Skip to content
2000
Volume 29, Issue 2
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

The high dipolarophile structure of MWCNT compounds enables them to be used as a reactive 2π member in 1,3-dipolar cycloaddition reactions. N-substituted glycine ester compounds and employed 1,3-dipolar cycloaddition reactions involving azomethine-ylides for the synthesis of multiwalled carbon nanotube compounds that underwent covalent modification. Initially, N-substituted glycine esters and N-substituted glycine compounds were synthesized. N-substituted glycine and substituted aromatic aldehyde derivatives were reacted with the dipolarophilic MWCNTs, which have regioselectivity only on (6,6)-bonds, azomethine ylide intermediates over a 1,3-dipolar cycloaddition reaction to obtain the target pyridine-pyrrole-modified carbon nanotube derivatives . The compounds' structural characterizations were achieved using FTIR, Raman, NMR, TEM, UV-VIS, and TGA methods. The dispersibility of the compounds was evaluated in various solvents. The activity of each compound's antimicrobial properties against was assessed. Based on the obtained results, it was concluded that the compounds, by the method employed, adsorbed bacteria and decreased the bacterial concentration in their film form. According to the results, the compounds can be used in bacterial adsorption-based purification systems (the eradication of water and environmental pollutants) based on the results obtained.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728319336240711055314
2024-07-29
2024-12-25
Loading full text...

Full text loading...

References

  1. Avilés-BarretoS.L. SuleimanD. Effect of single-walled carbon nanotubes on the transport properties of sulfonated poly(styrene–isobutylene–styrene) membranes.J. Membr. Sci.20154749210210.1016/j.memsci.2014.09.049
    [Google Scholar]
  2. PrajapatiS.K. AgnihotriT. GomteS.S. Surface modification strategies for the carbon nanotubes.Chemically modified carbon nanotubes for commercial applications. AslamJ. HussainC.M. AslamR. John Wiley & Sons, Ltd2023517410.1002/9783527838790.ch2
    [Google Scholar]
  3. PandurangappaM. RaghuG.K. Chemically modified carbon nanotubes: Derivatization and their applications.Carbon nanotubes applications on electron devices. MarulandaJ.M. IntechOpen200849952610.5772/16635
    [Google Scholar]
  4. GeorgakilasV. TagmatarchisN. PantarottoD. BiancoA. BriandJ-P. PratoM. Amino acid functionalisation of water soluble carbon nanotubes.Chem. Commun. (Camb.)20022002243050305110.1039/b209843a
    [Google Scholar]
  5. GeorgakilasV. KordatosK. PratoM. GuldiD.M. HolzingerM. HirschA. Organic functionalization of of carbon nanotubes.J. Am. Chem. Soc.2002124576076110.1021/ja016954m
    [Google Scholar]
  6. LimJ.K. YunW.S. YoonM. LeeS.K. KimC.H. KimK. KimS.K. Selective thiolation of single-walled carbon nanotubes.Synth. Met.2003139252152710.1016/S0379‑6779(03)00337‑0
    [Google Scholar]
  7. LinY. ZhouB. Shiral FernandoK.A. LiuP. AllardL.F. SunY-P. Polymeric carbon nanocomposites from carbon nanotubes functionalized with matrix polymer.Macromolecules200336197199720410.1021/ma0348876
    [Google Scholar]
  8. HouP.X. LiuC. ChengH.M. Purification of carbon nanotubes.Carbon200846152003202510.1016/j.carbon.2008.09.009
    [Google Scholar]
  9. WangZ. WuZ. AlMasoudN. WengL. AlomarT.S. El-BahyZ.M. HeM. YangC. SunM. WasnikP. LiH. AlgadiH. AnnamareddyS.H.K. SridharD. Effective three-dimensional thermal conductivity networks in polystyrene/multi-walled carbon nanotubes/aluminum oxide@hexa-gonal boron nitride composites based on synergistic effects and isolated structures.Adv. Compos. Hybrid Mater.20236312510.1007/s42114‑023‑00702‑8
    [Google Scholar]
