Skip to content
2000
Volume 29, Issue 2
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Organo-modified carbon nanotubes have recently gained the interest of many research groups. The potential for applying a new generation of organo-modified carbon nanotubes in many technological fields reveals the importance of covalent modifications on nanotubes. In this study, using the microwave synthesis method, multi-walled carbon nanotube (MWCNT) thiophenol derivatives were obtained with a thioesterification reaction. For this purpose, MWCNT-COOH was obtained from MWCNT by oxidation, and MWCNT-COCl was synthesized from MWCNT-COOH. The MWCNT-CO-S-(ortho/meta/para-methyl/methoxy-phenyl) (MA1-MA6) compounds were synthesized through both microwave synthesis methods starting with MWCNT-COCl and Steglich ester reaction of MWCNT-COOH. Products were characterized using Fourier Transform-Infrared Spectroscopy (FTIR), Nuclear Magnetic Resonance (NMR), Thermogravimetric Analysis (TGA), and Transmission Electron Spectroscopy (TEM) methods. Furthermore, step numbers, reaction times, and temperatures of obtained molecules, MA1-MA6, were compared. Steglich esterification was found to be the most effective technique for creating these compounds. The photoluminescent characteristics of MWCNT, MWCNT-COOH, and MA1-MA6 compounds were examined. The intensity of the photoluminescence (PL) was found to vary with the location of the functional group. It was detected that the MA2 compound had the highest photoluminescence intensity (6.9x102 a.u.), while the MA1 compound had the second-highest photoluminescence intensity (6.9x102 a.u.). MA1 and MA2 were radiated at low wavelengths of 475-490 nm with high PL values. Possible transitions were n→π* transitions, with high PL values obtained because of the oxygen atom in the methoxy group. It is expected that these materials will find use in imaging devices operating at high temperatures, particularly because structures containing methoxy groups exhibit favourable photoluminescence properties.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728319332240806053131
2024-08-13
2024-12-24
Loading full text...

Full text loading...

References

  1. BhushanB. Introduction to Nanotechnology. Handbook of Nanotechnology.2nd ed BhushanB. OhioSpringer200411310.1007/978‑3‑662‑40019‑7_1
    [Google Scholar]
  2. MitalV. Carbon nanotubes surface modifications: An overview. Surface Modification of Nanotube Filler.Hoboken, New JerseyWiley2011123
    [Google Scholar]
  3. WisemanB.R. SubramoneyS. Carbon Nanotubes.Electrochem. Soc. Interface2006152424610.1149/2.F06062IF
    [Google Scholar]
  4. RaoC.N.R. SeshadriR. GovindarajA. SenR. Fullerenes, nanotubes, onions and related carbon structures.Mater. Sci. Eng. Rep.199515620926210.1016/S0927‑796X(95)00181‑6
    [Google Scholar]
  5. CaiJ. WeiY. ZhaoH. ZhangJ. MiaoX. XiaoL. HouL. Carbon nanotubes grafting aminated epoxy resin with improved elasticity and surface adhesion for enhanced thermal management performance.Colloids Surf. A Physicochem. Eng. Asp.202469413419510.1016/j.colsurfa.2024.134195
    [Google Scholar]
  6. YinY.F. MaysT. McEnaneyB. Molecular simulations of hydrogen storage in carbon nanotube arrays.Langmuir20001626105211052710.1021/la000900t
    [Google Scholar]
  7. HeH. ZhangW. YeS. LiS. NieZ. ZhangY. XiongM. ChenW-T. HuG. Magnetical multi-walled carbon nanotubes with Lewis acid-base imprinted sites for efficient Ni(II) recovery with high selectivity.Surf. Interfaces20244810438310.1016/j.surfin.2024.104383
