J. Hernandez-MateoF. Santoyo-GonzalezF. Masked thiol sugars: Chemical behavior and synthetic applications of S-glycopyranosyl-N-monoalkyl dithiocarbamates.Chem. Asian J.20149262063110.1002/asia.201301270 24282075
    [Google Scholar]
  64. (a FalconerR.A. The S-xanthenyl group: Potential for application in the synthesis of thioglycosides.Tetrahedron Lett.200243478503850510.1016/S0040‑4039(02)02070‑1
    [Google Scholar]
  65. (b WangR.Q. JiangQ.H. WangH.X. ZhangX.W. YanN. Electrochemically mediated S-glycosylation of 1-thiosugars with xanthene derivatives.Org. Lett.202325234252425710.1021/acs.orglett.3c01185 37265105
    [Google Scholar]
  66. MalkinsonJ.P. FalconerR.A. Solid-phase synthesis of C-terminal thio-linked glycopeptides.Tetrahedron Lett.200243529549955210.1016/S0040‑4039(02)02419‑X
    [Google Scholar]
  67. KrügerA. Pyplo-SchniedersJ. RedlichH. WinkelmannP. 2-Haloethyl 1-thioglycosides as new tools in glycoside syntheses. Part 1: Preparation, characteristics, general reactions.Collect. Czech. Chem. Commun.200469101843187610.1135/cccc20041843
    [Google Scholar]
  68. ZhuX. MMTr as an efficient anomeric S-protecting group for the synthesis of glycosyl thiols.Tetrahedron Lett.200647457935793810.1016/j.tetlet.2006.09.003
    [Google Scholar]
  69. GalonićD.P. van der DonkW.A. GinD.Y. Oligosaccharide-peptide ligation of glycosyl thiolates with dehydropeptides: Synthesis of S-linked mucin-related glycopeptide conjugates.Chemistry20039245997600610.1002/chem.200305290 14679512
    [Google Scholar]
  70. MandalS. NilssonU.J. Tri-isopropylsilyl thioglycosides as masked glycosyl thiol nucleophiles for the synthesis of S-linked glycosides and glycoconjugates.Org. Biomol. Chem.201412274816481910.1039/C4OB00741G 24867410
    [Google Scholar]
  71. AlexanderS.R. LimD. AmsoZ. BrimbleM.A. FairbanksA.J. Protecting group free synthesis of glycosyl thiols from reducing sugars in water; application to the production of N-glycan glycoconjugates.Org. Biomol. Chem.201715102152215610.1039/C7OB00112F 28211926
    [Google Scholar]
  72. DoyleL.M. O’SullivanS. Di SalvoC. McKinneyM. McArdleP. MurphyP.V. Stereoselective epimerizations of glycosyl thiols.Org. Lett.201719215802580510.1021/acs.orglett.7b02760 29039672
    [Google Scholar]
  73. XinG. ZhuX. A facile and highly stereoselective synthesis of 1-thiotrehalose.Tetrahedron Lett.201253334309431210.1016/j.tetlet.2012.05.159
    [Google Scholar]
  74. DereR.T. WangY. ZhuX. A direct and stereospecific approach to the synthesis of α-glycosyl thiols.Org. Biomol. Chem.20086122061206310.1039/b804536d 18528566
    [Google Scholar]
  75. ZhuX. DereR.T. JiangJ. ZhangL. WangX. Synthesis of α-glycosyl thiols by stereospecific ring-opening of 1,6-anhydrosugars.J. Org. Chem.20117624101871019710.1021/jo202069y 22059806
    [Google Scholar]
  76. MacDougallJ.M. ZhangX.D. PolgarW.E. KhroyanT.V. TollL. CashmanJ.R. Design, chemical synthesis, and biological evaluation of thiosaccharide analogues of morphine- and codeine-6-glucuronide.J. Med. Chem.200447235809581510.1021/jm049554t 15509180
    [Google Scholar]
  77. GilV. MacLeodA.J. Synthesis of glucosinolates.Tetrahedron198036677978310.1016/S0040‑4020(01)93694‑4
    [Google Scholar]
  78. CobbS.E. The synthesis of natural and novel glucosinolatesUniversity of St Andrews, PhD Thesis2012
    [Google Scholar]
  79. HalkierB.A. DuL. The biosynthesis of glucosinolates.Trends Plant Sci.199721142543110.1016/S1360‑1385(97)90026‑1
    [Google Scholar]
  80. HewittR. LimY. OngM. Improved synthesis of glucosinolates.Synthesis20185081640165010.1055/s‑0036‑1591895
    [Google Scholar]
  81. GlindemannC.P. BackenköhlerA. StriekerM. WittstockU. KlahnP. Synthesis and biochemical evaluation of an artificial, fluorescent glucosinolate (GSL).ChemBioChem201920182341234510.1002/cbic.201900148 30980446
    [Google Scholar]
  82. BennM.H. The synthesis of glucoapparin.Can. J. Chem.196442116316410.1139/v64‑023
    [Google Scholar]