  10. MacawileM.C. AureseniaJ. Synthesis of acid-base bi-functionalized multiwalled carbon nanotube using supercritical carbon dioxide.J. Chem. Sci.202313536110.1007/s12039‑023‑02182‑1
    [Google Scholar]
  11. MishraS. SundaramB. Efficacy and challenges of carbon nanotube in wastewater and water treatment.Environ. Nanotechnol. Monit. Manag.20231910076410.1016/j.enmm.2022.100764
    [Google Scholar]
  12. JiangG. WangL. ChenC. DongX. ChenT. YuH. Study on attachment of highly branched molecules onto multiwalled carbon nanotubes.Mater. Lett.200559162085208910.1016/j.matlet.2005.01.085
    [Google Scholar]
  13. MostovoyA.S. YakovlevA.V. TseluikinV.N. StriletsA.A. Epoxy nanocomposites modified with functionalized multiwalled carbon nanotubes.Russ. J. Appl. Chem.2022951768310.1134/S1070427222010104
    [Google Scholar]
  14. ZhangS. LiW. WuH. JiaoJ. Multi-optimized flexible graphene oxide/multi-walled carbon nanotubes/ferroferric oxide nanopaper with enhanced electromagnetic wave absorption performance.Adv. Compos. Hybrid Mater.20236515410.1007/s42114‑023‑00736‑y
    [Google Scholar]
  15. MelchionnaM. MarchesanS. PratoM. FornasieroP. Carbon nanotubes and catalysis: the many facets of a successful marriage.Catal. Sci. Technol.2015583859387510.1039/C5CY00651A
    [Google Scholar]
  16. YadavM.D. JoshiH.M. SawantS.V. DasguptaK. PatwardhanA.W. JoshiJ.B. Advances in the application of carbon nanotubes as catalyst support for hydrogenation reactions.Chem. Eng. Sci.202327211858610.1016/j.ces.2023.118586
    [Google Scholar]
  17. YanY. MiaoJ. YangZ. XiaoF-X. YangH.B. LiuB. YangY. Carbon nanotube catalysts: recent advances in synthesis, characterization and applications.Chem. Soc. Rev.201544103295334610.1039/C4CS00492B
    [Google Scholar]
  18. AlguacilF.J. García-DíazI. Escudero BaqueroE. Rodríguez LargoO. LópezF.A. On the adsorption of cerium(III) using multiwalled carbon nanotubes.Metals (Basel)2020108105710.3390/met10081057
    [Google Scholar]
  19. YaoZ. BraidyN. BottonG.A. AdronovA. Polymerization from the surface of single-walled carbon nanotubes - preparation and characterization of nanocomposites.J. Am. Chem. Soc.200312551160151602410.1021/ja037564y
    [Google Scholar]
  20. HongC.Y. YouY.Z. PanC.Y. Synthesis of water-soluble multiwalled carbon nanotubes with grafted temperature-responsive shells by surface RAFT polymerization.Chem. Mater.20051792247225410.1021/cm048054l
    [Google Scholar]
  21. HadavifarM. BahramifarN. YounesiH. LiQ. Adsorption of mercury ions from synthetic and real wastewater aqueous solution by functionalized multi-walled carbon nanotube with both amino and thiolated groups.Chem. Eng. J.201423721722810.1016/j.cej.2013.10.014
    [Google Scholar]
  22. XuJ. YaoP. LiX. HeF. Synthesis and characterization of water-soluble and conducting sulfonated polyaniline/para-phenylenediamine-functionalized multi-walled carbon nanotubes nano-composite.Mater. Sci. Eng. B2008151321021910.1016/j.mseb.2008.07.003
    [Google Scholar]
  23. MormannW. LuY. ZouX. BergerR. Modification and grafting of multi-walled carbon nanotubes with Bisphenol-A-polycarbonate.Macromol. Chem. Phys.2008209202113212110.1002/macp.200800263
    [Google Scholar]
  24. WangY. IqbalZ. MalhotraS.V. Functionalization of carbon nanotubes with amines and enzymes.Chem. Phys. Lett.20054021-39610110.1016/j.cplett.2004.11.099
    [Google Scholar]
  25. LiR. ChangX. LiZ. ZangZ. HuZ. LiD. TuZ. Multiwalled carbon nanotubes modified with 2-aminobenzothiazole modified for uniquely selective solid-phase extraction and determination of Pb(II) ion in water samples.Mikrochim. Acta20111723-426927610.1007/s00604‑010‑0488‑9
    [Google Scholar]
  26. ZangZ. HuZ. LiZ. HeQ. ChangX. Synthesis, characterization and application of ethylenediamine-modified multiwalled carbon nanotubes for selective solid-phase extraction and preconcentration of metal ions.J. Hazard. Mater.20091722-395896310.1016/j.jhazmat.2009.07.078