    [Google Scholar]
  8. ShahB. YinP.T. GhoshalS. LeeK.B. Multimodal magnetic core-shell nanoparticles for effective stem-cell differentiation and imaging.Angew. Chem. Int. Ed.201352246190619510.1002/anie.201302245 23650180
    [Google Scholar]
  9. DashM.P. NayakP.L. Synthesis and charaterization of MWCNT/poly-(meta nitroaniline) conducting polymer composites.Int. J. Plastics Technol.201014214215110.1007/s12588‑010‑0013‑3
    [Google Scholar]
  10. GhavamianA. BanerjeeS. RahmandoustM. ÖchsnerA. On the vibrational behavior of the conventional and hetero-junction carbon nanotubes.Mater. Today Commun.20243910865610.1016/j.mtcomm.2024.108656
    [Google Scholar]
  11. BachiloS.M. StranoM.S. KittrellC. HaugeR.H. SmalleyR.E. WeismanR.B. Structure-assigned optical spectra of single-walled carbon nanotubes.Science200229856022361236610.1126/science.1078727 12459549
    [Google Scholar]
  12. FirkowskaI. BodenA. VogtA.M. ReichS. Effect of carbon nanotube surface modification on thermal properties of copper-CNT composites.J. Mater. Chem.20112143175411754610.1039/c1jm12671g
    [Google Scholar]
  13. QamarM.A. ArooshK. NawazA. AlmashnowiM.Y.A. AlnasirM.H. Carbon nanotubes in perovskite solar cells: A comprehensive review of recent developments and future directions.Synth. Met.202430711765110.1016/j.synthmet.2024.117651
    [Google Scholar]
  14. ZhangT. LiC.H. LiW. WangZ. GuZ. LiJ. YuanJ. Ou-YangJ. YangX. ZhuB. A self-healing optoacoustic patch with high damage threshold and conversion efficiency for biomedical applications.Nano-Micro Lett.202416112210.1007/s40820‑024‑01346‑z 38372850
    [Google Scholar]
  15. SoniS.K. ThomasB. KarV.R. A comprehensive review on CNTs and CNT-reinforced composites: Syntheses, characteristics and applications.Mater. Today Commun.20202510154610.1016/j.mtcomm.2020.101546
    [Google Scholar]
  16. PanY. Application of carbon nanotubes in various fields.MATEC Web Conf.20233860100810.1051/matecconf/202338601008
    [Google Scholar]
  17. BandaruN.M. RetaN. DalalH. EllisA.V. ShapterJ. VoelckerN.H. Enhanced adsorption of mercury ions on thiol derivatized single wall carbon nanotubes.J. Hazard. Mater.201326153454110.1016/j.jhazmat.2013.07.076 23994651
    [Google Scholar]
  18. AlguacilF.J. García-DíazI. Escudero BaqueroE. Rodríguez LargoO. LópezF.A. On the adsorption of cerium(III) using multiwalled carbon nanotubes.Metals2020108105710.3390/met10081057
    [Google Scholar]
  19. ZangZ. HuZ. LiZ. HeQ. ChangX. Synthesis, characterization and application of ethylenediamine-modified multiwalled carbon nanotubes for selective solid-phase extraction and preconcentration of metal ions.J. Hazard. Mater.20091722-395896310.1016/j.jhazmat.2009.07.078 19692175
    [Google Scholar]
  20. DuranA. TuzenM. SoylakM. Preconcentration of some trace elements via using multiwalled carbon nanotubes as solid phase extraction adsorbent.J. Hazard. Mater.20091691-346647110.1016/j.jhazmat.2009.03.119 19398267
    [Google Scholar]
  21. ArthiD. JoseM.A.J. GladisE.E.H. ShinuS.P.M. JosephJ. Removal of heavy metal ions from water using adsorbents from agro waste materials.Mater. Today Proc.2021451794179810.1016/j.matpr.2020.08.738
    [Google Scholar]
  22. DaiB. CaoM. FangG. LiuB. DongX. PanM. WangS. Schiff base-chitosan grafted multiwalled carbon nanotubes as a novel solid-phase extraction adsorbent for determination of heavy metal by ICP-MS.J. Hazard. Mater.2012219-22010311010.1016/j.jhazmat.2012.03.065 22497719
    [Google Scholar]