  83. BlaževićI. MontautS. BurčulF. OlsenC.E. BurowM. RollinP. AgerbirkN. Glucosinolate structural diversity, identification, chemical synthesis and metabolism in plants.Phytochemistry202016911210010.1016/j.phytochem.2019.112100 31771793
    [Google Scholar]
  84. EttlingerM.G. LundeenA.J. First synthesis of a mustard oil glucoside; the enzymatic Lossen rearrangement.J. Am. Chem. Soc.19577971764176510.1021/ja01564a066
    [Google Scholar]
  85. VoQ.V. RochfortS. NamP.C. NguyenT.L. NguyenT.T. MechlerA. Synthesis of aromatic and indole α-glucosinolates.Carbohydr. Res.2018455455310.1016/j.carres.2017.11.004 29169042
    [Google Scholar]
  86. BennM.H. YellandL. The synthesis of glucocochlearin.Can. J. Chem.196745131595159710.1139/v67‑259
    [Google Scholar]
  87. BennM.H. MeakinD. Glucoputranjivin.Can. J. Chem.19654361874187710.1139/v65‑244
    [Google Scholar]
  88. BennM.H. The synthesis of glucosinalbin and glucoaubrietin.Can. J. Chem.19654311510.1139/v65‑001
    [Google Scholar]
  89. BennM.H. A new mustard oil glucoside synthesis: the synthesis of glucotropaeolin.Can. J. Chem.196341112836283810.1139/v63‑415
    [Google Scholar]
  90. LiuK.C. SheltonB.R. HoweR.K. A particularly convenient preparation of benzohydroximinoyl chlorides (nitrile oxide precursors).J. Org. Chem.198045193916391810.1021/jo01307a039
    [Google Scholar]
  91. BennM.H. EttlingerM.G. The synthesis of sinigrin.Chem. Commun.19651944544710.1039/c19650000445
    [Google Scholar]
  92. AbramskiW. ChmielewskiM. Practical synthesis of sinigrin.J. Carbohydr. Chem.199615110911310.1080/07328309608005429
    [Google Scholar]
  93. MacLeodA.J. RossiterJ.T. Synthesis of 2-hydroxybut-3-enylglucosinolate (progoitrin).J. Chem. Soc., Perkin Trans. 1198371772110.1039/p19830000717
    [Google Scholar]
  94. VoQ.V. TrenerryC. RochfortS. WadesonJ. LeytonC. HughesA.B. Synthesis and anti-inflammatory activity of indole glucosinolates.Bioorg. Med. Chem.201422285686410.1016/j.bmc.2013.12.003 24360830
    [Google Scholar]
  95. CasselS. CasenaveB. DélérisG. LatxagueL. RollinP. Exploring an alternative approach to the synthesis of arylalkyl and indolylmethyl glucosinolates.Tetrahedron199854298515852410.1016/S0040‑4020(98)00465‑7
    [Google Scholar]
  96. GueyrardD. IoriR. TatibouetA. RollinP. Glucosinolate Chemistry: Synthesis of O‐Glycosylated Derivatives of Glucosinalbin.Wiley Online Library201036573664
    [Google Scholar]
  97. CerniauskaiteD. RousseauJ. SackusA. RollinP. TatibouëtA. Glucosinolate synthesis: A hydroxamic acid approach.Eur. J. Org. Chem.20112011122293230010.1002/ejoc.201001438
    [Google Scholar]
  98. WenY. JiangX. LiD. OuZ. YuY. ChenR. ChenC. XuH. Synthesis and characterization of an artificial glucosinolate bearing a chlorthalonil-based aglycon as a potent inhibitor of glucosinolate transporters.Phytochemistry202321211372610.1016/j.phytochem.2023.113726 37207992
    [Google Scholar]
  99. ZhangW. SongX. LiX. WangF. Biosynthesis and regulation of plant specialized metabolisms.Front Plant Sci.2023141319666
    [Google Scholar]
  100. CutoloG. DidakB. TomasJ. RoubinetB. LafiteP. NehméR. SchulerM. LandemarreL. TatibouëtA. The myrosinase-glucosinolate system to generate neogly-coproteins: A case study targeting mannose binding lectins.Carbohydr. Res.202251610856210.1016/j.carres.2022.108562 35500517
    [Google Scholar]
  101. ÅbergG. AigbirhioF.I. AlexakisE. Al-MaharikN. AlmiM. AmbacherY. AnderssonS. AthlanA. BadmanG. BaldwinS.A. BaumannM. BaxendaleI.R. BottingN.P. BraggR.A. BrownJ.A. BurtonA. BushbyN. CableK. CampbellG. CarrR. CarrollM. ChenL. ChristliebM. DaviesP. EllamesG.J. EllisW. ElmoreC. FryattT. GeachN. HardingJ.R. HartmannS. HarwoodS. HaywardJ.J. HendersonP.J.F. HerbertR.B. HeysJ.R. HölzlS. HopkinM.D. HornP. IlyasT. IrvineS. JacksonS.D. JinJ. KeatsA. KennedyA.R. KerrW.J. KitchingM.O. LandreauC. LannersS. LawrenceR. LawrieK.W.M. LeyS.V. LittleG. LockleyW.J.S. MaierD. ManningC. McNeillA. MiddletonD.A. MontgomeryS. MorrisonJ.J. MrzljakL. NewmanJ. NewsomeJ. Nikbin-RoudsariN. NilssonG.N. OldfieldM.F. PatchingS.G. ProcterD.J. RandallG. RobertsonA.A. RummelC.S. RustidgeD. SherhodR. ShipleyN. SmithC.D. SmithC.J. SmithD.I. SongC. TamboriniL. WaterhouseI. WattsA. WerkheiserJ.L. WilliamsG. WillisC.L. WoodwardP. YanR. YoungG. ZhangQ. 16th international isotope society (UK group) symposium.J. Labelled Comp. Radiopharm.200851624726110.1002/jlcr.1513