    [Google Scholar]
  27. BrittoP.J. SanthanamK.S.V. AjayanP.M. Carbon nanotube electrode for oxidation of dopamine.Bioelectrochem. Bioenerg.199641112112510.1016/0302‑4598(96)05078‑7
    [Google Scholar]
  28. MusamehM. WangJ. MerkociA. LinY. Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes.Electrochem. Commun.200241074374610.1016/S1388‑2481(02)00451‑4
    [Google Scholar]
  29. ComptonR.G. WildgooseG.G. WongE.L.S. Carbon Nanotube–based sensors and biosensors.Biosensing using nanomaterials. MerkoçiA. New JerseyJohn Wiley & Sons, Inc.200913710.1002/9780470447734.ch1
    [Google Scholar]
  30. ShahrokhianS. FotouhiL. Carbon paste electrode incorporating multi-walled carbon nanotube/cobalt salophen for sensitive voltammetric determination of tryptophan.Sens. Actuators B Chem.2007123294294910.1016/j.snb.2006.10.053
    [Google Scholar]
  31. ShahrokhianS. Zare-MehrjardiH.R. Simultaneous voltammetric determination of uric acid and ascorbic acid using a carbon-paste electrode modified with multi-walled carbon nanotubes/nafion and cobalt(II)-nitrosalophen.Electroanalysis200719212234224210.1002/elan.200703974
    [Google Scholar]
  32. ShahrokhianS. Zare-MehrjardiH.R. Application of thionine-nafion supported on multi-walled carbon nanotube for preparation of a modified electrode in simultaneous voltammetric detection of dopamine and ascorbic acid.Electrochim. Acta200752226310631710.1016/j.electacta.2007.04.023
    [Google Scholar]
  33. ThakurC.K. KarthikeyanC. BhalS. Targeted delivery of Doxorubicin to breast cancer cells by multiwalled carbon nanotubes functionalized with Lysine via 1,3-Dipolar cycloaddition and conjugation with sugar moieties.Med. Sci. Forum 2022202214114010.3390/ECMC2022‑13421
    [Google Scholar]
  34. KesharwaniP. GhanghoriaR. JainN.K. Carbon nanotube exploration in cancer cell lines.Drug Discov. Today20121717-181023103010.1016/j.drudis.2012.05.003
    [Google Scholar]
  35. VashistS.K. ZhengD. PastorinG. Al-RubeaanK. LuongJ.H.T. SheuF-S. Delivery of drugs and biomolecules using carbon nanotubes.Carbon201149134077409710.1016/j.carbon.2011.05.049
    [Google Scholar]
  36. PastorinG. WuW. WieckowskiS. BriandJ-P. KostarelosK. PratoM. BiancoA. Double functionalisation of carbon nanotubes for multimodal drug delivery.Chem. Commun.200621111182118410.1039/b516309a
    [Google Scholar]
  37. PeretzS. RegevO. Carbon nanotubes as nanocarriers in medicine.Curr. Opin. Colloid Interface Sci.201217636036810.1016/j.cocis.2012.09.001
    [Google Scholar]
  38. RaffaV. CiofaniG. NitodasS. KarachaliosT. D’AlessandroD. MasiniM. CuschieriA. Can the properties of carbon nanotubes influence their internalization by living cells?Carbon200846121600161010.1016/j.carbon.2008.06.053
    [Google Scholar]
  39. AriasL.R. YangL. Inactivation of bacterial pathogens by carbon nanotubes in suspensions.Langmuir20092553003301210.1021/la802769m
    [Google Scholar]
  40. DongL. HendersonA. FieldC. Antimicrobial activity of single-walled carbon nanotubes suspended in different surfactants.J. Nanotechnol.201220121710.1155/2012/928924
    [Google Scholar]
  41. KangS. HerzbergM. RodriguesD.F. ElimelechM. Antibacterial effects of carbon nanotubes: Size does matter!Langmuir200824136409641310.1021/la800951v
    [Google Scholar]
  42. PasquiniL.M. HashmiS.M. SommerT.J. ElimelechM. ZimmermanJ.B. Impact of surface functionalization on bacterial cytotoxicity of single-walled carbon nanotubes.Environ. Sci. Technol.201246116297630510.1021/es300514s
    [Google Scholar]
  43. YangC. MamouniJ. TangY. YangL. Antimicrobial activity of single-walled carbon nanotubes: Length effect.Langmuir20102620160131601910.1021/la103110g
    [Google Scholar]
  44. SaxenaM. MittalD. BoudhR. Drug adsorption and anti-microbial activity of functionalized multiwalled carbon nanotubes.Adv. Nano Res.20211166767810.12989/anr.2021.11.6.667