  23. LotfiS. VeisiH. Synthesis and characterization of novel nanocomposite (MWCNTs/CC-SH/Au) and its use as a modifier for construction of a sensitive sensor for determination of low concentration of levothyroxine in real samples.Chem. Phys. Lett.201971617718510.1016/j.cplett.2018.12.029
    [Google Scholar]
  24. ZuruD.U. Theoretical model for the design and preparation of a CNT-ursonic acid drug matrix as HIV-gp120 entry inhibitor.Sci. Am.20196e0017710.1016/j.sciaf.2019.e00177
    [Google Scholar]
  25. GabrielG. SauthierG. FraxedasJ. Moreno-MañasM. MartínezM.T. MiravitllesC. CasabóJ. Preparation and characterisation of single-walled carbon nanotubes functionalised with amines.Carbon200644101891189710.1016/j.carbon.2006.02.010
    [Google Scholar]
  26. HsiehC-T. TengH. ChenW.Y. ChengY-S. Synthesis, characterization, and electrochemical capacitance of amino-functionalized carbon nanotube/carbon paper electrodes.Carbon201048154219422910.1016/j.carbon.2010.07.021
    [Google Scholar]
  27. SanthoshP. ManeshK.M. GopalanA. LeeK-P. Novel amperometric carbon monoxide sensor based on multi-wall carbon nanotubes grafted with polydiphenylamine-Fabrication and performance.Sens. Actuators B Chem.20071251929910.1016/j.snb.2007.01.044
    [Google Scholar]
  28. LimJ.K. YunW.S. YoonM. LeeS.K. KimC.H. KimK. KimS.K. Selective thiolation of single-walled carbon nanotubes.Synth. Met.2003139252152710.1016/S0379‑6779(03)00337‑0
    [Google Scholar]
  29. JiangG. WangL. ChenC. DongX. ChenT. YuH. Study on attachment of highly branched molecules onto multiwalled carbon nanotubes.Mater. Lett.200559162085208910.1016/j.matlet.2005.01.085
    [Google Scholar]
  30. BanerjeeS. BhattacharyaS. BasuS. Absorption spectroscopic study of synergistic extraction of praseodymium with benzoyl acetone in presence of crown ether.Spectrochim. Acta A Mol. Biomol. Spectrosc.20056161039104410.1016/j.saa.2004.06.015
    [Google Scholar]
  31. LuX. ImaeT. Size-controlled in situ synthesis of metal nanoparticles on dendrimer-modified carbon nanotubes.J. Phys. Chem. C200711162416242010.1021/jp065613y
    [Google Scholar]
  32. PanB. CuiD. HeR. GaoF. ZhangY. Covalent attachment of quantum dot on carbon nanotubes.Chem. Phys. Lett.20064174-641942410.1016/j.cplett.2005.10.044
    [Google Scholar]
  33. LiuL. DingL. WuX. DengF. KangR. LuoX. Enhancing the Hg(II) removal efficiency from real wastewater by novel thymine-grafted reduced graphene oxide complexes.Ind. Eng. Chem. Res.201655246845685310.1021/acs.iecr.6b01359
    [Google Scholar]
  34. ProfumoA. FagnoniM. MerliD. QuartaroneE. ProttiS. DondiD. AlbiniA. Multiwalled carbon nanotube chemically modified gold electrode for inorganic As speciation and Bi(III) determination.Anal. Chem.200678124194419910.1021/ac060455s 16771550
    [Google Scholar]
  35. MormannW. LuY. ZouX. BergerR. Modification and grafting of multi‐walled carbon nanotubes with Bisphenol‐A‐polycarbonate.Macromol. Chem. Phys.2008209202113212110.1002/macp.200800263
    [Google Scholar]
  36. WangY. IqbalZ. MalhotraS.V. Functionalization of carbon nanotubes with amines and enzymes.Chem. Phys. Lett.20054021-39610110.1016/j.cplett.2004.11.099
    [Google Scholar]
  37. XuJ. YaoP. LiX. HeF. Synthesis and characterization of water-soluble and conducting sulfonated polyaniline/para-phenylenediamine-functionalized multi-walled carbon nanotubes nano-composite.Mater. Sci. Eng. B2008151321021910.1016/j.mseb.2008.07.003
    [Google Scholar]
  38. TsaiY.C. ChenJ.M. MarkenF. Simple cast-deposited multi-walled carbon nanotube/NafionTM thin film electrodes for electrochemical stripping analysis.Mikrochim. Acta20051503-426927610.1007/s00604‑005‑0364‑1