    [Google Scholar]
  102. NicotraF. AiroldiC. CardonaF. In 1.16 Synthesis of C-and S-Glycosides.OxfordElsevier2007647683
    [Google Scholar]
  103. NorbergT. Glycosylation properties and reactivity of thio-glycosides, sulfoxides, and other S-glycosides: current scope and future prospects. Modern Methods in Carbohydrate Synthesis.CRC Press20208210610.1201/9781003077329‑4
    [Google Scholar]
  104. YangF. LianG. YuB. Synthesis of raphanuside, an unusual oxathiane-fused thioglucoside isolated from the seeds of Raphanus sativus L.Carbohydr. Res.2010345230931410.1016/j.carres.2009.11.020 20004368
    [Google Scholar]
  105. NganeA.N. LavaultM. SéraphinD. LandreauA. RichommeP. Three 1-thio-β-D-glucopyranosides from the seeds of Afrostyrax lepidophyllus Mildbr.Carbohydr. Res.2006341172799280210.1016/j.carres.2006.09.021 17054924
    [Google Scholar]
  106. HoeksemaH. BannisterB. BirkenmeyerR.D. KaganF. MagerleinB.J. MacKellarF.A. SchroederW. SlompG. HerrR.R. Chemical studies on lincomycin. I. The structure of lincomycin.J. Am. Chem. Soc.196486194223422410.1021/ja01073a083
    [Google Scholar]
  107. UmemuraE. WakiyamaY. KumuraK. UedaK. MasakiS. WatanabeT. YamamotoM. HiraiY. FushimiH. YoshidaT. AjitoK. Synthesis of novel lincomy-cin derivatives and their in vitro antibacterial activities.J. Antibiot.201366319519810.1038/ja.2012.107 23232934
    [Google Scholar]
  108. FujihiraT. TakidoT. SenoM. Synthesis of alkyl and arylthioglycosides and thiodisaccharides via thioiminium salts in a two-phase system.J. Mol. Catal. Chem.19991371-3657510.1016/S1381‑1169(98)00082‑X
    [Google Scholar]
  109. Ramrao PatilP. Ravindranathan KarthaK.P. Solvent-free synthesis of thioglycosides by ball milling.Green Chem.200911795395610.1039/b904454j
    [Google Scholar]
  110. EscopyS. DemchenkoA.V. Transition-metal-mediated glycosylation with thioglycosides.Chemistry20222814e20210374710.1002/chem.202103747 34935219
    [Google Scholar]
  111. FalconerR.A. JablonkaiI. TothI. Efficient synthesis of thioglycosides via a Mitsunobu condensation.Tetrahedron Lett.199940498663866610.1016/S0040‑4039(99)01834‑1
    [Google Scholar]
  112. AnderssonF. FúgediP. GareggP.J. NashedM. Synthesis of 1,2--linked glycosides using dimethyl(methylthio) sulfonium triplate as promoter and thioglycosides as glycosyl donors.Tetrahedron Lett.198627333919392210.1016/S0040‑4039(00)83917‑9
    [Google Scholar]
  113. FugediP. GareggP.J. LonnH. NorbergT. Thioglycosides as glycosylating agents in oligosaccharide synthesis.Glycoconj. J.198749710810.1007/BF01049447
    [Google Scholar]
  114. FügediP. BirbergW. GareggP.J. PilottiÅ. Syntheses of a branched heptasaccharide having phytoalexin-elicitor activity.Carbohydr. Res.198716429731210.1016/0008‑6215(87)80137‑4
    [Google Scholar]
  115. KuhnC.S. LehmannJ. SteckJ. Syntheses and properties of some photolabile β-thioglycosides. Potential photoaffinity reagents for β-glycoside hydrolases.Tetrahedron19904693129313410.1016/S0040‑4020(01)85452‑1
    [Google Scholar]
  116. ZhuX. SchmidtR.R. Glycosylthiomethyl chloride: A new species for S-neoglycoconjugate synthesis. Synthesis of 1-N-glycosylthiomethyl-1,2,3-triazoles.J. Org. Chem.20046941081108510.1021/jo035300o 14961655
    [Google Scholar]
  117. IbatullinF. M. SelivanovS. I. ShavvaA. G. A general procedure for conversion of S-glycosyl isothiourea derivatives into thioglycosides, thiooligosaccharides and glycosyl thioesters.Synthesis2001200104190422
    [Google Scholar]
  118. CrichD. LiH. Direct stereoselective synthesis of β-thiomannosides.J. Org. Chem.200065380180510.1021/jo9914667 10814013
    [Google Scholar]