    [Google Scholar]
  45. KausarH. KhanM.S. IslamA. AhmadA. KantR. NamiS.A.A. Polycarbazole-multiwalled carbon nanotubes based nanocomposite: Synthesis, spectral, biocidal and Acetaldehyde sensing studies.J. Mol. Struct.2021122912970410.1016/j.molstruc.2020.129704
    [Google Scholar]
  46. BougrinK. LoupyA. SoufiaouiM. Microwave-assisted solvent-free heterocyclic synthesis.J. Photochem. Photobiol. Photochem. Rev.200562-313916710.1016/j.jphotochemrev.2005.07.001
    [Google Scholar]
  47. GiofrèS. TieccoM. CelestiC. PatanèS. TrioloC. GulinoA. SpitaleriL. ScaleseS. ScuderiM. IannazzoD. Eco-friendly 1,3-dipolar cycloaddition reactions on graphene quantum dots in natural deep eutectic solvent.Nanomaterials (Basel)20201012254910.3390/nano10122549
    [Google Scholar]
  48. FukuuraS. YumuraT. Roles of carbon nanotube confinement in modulating regioselectivity of 1,3-dipolar cycloadditions.J. Phys. Chem. A2023127336962697310.1021/acs.jpca.3c04214
    [Google Scholar]
  49. RebeloS.L.H. LaiaC.A.T. SzefczykM. GuedesA. SilvaA.M.G. FreireC. Hybrid Zn-β-aminoporphyrin–carbon nanotubes: pyrrolidine and direct covalent linkage recognition, and multiple-photo response.Molecules20232821743810.3390/molecules28217438
    [Google Scholar]
  50. SofouP. ElemesY. Panou-PomonisE. StavrakoudisA. TsikarisV. SakarellosC. Sakarellos-DaitsiotisM. MagginiM. FormaggioF. TonioloC. Synthesis of a proline-rich [60]fullerene peptide with potential biological activity.Tetrahedron200460122823282810.1016/j.tet.2004.01.064
    [Google Scholar]
  51. WangP. ChenB. MetzgerR.M. Da RosT. PratoM. Preparation and deposition of stable monolayers of fullerene derivatives.J. Mater. Chem.19977122397240010.1039/a705950g
    [Google Scholar]
  52. BrunettiF.G. HerreroM.A. MuñozJ.M. GiordaniS. Díaz-OrtizA. FilipponeS. RuaroG. MeneghettiM. PratoM. VázquezE. Reversible microwave-assisted cycloaddition of aziridines to carbon nanotubes.J. Am. Chem. Soc.200712947145801458110.1021/ja077927k
    [Google Scholar]
  53. CahillL.S. YaoZ. AdronovA. PennerJ. MoonoosawmyK.R. KruseP. GowardG.R. Polymer-functionalized carbon nanotubes investigated by solid-state nuclear magnetic resonance and scanning tunneling microscopy.J. Phys. Chem. B200410831114121141810.1021/jp0491865
    [Google Scholar]
  54. GuldiD.M. MarcaccioM. PaolucciD. PaolucciF. TagmatarchisN. TasisD. VázquezE. PratoM. Single-wall carbon nanotube-ferrocene nanohybrids: Observing intramolecular electron transfer in functionalized SWNTs.Angew. Chem. Int. Ed.200342354206420910.1002/anie.200351289
    [Google Scholar]
  55. MagginiM. ScorranoG. PratoM. Addition of azomethine ylides to C60: synthesis, characterization, and functionalization of fullerene pyrrolidines.J. Am. Chem. Soc.1993115219798979910.1021/ja00074a056
    [Google Scholar]
  56. BrunettiF.G. HerreroM.A. MuñozJ.M. Díaz-OrtizA. AlfonsiJ. MeneghettiM. PratoM. VázquezE. Microwave-induced multiple functionalization of carbon nanotubes.J. Am. Chem. Soc.2008130258094810010.1021/ja801971k
    [Google Scholar]
  57. RubioN. HerreroM.A. MeneghettiM. Díaz-OrtizÁ. SchiavonM. PratoM. VázquezE. Efficient functionalization of carbon nanohorns via microwave irradiation.J. Mater. Chem.200919254407441310.1039/b900776h
    [Google Scholar]
  58. MinersS.A. FayM.W. BaldoniM. BesleyE. KhlobystovA.N. RanceG.A. Steric and electronic control of 1,3-dipolar cycloaddition reactions in carbon nanotube nanoreactors.J. Phys. Chem. C2019123106294630210.1021/acs.jpcc.9b01190
    [Google Scholar]
  59. KoutsioukisA. BelessiV. GeorgakilasV. Solid phase functionalization of MWNTs: an eco-friendly approach for carbon-based conductive inks.Green Chem.202123155442544810.1039/D1GC01043C
    [Google Scholar]