    [Google Scholar]
  39. BrunettiF.G. HerreroM.A. MuñozJ.M. Díaz-OrtizA. AlfonsiJ. MeneghettiM. PratoM. VázquezE. Microwave-induced multiple functionalization of carbon nanotubes.J. Am. Chem. Soc.2008130258094810010.1021/ja801971k 18512916
    [Google Scholar]
  40. ColomerJ.F. MaregaR. TraboulsiH. MeneghettiM. Van TendelooG. BonifaziD. Microwave-assisted bromination of double-walled carbon nanotubes.Chem. Mater.200921204747474910.1021/cm902029m
    [Google Scholar]
  41. CaddickS. FitzmauriceR. Microwave enhanced synthesis.Tetrahedron200965173325335510.1016/j.tet.2009.01.105
    [Google Scholar]
  42. ÇalışırÜ. Synthesis and characterization of some benzothioate derivatives and investigation of extractions with Cr3+, Co2+, Cu2+, Mn2+, Fe3+, Zn2+ ions.J. Baun. Inst. Sci. Technol.202224212221
    [Google Scholar]
  43. CanbolatM. ÇalışırÜ. ÇiçekB. Microwave-assisted synthesis of aromatic thiadiazol crown ethers and determination of complexation properties with metal ions by application of Job′s Plot method to conductometry.ChemistrySelect2022729e20220094410.1002/slct.202200944
    [Google Scholar]
  44. ÇalışırÜ. ÇiçekB. DoğanM. Microwave-assisted cross-coupling synthesis of aryl functionalized MWCNTs and investigation of hydrogen storage properties.Fuller. Nanotub. Carbon Nanostruct.2021291189990610.1080/1536383X.2021.1913727
    [Google Scholar]
  45. ÇalışırÜ. CamadanY. ÇiçekB. AkkemikE. EyüpoğluV. AdemŞ. Synthesis, characterizations of aryl-substituted dithiodibenzothioate derivatives, and investigating their anti-Alzheimer’s properties.J. Biomol. Struct. Dyn.20234151828184510.1080/07391102.2021.2024884 35021953
    [Google Scholar]
  46. CalisirU. ÇiçekB. Comparison of classic and microwave-assisted synthesis of benzo-thio crown ethers, and investigation of their ion pair extractions.J. Mol. Struct.2017114850551110.1016/j.molstruc.2017.07.081
    [Google Scholar]
  47. CutressI.J. MarkenF. ComptonR.G. Microwave-assisted electroanalysis: A review.Electroanalysis200921211312310.1002/elan.200804409
    [Google Scholar]
  48. GillesV. VieiraM.A. LacerdaV. Jr A new, simple and efficient method of steglich esterification of juglone with long-chain fatty acids: Synthesis of a new class of non-polymeric wax deposition inhibitors for crude oil.J. Braz. Chem. Soc.2015267483
    [Google Scholar]
  49. NeisesB. SteglichW. Simple method for the esterification of carboxylic acids.Angew. Chem. Int. Ed. Engl.197817752252410.1002/anie.197805221
    [Google Scholar]
  50. HadavifarM. BahramifarN. YounesiH. LiQ. Adsorption of mercury ions from synthetic and real wastewater aqueous solution by functionalized multi-walled carbon nanotube with both amino and thiolated groups.Chem. Eng. J.201423721722810.1016/j.cej.2013.10.014
    [Google Scholar]
  51. LiR. ChangX. LiZ. ZangZ. HuZ. LiD. TuZ. Multiwalled carbon nanotubes modified with 2-aminobenzothiazole modified for uniquely selective solid-phase extraction and determination of Pb(II) ion in water samples.Mikrochim. Acta20111723-426927610.1007/s00604‑010‑0488‑9
    [Google Scholar]
  52. McCourtR.O. ScanlanE.M. A sequential acyl thiol-ene and thiolactonization approach for the synthesis of δ-thiolactones.Org. Lett.20192193460346410.1021/acs.orglett.9b01271 31013100
    [Google Scholar]