  119. ZawiszaA. KryczkaB. LhosteP. PorwanskiS. SinouD. Efficient palladium(0)-catalyzed synthesis of alkenyl 1-thioglycosides and thiodisaccharides.J. Carbohydr. Chem.200019779580410.1080/07328300008544118
    [Google Scholar]
  120. KieltschI. EisenbergerP. TogniA. Mild electrophilic trifluoromethylation of carbon- and sulfur-centered nucleophiles by a hypervalent iodine(III)-CF3 reagent.Angew. Chem. Int. Ed.200746575475710.1002/anie.200603497 17154193
    [Google Scholar]
  121. YerienD.E. Barata-VallejoS. CampsB. CristófaloA.E. CanoM.E. UhrigM.L. PostigoA. Electron-catalyzed radical perfluoroalkylation of organic sulfides: the serendipitous use of the TMEDA/I 2 complex as a radical initiator.Catal. Sci. Technol.20177112274228210.1039/C7CY00236J
    [Google Scholar]
  122. KomorR. KasprzyckaA. Pastuch-GawołekG. SzejaW. Simple synthesis of glycosylthiols and thioglycosides by rearrangement of O-glycosyl thionocarbamates.Carbohydr. Res.2014396374210.1016/j.carres.2014.07.001 25079597
    [Google Scholar]
  123. AhmedS. DavoustE. SavoieH. BoaA.N. BoyleR.W. Thioglycosylated cationic porphyrins-convenient synthesis and photodynamic activity in vitro.Tetrahedron Lett.200445316045604710.1016/j.tetlet.2004.06.021
    [Google Scholar]
  124. NaušP. LešetickýL. SmrčekS. TišlerováI. ŠtíchaM. Copper-assisted arylation of 1-thiosugars: Efficient route to triazene substituted arylthioglycosides.Synlett200314142117212210.1055/s‑2003‑42073
    [Google Scholar]
  125. YuanX. KouY. YuL. ZhangZ.X. XueW. 2′-Cyanoethyl thioglycosides: Effective nucleophiles for synthesis of (hetero)aryl thioglycosides under the catalysis of Cu.Org. Chem. Front.20152121604160710.1039/C5QO00276A
    [Google Scholar]
  126. ChabrierA. BruneauA. BenmahdjoubS. BenmeradB. BelaidS. BrionJ.D. AlamiM. MessaoudiS. Stereoretentive copper-catalyzed directed thioglycosylation of C(sp2)-H bonds of benzamides.Chemistry20162242150061501010.1002/chem.201602909 27557755
    [Google Scholar]
  127. VenkateshR. TiwariV. KandasamyJ. Copper(I)-catalyzed Sandmeyer-type S-arylation of 1-thiosugars with aryldiazonium salts under mild conditions.J. Org. Chem.20228717114141143210.1021/acs.joc.2c00930 35994736
    [Google Scholar]
  128. BrachetE. BrionJ.D. MessaoudiS. AlamiM. Palladium-catalyzed cross-coupling reaction of thioglycosides with (hetero)aryl halides.Adv. Synth. Catal.20133552-347749010.1002/adsc.201200695
    [Google Scholar]
  129. BrachetE. BrionJ.D. AlamiM. MessaoudiS. Stereoselective palladium-catalyzed alkenylation and alkynylation of thioglycosides.Adv. Synth. Catal.2013355132627263610.1002/adsc.201300419
    [Google Scholar]
  130. AL-ShuaeebR.A.A. GalvaniG. BernadatG. BrionJ.D. AlamiM. MessaoudiS. Diversity-oriented synthesis of fused thioglycosyl benzo[e][1,4]oxathiepin-5-ones and benzo[f][1,4]thiazepin-5(2H)-ones by a sequence of palladium-catalyzed glycosyl thiol arylation and deprotection–lactonization reactions.Org. Biomol. Chem.20151344109041091610.1039/C5OB01603G 26369372
    [Google Scholar]
  131. BruneauA. RocheM. HamzeA. BrionJ.D. AlamiM. MessaoudiS. Stereoretentive palladium-catalyzed arylation, alkenylation, and alkynylation of 1-thiosugars and thiols using aminobiphenyl palladacycle precatalyst at room temperature.Chemistry201521238375837910.1002/chem.201501050 25876554
    [Google Scholar]
  132. AL-ShuaeebR.A.A. MontoirD. AlamiM. MessaoudiS. Synthesis of (1→2)-S-linked saccharides and S-linked glycoconjugates via a palladium-G3-XantPhos precatalyst catalysis.J. Org. Chem.201782136720672810.1021/acs.joc.7b00861 28598170
    [Google Scholar]
  133. ProbstN. LartiaR. ThéryO. AlamiM. DefrancqE. MessaoudiS. Efficient buchwald-hartwig-migita cross-coupling for DNA thioglycoconjugation.Chemistry20182481795180010.1002/chem.201705371 29205564
    [Google Scholar]
  134. RedjdalW. IbrahimN. BenmeradB. AlamiM. MessaoudiS. Convergent synthesis of N,S-bis glycosylquinolin-2-ones via a Pd-G3-XantPhos precatalyst catalysis.Molecules201823351910.3390/molecules23030519 29495402
    [Google Scholar]