  60. Al-JumailiA. AlancherryS. BazakaK. JacobM. Review on the antimicrobial properties of carbon nanostructures.Materials (Basel)2017109106610.3390/ma10091066
    [Google Scholar]
  61. MallakpourS. ZadehnazariA. Preparation of dopamine-functionalized multi-wall carbon nanotube/poly(amide-imide) composites and their thermal and mechanical properties.N. Carbon Mater.2016311183010.1016/S1872‑5805(16)60001‑X
    [Google Scholar]
  62. LiuD. MaoY. DingL. Carbon nanotubes as antimicrobial agents for water disinfection and pathogen control.J. Water Health201816217118010.2166/wh.2018.228
    [Google Scholar]
  63. LiJ. GrennbergH. Microwave-assisted covalent sidewall functionalization of multiwalled carbon nanotubes.Chemistry200612143869387510.1002/chem.200501314
    [Google Scholar]
  64. TsugeO. KanemasaS. Recent advances in azomethine ylide chemistry.Advances in Heterocyclic Chemistry198923134910.1016/S0065‑2725(08)60332‑3
    [Google Scholar]
  65. ServinisL. GengenbachT.R. HusonM.G. HendersonL.C. FoxB.L. A novel approach to the functionalisation of pristine carbon fibre using azomethine 1,3-dipolar cycloaddition.Aust. J. Chem.201568233534410.1071/CH14254
    [Google Scholar]
  66. GuldiD.M. MartinN. Functionalized fullerenes: Synthesis and functions.Comprehensive nanoscience and technology. AndrewsD.L. ScholesG.D. WiederrechtG.P. Academic Press201137939810.1016/B978‑0‑12‑374396‑1.00007‑6
    [Google Scholar]
  67. CalisirU. ÇiçekB. Comparison of classic and microwave-assisted synthesis of benzo-thio crown ethers, and investigation of their ion pair extractions.J. Mol. Struct.2017114850551110.1016/j.molstruc.2017.07.081
    [Google Scholar]
  68. ÇiçekB. ErgünA. GençerN. Synthesis and evaluation in vitro effects of some macrocyclic thiacrown ethers on erythrocyte carbonic anhydrase I and II.Asian J. Org. Chem.201224837293731
    [Google Scholar]
  69. Characterizing graphene with Raman spectroscopy.2019Available from: https://assets.thermofisher.com/TFS-Assets/MSD/Application-Notes/AN53174-characterizing-graphene-raman-spectroscopy.pdf
  70. LiJ. TangT. ZhangX. LiS. LiM. Dissolution, characterization and photofunctionalization of carbon nanotubes.Mater. Lett.200761224351435310.1016/j.matlet.2007.01.103
    [Google Scholar]
  71. TanaseC.I. HanganuA. DraghiciC. Trifluoroacetylation of alcohols during NMR study of compounds with bicycle[2.2.1]heptane, oxabicyclo[3.3.0]octane and bicycle[3.3.0]octane skeleton.Revista de Chimie202172215617710.37358/RC.21.2.8428
    [Google Scholar]
  72. ÇalışırÜ. ÇiçekB. Synthesis of thiol-glycol-functionalized carbon nanotubes and characterization with FTIR, TEM, TGA, and NMR technics.Chem. Pap.202074103293330210.1007/s11696‑020‑01158‑6
    [Google Scholar]
  73. ÇalışırÜ. ÇiçekB. DoğanM. Microwave-assisted cross-coupling synthesis of aryl functionalized MWCNTs and investigation of hydrogen storage properties.Fuller. Nanotub. Carbon Nanostruct.2021291189990610.1080/1536383X.2021.1913727
    [Google Scholar]
  74. ChangY.H. LinP.Y. WuM.S. LinK-F. Extraordinary aspects of bromo-functionalized multi-walled carbon nanotubes as initiator for polymerization of ionic liquid monomers.Polymer (Guildf.)201253102008201410.1016/j.polymer.2012.03.020
    [Google Scholar]
  75. Çi̇çekB. Synthesis and characterization determination aza-18-crown-6 modified carbon nanotubes and determination of adsorption capacity.Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi202123287388710.25092/baunfbed.937736
    [Google Scholar]
  76. StandardTJI JIS Z 2801 – Test for antimicrobial activity of plastics.Available from: https://microchemlab.com/test/jis-z-2801-test-antimicrobial-activity-plastics/
/content/journals/coc/10.2174/0113852728319336240711055314
Loading
/content/journals/coc/10.2174/0113852728319336240711055314
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test