  53. Bielicka-GiełdońA. WilczewskaP. PaszkiewiczM. MalankowskaA. SzczodrowskiK. RylJ. SiedleckaE.M. Effect of multi-walled carbon nanotubes properties on the photocatalytic activity of bismuth-based composites synthesised via an imidazolium ionic liquid.Appl. Surf. Sci.202466316021410.1016/j.apsusc.2024.160214
    [Google Scholar]
  54. LiuD. ShiL. DaiQ. LinX. MehmoodR. GuZ. DaiL. Functionalization of carbon nanotubes for multifunctional applications.Trends Chem.20246418621010.1016/j.trechm.2024.02.002
    [Google Scholar]
  55. LiqiangJ. YichunQ. BaiqiW. ShudanL. BaojiangJ. LibinY. WeiF. HonggangF. JiazhongS. Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity.Sol. Energy Mater. Sol. Cells200690121773178710.1016/j.solmat.2005.11.007
    [Google Scholar]
  56. O’ConnellM.J. BachiloS.M. HuffmanC.B. MooreV.C. StranoM.S. HarozE.H. RialonK.L. BoulP.J. NoonW.H. KittrellC. MaJ. HaugeR.H. WeismanR.B. SmalleyR.E. Band gap fluorescence from individual single-walled carbon nanotubes.Science2002297558159359610.1126/science.1072631 12142535
    [Google Scholar]
  57. TangR. ZhangW. LuoY. LiJ. Synthesis, fluorescence properties of Eu(III) complexes with novel carbazole functionalized β-diketone ligand.J. Rare Earths200927336236710.1016/S1002‑0721(08)60251‑3
    [Google Scholar]
  58. KahnM.G.C. BanerjeeS. WongS.S. Solubilization of oxidized single-walled carbon nanotubes in organic and aqueous solvents through organic derivatization.Nano Lett.20022111215121810.1021/nl025755d
    [Google Scholar]
  59. CayuelaA. SorianoM.L. ValcárcelM. Photoluminescent carbon dot sensor for carboxylated multiwalled carbon nanotube detection in river water.Sens. Actuators B Chem.201520759660110.1016/j.snb.2014.10.102
    [Google Scholar]
  60. MammeriF. BallarinA. GiraudM. BrusatinG. AmmarS. Photoluminescent properties of new quantum dot nanoparticles/carbon nanotubes hybrid structures.Colloids Surf. A Physicochem. Eng. Asp.201343913814410.1016/j.colsurfa.2013.03.026
    [Google Scholar]
  61. AhmadS. RehmanJ.U. UsmanM. Mansoor AliS. AliM. Pressure-induced physical properties of KNbO3 using first-principles calculations for photocatalytic application.Solid State Commun.202438211544810.1016/j.ssc.2024.115448
    [Google Scholar]
  62. RuyhanU.M. UsmanM. BibiN. NoreenS. AlqarniA.S. AzizA. RahmanS. AzizZ. AbbasiR.A. Evaluation of structural, electronic, optical and mechanical properties of Na-based Oxide‐Perovskites NaXO3 (X = Co, Be, Ba): A DFT study.Mater. Today Commun.20243910890810.1016/j.mtcomm.2024.108908
    [Google Scholar]
  63. RehmanM.A. ur Rehman, Z.; Usman, M.; Farrukh, U.; Alomar, S.Y.; Ahmad, N.; Ahmad, T.; Farid, A.; Hamad, A. Pressure-induced modulation of structural, electronic, and optical properties of LiCaF3 fluoro perovskite for optoelectronic applications.Solid State Commun.202438011544710.1016/j.ssc.2024.115447
    [Google Scholar]
  64. RehmanZ.U. RehmanM.A. KhanM.R. RehmanB. SikiruS. RizwanM. ChafiM. UsmanM. First principle study of X2GaAgCl6 (X = Cs, Rb) double perovskites: Structural, mechanical, vibrational, electronic, optical, SLME, thermoelectric, and thermodynamic properties for solar cell applications.Environ. Sci. Pollut. Res. Int.20243124348813489510.1007/s11356‑024‑33556‑8 38714613
    [Google Scholar]
  65. MeraA. Awais RehmanM. ur Rehman, Z.; Sarfraz, Z.; Sohaib, M.; Fatima, J.; Usman, M. Exploring the physical properties of Rb2TlSbM6 (M = Cl, Br) inorganic halide perovskites for solar cell applications: A DFT study.Inorg. Chem. Commun.202416511252810.1016/j.inoche.2024.112528
    [Google Scholar]