  135. BenmahdjoubS. IbrahimN. BenmeradB. AlamiM. MessaoudiS. One-pot assembly of unsymmetrical biaryl thioglycosides through chemoselective palladium-catalyzed three-component tandem reaction.Org. Lett.201820134067407110.1021/acs.orglett.8b01624 29927256
    [Google Scholar]
  136. BennaiN. IbrahimN. MarrotJ. BelkadiM. AlamiM. MagnierE. AnselmiE. MessaoudiS. Synthesis of S-trifluoromethyl S-arylsulfoximine thioglycosides through Pd-catalyzed Migita cross-coupling.Eur. J. Org. Chem.20202020314972498110.1002/ejoc.202000821
    [Google Scholar]
  137. (a ZhuM. AlamiM. MessaoudiS. Room-temperature Pd-catalyzed synthesis of 1-(hetero)aryl selenoglycosides.Org. Lett.202022166584658910.1021/acs.orglett.0c02352 32806176
    [Google Scholar]
  138. (b DingY.N. HuangY.C. ShiW.Y. ZhengN. WangC.T. ChenX. AnY. ZhangZ. LiangY.M. Modular synthesis of aryl thio/selenoglycosides via the catellani strategy.Org. Lett.202123155641564610.1021/acs.orglett.1c01723 34251824
    [Google Scholar]
  139. SantosB.F. SilvaB.A.L. DominguesN.L.C. Pd-catalyzed functionalization of benzo-2,1,3-thiadiazole at the C-5-position using 1-thiosugars.New J. Chem.20224641197851978910.1039/D2NJ03298H
    [Google Scholar]
  140. BrachetE. BrionJ.D. AlamiM. MessaoudiS. Nickel-catalyzed arylation, alkenylation, and alkynylation of unprotected thioglycosides at room temperature.Chemistry20131945152761528010.1002/chem.201302999 24108443
    [Google Scholar]
  141. ZhuM. DagoussetG. AlamiM. MagnierE. MessaoudiS. Ni/photoredox-dual-catalyzed functionalization of 1-thiosugars.Org. Lett.201921135132513710.1021/acs.orglett.9b01730 31247796
    [Google Scholar]
  142. (a ZhuM. AlamiM. MessaoudiS. Electrochemical nickel-catalyzed Migita cross-coupling of 1-thiosugars with aryl, alkenyl and alkynyl bromides.Chem. Commun.202056324464446710.1039/D0CC01126F 32196023
    [Google Scholar]
  143. (b LiF. LiuH. XingW. ZhangQ. WangL. Electrochemical nickel-catalyzed cross-coupling of glycosyl thiols with preactivated phenols and ketones.Org. Biomol. Chem.202410.1039/D4OB00442F 38625707
    [Google Scholar]
  144. HanayaK. OhtsuH. KawanoM. HigashibayashiS. SugaiT. Nickel(II)-mediated C-S cross-coupling between thiols and ortho-substituted arylboronic acid.Asian J. Org. Chem.202110358258710.1002/ajoc.202000724
    [Google Scholar]
  145. DuhailT. ZhuM. RombaultC. DagoussetG. MessaoudiS. MagnierE. AnselmiE. Dual photocatalysis for the straightforward coupling of thiosugars and aryl-sulfoximines: Towards unprecedented cyclic heteroatomic structures.Eur. J. Org. Chem.2022202229e20220017310.1002/ejoc.202200173
    [Google Scholar]
  146. LiuY. YuX.B. ZhangX.M. ZhongQ. LiaoL.H. YanN. Transition-metal-free synthesis of aryl 1-thioglycosides with arynes at room temperature.RSC Adv.20211143266662667110.1039/D1RA04013H 35479995
    [Google Scholar]
  147. ZhuM. GhouilemJ. MessaoudiS. Visible-light-mediated Stadler-Ziegler arylation of thiosugars with anilines.ACS Organic & Inorganic Au20222435135810.1021/acsorginorgau.2c00006 36855591
    [Google Scholar]
  148. KiefelM.J. ThomsonR.J. RadovanovicM. ItzsteinM. Synthesis of carbohydrates with an anomeric thiol moiety for elaboration into metabolically stable thioglycosides.J. Carbohydr. Chem.199918893795910.1080/07328309908544045
    [Google Scholar]
  149. GardratC. JosephB. VitryC. CastellanA. RollinP. Unexpected matrix interactions in liquid secondary ion mass spectrometry of two pyranosyl mercaptans.Rapid Commun. Mass Spectrom.201125101399140610.1002/rcm.4998 21504005
    [Google Scholar]
  150. StaněkJ. ŠindlerováM. ČernýM. Derivatives of D-thioxylopyranose and of some reducing 1-deoxy-1-thiodisaccharides.Collect. Czech. Chem. Commun.196530129730310.1135/cccc19650297
    [Google Scholar]
  151. PeiZ. AastrupT. AndersonH. RamströmO. Redox-responsive and calcium-dependent switching of glycosyldisulfide interactions with Concanavalin A.Bioorg. Med. Chem. Lett.200515112707271010.1016/j.bmcl.2005.04.024 15878660
    [Google Scholar]
  152. KnappS. DaroutE. AmorelliB. New glycomimetics: Anomeric sulfonates, sulfenamides, and sulfonamides.J. Org. Chem.20067141380138910.1021/jo0520386 16468785
    [Google Scholar]
  153. Martín-SantamaríaS. AndréS. BuzametE. CaraballoR. Fernández-CuresesG. MorandoM. RibeiroJ.P. Ramírez-GualitoK. de Pascual-TeresaB. CañadaF.J. MenéndezM. RamströmO. Jiménez-BarberoJ. SolísD. GabiusH.J. Symmetric dithiodigalactoside: Strategic combination of binding studies and detection of selectivity between a plant toxin and human lectins.Org. Biomol. Chem.20119155445545510.1039/c0ob01235a 21660340
    [Google Scholar]
  154. SmithR. ZengX. Müller-BunzH. ZhuX. Synthesis of glycosyl disulfides containing an α-glycosidic linkage.Tetrahedron Lett.201354395348535010.1016/j.tetlet.2013.07.093
    [Google Scholar]
  155. AdinolfiM. CapassoD. Di GaetanoS. IadonisiA. LeoneL. PastoreA. A straightforward synthetic access to symmetrical glycosyl disulfides and biological evaluation thereof.Org. Biomol. Chem.20119186278628310.1039/c1ob05619k 21792455
    [Google Scholar]
  156. GeJ.T. ZhouL. ZhaoF.L. DongH. Straightforward S–S bond formation via the oxidation of S-acetyl by iodine in the presence of N-iodosuccinimide.J. Org. Chem.20178223126131262310.1021/acs.joc.7b02367 29084384
    [Google Scholar]
  157. HortonD. MillerM.J. Reactivity of acetylated glycosylsulfenyl bromides.Carbohydr. Res.19651433533710.1016/S0008‑6215(00)81769‑3
    [Google Scholar]
  158. BellR.H. HortonD. MillerM.J. Reactions of tetra-O-acetyl-β-D-glucopyranosylsulfenyl bromide.Carbohydr. Res.19699220121410.1016/S0008‑6215(00)82135‑7
    [Google Scholar]
  159. HummelG. HindsgaulO. Solid-phase synthesis of thio-oligosaccharides.Angew. Chem. Int. Ed.199938121782178410.1002/(SICI)1521‑3773(19990614)38:12<1782:AID‑ANIE1782>3.0.CO;2‑1 29711181
    [Google Scholar]
  160. Ribeiro MoraisG. FalconerR.A. Efficient one-pot synthesis of glycosyl disulfides.Tetrahedron Lett.200748437637764110.1016/j.tetlet.2007.08.106
    [Google Scholar]
  161. StellenboomN. HunterR. CairaM.R. SzilágyiL. A high-yielding, one-pot preparation of unsymmetrical glycosyl disulfides using 1-chlorobenzotriazole as an in situ trapping/oxidizing agent.Tetrahedron Lett.201051405309531210.1016/j.tetlet.2010.07.176
    [Google Scholar]
  162. MoraisG.R. SpringettB.R. PauzeM. SchröderL. NorthropM. FalconerR.A. Novel strategies for the synthesis of unsymmetrical glycosyl disulfides.Org. Biomol. Chem.20161492749275410.1039/C6OB00230G 26853381
    [Google Scholar]
  163. KunduM. MisraA.K. Direct synthesis of unsymmetrical glycosyl disulfides from glycosyl bromides.Eur. J. Org. Chem.20212021263759376710.1002/ejoc.202100606
    [Google Scholar]
  164. GamblinD.P. GarnierP. WardS.J. OldhamN.J. FairbanksA.J. DavisB.G. Glycosyl phenylthiosulfonates (Glyco-PTS): Novel reagents for glycoprotein synthesis.Org. Biomol. Chem.20031213642364410.1039/b306990g 14649893
    [Google Scholar]
  165. SzilágyiL. IllyésT.Z. HerczeghP. Elaboration of a novel type of interglycosidic linkage: Syntheses of disulfide disaccharides.Tetrahedron Lett.200142233901390310.1016/S0040‑4039(01)00578‑0
    [Google Scholar]
  166. GamblinD.P. GarnierP. van KasterenS. OldhamN.J. FairbanksA.J. DavisB.G. Glyco-SeS: selenenylsulfide-mediated protein glycoconjugation a new strategy in post-translational modification.Angew. Chem. Int. Ed.200443782883310.1002/anie.200352975 14767951
    [Google Scholar]
  167. MurthyB.N. SinhaS. SuroliaA. JayaramanN. SzilágyiL. SzabóI. KövérK.E. Interactions of aromatic mannosyl disulfide derivatives with Concanavalin A: synthesis, thermodynamic and NMR spectroscopy studies.Carbohydr. Res.2009344131758176310.1016/j.carres.2009.06.008 19570526
    [Google Scholar]
  168. IllyésT.Z. SzabóT. SzilágyiL. Glycosylation via mixed disulfide formation using glycosylthio-phthalimides and -succinimides as glycosylsulfenyl-transfer reagents.Carbohydr. Res.2011346121622162710.1016/j.carres.2011.04.020 21571258
    [Google Scholar]