  66. AhmadS. RehmanJ.U. UsmanM. AliS.M. AliM. Unlocking the secrets of pressure-driven physical properties of NaNbO3 perovskite-oxide: A computational insight.Mater. Sci. Semicond. Process.202418010854710.1016/j.mssp.2024.108547
    [Google Scholar]
  67. BanerjeeS. Hemraj-BennyT. WongS.S. Covalent surface chemistry of single-walled carbon nanotubes.Adv. Mater.2005171172910.1002/adma.200401340
    [Google Scholar]
  68. HuN. DangG. ZhouH. JingJ. ChenC. Efficient direct water dispersion of multi-walled carbon nanotubes by functionalization with lysine.Mater. Lett.200761305285528710.1016/j.matlet.2007.04.084
    [Google Scholar]
  69. ÇiçekB. ErgunA. GençerN. Synthesis and evaluation in vitro effects of some macrocyclic thiacrown ethers on erythrocyte carbonic anhydrase I and II.Asian J. Chem.20122413
    [Google Scholar]
  70. ÇalışırÜ. ÇiçekB. Synthesis of thiol-glycol-functionalized carbon nanotubes and characterization with FTIR, TEM, TGA, and NMR technics.Chem. Pap.202074103293330210.1007/s11696‑020‑01158‑6
    [Google Scholar]
  71. LiuS. WangC. SuW. LvW. ZhuS. WangF. FuQ. Water dispersed multi-walled carbon nanotubes modified by tannin acid.Mater. Lett.2014123444710.1016/j.matlet.2014.02.075
    [Google Scholar]
  72. KimY.T. MitaniT. Surface thiolation of carbon nanotubes as supports: A promising route for the high dispersion of Pt nanoparticles for electrocatalysts.J. Catal.2006238239440110.1016/j.jcat.2005.12.020
    [Google Scholar]
  73. DoğanM. AyanoğluZ.G. Effect of modification on thermal stabilities and thermal degradation kinetics of poly(buthylmethacrylate)/multi-walled carbon nanotube nanocomposites.Plast. Rubber Compos.2023521374610.1080/14658011.2021.2015939
    [Google Scholar]
  74. WangC. WangQ. ZhuX. CuiM. JiaH. ZhangW. TangW. LengX. ShenW. Characterization on the conservation and diversification of miRNA156 gene family from lower to higher plant species based on phylogenetic analysis at the whole genomic level.Funct. Integr. Genomics201919693395210.1007/s10142‑019‑00679‑y 31172301
    [Google Scholar]
  75. RebeloS.L.H. LaiaC.A.T. SzefczykM. GuedesA. SilvaA.M.G. FreireC. Hybrid Zn-β-aminoporphyrin-carbon nanotubes: Pyrrolidine and direct covalent linkage recognition, and multiple-photo response.Molecules20232821743810.3390/molecules28217438 37959857
    [Google Scholar]
  76. ÇiçekB. ÇalışırÜ. TavaslıM. TülekR. TekeA. Synthesis and optical characterization of novel carbazole Schiff bases.J. Mol. Struct.20181153424710.1016/j.molstruc.2017.09.109
    [Google Scholar]
  77. JeongJ.S. JeonS.Y. LeeT.Y. ParkJ.H. ShinJ.H. AlegaonkarP.S. BerdinskyA.S. YooJ.B. Fabrication of MWNTs/nylon conductive composite nanofibers by electrospinning.Diamond Related Materials20061511-121839184310.1016/j.diamond.2006.08.026
    [Google Scholar]
  78. QiuL. ChenY. YangY. XuL. LiuX. A study of surface modifications of carbon nanotubes on the properties of polyamide 66/multiwalled carbon nanotube composites.J. Nanomater.201320131810.1155/2013/252417
    [Google Scholar]
  79. Avilés-BarretoS.L. SuleimanD. Effect of single-walled carbon nanotubes on the transport properties of sulfonated poly(styrene-isobutylene-styrene) membranes.J. Membr. Sci.20154749210210.1016/j.memsci.2014.09.049
    [Google Scholar]
  80. ÇiçekB. Synthesis and characterization determination aza-18-crown-6 modified carbon nanotubes and determination of adsorption capacity. J BAUN Inst.Sci. Technol.202123873887
    [Google Scholar]
/content/journals/coc/10.2174/0113852728319332240806053131
Loading
/content/journals/coc/10.2174/0113852728319332240806053131
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test