  169. XiaoX. FengM. JiangX. New design of a disulphurating reagent: Facile and straightforward pathway to unsymmetrical disulfanes by copper-catalyzed oxidative cross-coupling.Angew. Chem. Int. Ed.20165545141211412510.1002/anie.201608011 27726267
    [Google Scholar]
  170. XiaoX. XueJ. JiangX. Polysulfurating reagent design for unsymmetrical polysulfide construction.Nat. Commun.201891219110.1038/s41467‑018‑04306‑5 29875443
    [Google Scholar]
  171. PachamuthuK. SchmidtR.R. Synthetic routes to thiooligosaccharides and thioglycopeptides.Chem. Rev.2006106116018710.1021/cr040660c 16402775
    [Google Scholar]
  172. MeunierS.J. RoyR. Polysialosides scaffolded on p-tert-butylcalix[4]arene.Tetrahedron Lett.199637315469547210.1016/0040‑4039(96)01167‑7
    [Google Scholar]
  173. ZaniniD. RoyR. Synthesis of new α-thiosialodendrimers and their binding properties to the sialic acid specific lectin from Limax flavus.J. Am. Chem. Soc.199711992088209510.1021/ja963874n
    [Google Scholar]
  174. MatsuokaK. OhtawaT. HinouH. KoyamaT. EsumiY. NishimuraS.I. HatanoK. TerunumaD. Synthesis of a useful anomeric thioacetate of an N-acetyllactosamine derivative and its application.Tetrahedron Lett.200344183617362010.1016/S0040‑4039(03)00697‑X
    [Google Scholar]
  175. JiangQ.L. HaiL. ChenL. LuJ. ZhangZ.R. WuY. Synthesis of a novel multivalent galactoside with high hepatocyte targeting for gene delivery.Chin. Chem. Lett.200819212712910.1016/j.cclet.2007.12.002
    [Google Scholar]
  176. CagnoniA.J. VarelaO. UhrigM.L. KovenskyJ. Efficient synthesis of thiolactoside glycoclusters by ruthenium-catalyzed cycloaddition reaction of disubstituted alkynes on carbohydrate scaffolds.Eur. J. Org. Chem.20132013597298310.1002/ejoc.201201412
    [Google Scholar]
  177. FultonD.A. StoddartJ.F. An efficient synthesis of cyclodextrin-based carbohydrate cluster compounds.Org. Lett.2000281113111610.1021/ol005668x 10804567
    [Google Scholar]
  178. FultonD.A. StoddartJ.F. Synthesis of cyclodextrin-based carbohydrate clusters by photoaddition reactions.J. Org. Chem.200166258309831910.1021/jo010705z 11735508
    [Google Scholar]
  179. KöhnM. BenitoJ.M. Ortiz MelletC. LindhorstT.K. García FernándezJ.M. Functional evaluation of carbohydrate-centred glycoclusters by enzyme-linked lectin assay: Ligands for concanavalin A.ChemBioChem20045677177710.1002/cbic.200300807 15174159
    [Google Scholar]
  180. Gómez-GarcíaM. BenitoJ.M. Rodríguez-LucenaD. YuJ.X. ChmurskiK. Ortiz MelletC. Gutiérrez GallegoR. MaestreA. DefayeJ. García FernándezJ.M. Probing secondary carbohydrate-protein interactions with highly dense cyclodextrin-centered heteroglycoclusters: the heterocluster effect.J. Am. Chem. Soc.2005127227970797110.1021/ja050934t 15926794
    [Google Scholar]
  181. FioreM. ChamberyA. MarraA. DondoniA. Single and dual glycoside clustering around calix[4]arene scaffolds via click thiol–ene coupling and azide–alkyne cycloaddition.Org. Biomol. Chem.20097193910391310.1039/b912686d 19763289
    [Google Scholar]
  182. MarraA. StaderiniS. BerthetN. DumyP. RenaudetO. DondoniA. Thiyl glycosylation of propargylated octasilsesquioxane: Synthesis and lectin-binding properties of densely glycosylated clusters on a cubic platform.Eur. J. Org. Chem.2013201361144114910.1002/ejoc.201201453
    [Google Scholar]
  183. BarattucciA. AversaM. BonaccorsiP. From transient sulfenic acids to disulfide-functionalized tripodal structures.Synlett20112011225425810.1055/s‑0030‑1259306
    [Google Scholar]
  184. SuttonB.M. McGustyE. WalzD.T. DiMartinoM.J. Oral gold. Antiarthritic properties of alkylphosphinegold coordination complexes.J. Med. Chem.197215111095109810.1021/jm00281a001 4654656
    [Google Scholar]
  185. WuB. YangX. YanM. Synthesis and structure-activity relationship study of antimicrobial auranofin against ESKAPE pathogens.J. Med. Chem.201962177751776810.1021/acs.jmedchem.9b00550 31386365
    [Google Scholar]
  186. NavarroM. VásquezF. Sánchez-DelgadoR.A. PérezH. SinouV. SchrévelJ. Toward a novel metal-based chemotherapy against tropical diseases. 7. Synthesis and in vitro antimalarial activity of new gold-chloroquine complexes.J. Med. Chem.200447215204520910.1021/jm049792o 15456263
    [Google Scholar]
  187. GoitiaH. NietoY. VillacampaM.D. KasperC. LagunaA. GimenoM.C. Antitumoral gold and silver complexes with ferrocenyl-amide phosphines.Organometallics201332206069607810.1021/om400633z
    [Google Scholar]
  188. HokaiY. JurkowiczB. Fernández-GallardoJ. ZakirkhodjaevN. SanaúM. MuthT.R. ContelM. Auranofin and related heterometallic gold(I)–thiolates as potent inhibitors of methicillin-resistant Staphylococcus aureus bacterial strains.J. Inorg. Biochem.2014138818810.1016/j.jinorgbio.2014.05.008 24935090
    [Google Scholar]
  189. DoulainP.E. DecréauR. RacoeurC. GoncalvesV. DubrezL. BettaiebA. Le GendreP. DenatF. PaulC. GozeC. BodioE. Towards the elaboration of new gold-based optical theranostics.Dalton Trans.201544114874488310.1039/C4DT02977A 25492395
    [Google Scholar]
  190. AliM. DondaineL. AdolleA. SampaioC. ChotardF. RichardP. DenatF. BettaiebA. Le GendreP. LaurensV. GozeC. PaulC. BodioE. Anticancer agents: Does a phosphonium behave like a gold(I) phosphine complex? Let a “smart” probe answer!J. Med. Chem.201558114521452810.1021/acs.jmedchem.5b00480 25973667
    [Google Scholar]
  191. DondaineL. EscuderoD. AliM. RichardP. DenatF. BettaiebA. Le GendreP. PaulC. JacqueminD. GozeC. BodioE. Coumarin-phosphine-based smart probes for tracking biologically relevant metal complexes: From theoretical to biological investigations.Eur. J. Inorg. Chem.20162016454555310.1002/ejic.201501304
    [Google Scholar]
  192. WenzelM. de AlmeidaA. BigaevaE. KavanaghP. PicquetM. Le GendreP. BodioE. CasiniA. New luminescent polynuclear metal complexes with anticancer properties: Toward structure-activity relationships.Inorg. Chem.20165552544255710.1021/acs.inorgchem.5b02910 26867101
    [Google Scholar]
  193. BakerM.V. BarnardP.J. Berners-PriceS.J. BrayshawS.K. HickeyJ.L. SkeltonB.W. WhiteA.H. Synthesis and structural characterisation of linear Au(I) N-heterocyclic carbene complexes: New analogues of the Au(I) phosphine drug Auranofin.J. Organomet. Chem.200569024-255625563510.1016/j.jorganchem.2005.07.013
    [Google Scholar]
  194. de FrémontP. StevensE.D. EelmanM.D. FoggD.E. NolanS.P. Synthesis and characterization of gold(I) N-heterocyclic carbene complexes bearing biologically compatible moieties.Organometallics200625245824582810.1021/om060733d
    [Google Scholar]
  195. HackenbergF. Müller-BunzH. SmithR. StreciwilkW. ZhuX. TackeM. Novel ruthenium(II) and gold(I) NHC complexes: synthesis, characterization, and evaluation of their anticancer properties.Organometallics201332195551556010.1021/om400819p
    [Google Scholar]
  196. DadaO. Sánchez-SanzG. TackeM. ZhuX. Synthesis and anticancer activity of novel NHC-gold(I)-sugar complexes.Tetrahedron Lett.201859302904290810.1016/j.tetlet.2018.06.040
    [Google Scholar]
  197. Safir FilhoM. ScattolinT. DaoP. TzourasN.V. BenhidaR. SaabM. Van HeckeK. LippmannP. MartinA.R. OttI. NolanS.P. Straightforward synthetic route to gold(I)-thiolato glycoconjugate complexes bearing NHC ligands (NHC = N-heterocyclic carbene) and their promising anticancer activity.New J. Chem.2021452299951000110.1039/D1NJ02117F
    [Google Scholar]
  198. BertrandB. SpreckelmeyerS. BodioE. CoccoF. PicquetM. RichardP. Le GendreP. OrvigC. CinelluM.A. CasiniA. Exploring the potential of gold(III) cyclometallated compounds as cytotoxic agents: Variations on the C^N theme.Dalton Trans.20154426119111191810.1039/C5DT01023C 26060937
    [Google Scholar]
  199. WaernJ.B. DillonC.T. HardingM.M. Organometallic anticancer agents: Cellular uptake and cytotoxicity studies on thiol derivatives of the antitumor agent molybdocene dichloride.J. Med. Chem.20054862093209910.1021/jm049585o 15771451
    [Google Scholar]
/content/journals/coc/10.2174/0113852728314452240524112438
Loading
/content/journals/coc/10.2174/0113852728314452240524112438
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test