Skip to content
2000
Volume 29, Issue 2
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

For the first time, a sonochemical method has been developed for the structural rearrangement of [5,6]-open mono- and poly adducts of fullerene C containing spirocyclic fragments of camphor analogs into [6,6]-closed isomers. The isomerization reaction occurs with quantitative yield under mild conditions: 1 hour at room temperature. A probable mechanism of sonochemical isomerization has been proposed. Mono- and poly adducts of C fullerene containing spirocyclic fragments of camphor analogues were obtained in the reaction of metal complex catalysis by the Pd(acac)–2PPh–4EtAl system with the participation of fullerene and diazo compounds.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728338711240815062515
2024-08-19
2025-01-27
Loading full text...

Full text loading...

References

  1. DikyV.V. KaboG.J. Thermodynamic properties of C60 and C70 fullerenes.Russ. Chem. Rev.20006929510410.1070/RC2000v069n02ABEH000535
    [Google Scholar]
  2. OhC.H. ParkD.I. RyuJ.H. ChoJ.H. HanJ.S. Syntheses and characterization of cyclopropane-fused hydrocarbons as new high energetic materials.Bull. Korean Chem. Soc.200728322324
    [Google Scholar]
  3. YamadaM. AkasakaT. NagaseS. Carbene additions to fullerenes.Chem. Rev.201311397209726410.1021/cr3004955 23773169
    [Google Scholar]
  4. TuktarovA.R. DzhemilevU.M. Diazo compounds in the chemistry of fullerenes.Russ. Chem. Rev.201079758561010.1070/RC2010v079n07ABEH004111
    [Google Scholar]
  5. YamadaM. NagaseS. AkasakaT. Functionalization of Fullerenes: Addition Reactions. Handbook of Fullerene Science and Technology.Eds.; Springer Nature Singapore: Singapore202231336210.1007/978‑981‑16‑8994‑9_33
    [Google Scholar]
  6. YanW. SeifermannS.M. PierratP. BräseS. Synthesis of highly functionalized C 60 fullerene derivatives and their applications in material and life sciences.Org. Biomol. Chem.2015131255410.1039/C4OB01663G 25329994
    [Google Scholar]
  7. KrotoH.W. The stability of the fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70.Narure1987329529531
    [Google Scholar]
  8. TaylorR. A valence bond approach to explaining fullerene stabilities.Tetrahedron Lett.199132303731373410.1016/S0040‑4039(00)79780‑2
    [Google Scholar]
  9. HirschA. Addition Reactions of Buckminsterfullerene (C60).Synthesis19951995889591310.1055/s‑1995‑4046
    [Google Scholar]
  10. PratoM. LucchiniV. MagginiM. StimpflE. ScorranoG. EiermannM. SuzukiT. WudlF. Energetic preference in 5,6 and 6,6 ring junction adducts of C60: fulleroids and methanofullerenes.J. Am. Chem. Soc.1993115188479848010.1021/ja00071a080
    [Google Scholar]
  11. DiederichF. IsaacsL. PhilpD. Syntheses, structures, and properties of methanofullerenes.Chem. Soc. Rev.199423424325510.1039/cs9942300243
    [Google Scholar]
  12. OhnoT. MoriwakiK. MiyataT. Intramolecular charge-transfer interaction in a new dyad based on C(60) and bis(4′-tert-butylbiphenyl-4-yl)aniline (BBA) donor.J. Org. Chem.200166103397340110.1021/jo001100q 11348122
    [Google Scholar]
  13. TuktarovA.R. KhuzinA.A. KorolevV.V. DzhemilevU.M. Catalytic cycloaddition of diazoalkanes with heterocyclic substituents to fullerene C60.Russ. J. Org. Chem.20124819910310.1134/S1070428012010150
    [Google Scholar]
  14. IshidaT. ShinozukaK. NogamiT. KubotaM. OhashiM. Synthesis and characterization of C60 derivatives possessing TEMPO radicals.Tetrahedron199652145103511210.1016/0040‑4020(96)00117‑2
    [Google Scholar]
  15. MartínN. SánchezL. GuldiD.M. Stabilisation of charge-separated states via gain of aromaticity and planarity of the donor moiety in C60-based dyads.Chem. Commun. (Camb.)2000211311410.1039/a908770b
    [Google Scholar]
  16. HummelenJ.C. KnightB.W. LePeqF. WudlF. YaoJ. WilkinsC.L. Preparation and characterization of fulleroid and methanofullerene derivatives.J. Org. Chem.199560353253810.1021/jo00108a012
    [Google Scholar]
  17. XuJ.H. LiY.L. ZhengD.G. YangJ.K. MaoZ. ZhuD.B. An unexpected reaction: [2+1] cycloaddition of [60]fullerene with 4, 4, 5, 5-tetramethylimidazolidine-2-thione and DL-valine.Tetrahedron Lett.199738376613661610.1016/S0040‑4039(97)01469‑X
    [Google Scholar]
  18. TuktarovA.R. KorolevV.V. TulyabaevA.R. YanybinV.M. KhalilovL.M. DzhemilevU.M. Cycloaddition of diazocycloalkanes to [60]fullerene in the presence of Pd-containing complex catalyst.Russ. Chem. Bull.201059597798310.1007/s11172‑010‑0193‑1
    [Google Scholar]
  19. DzhemilevU.M. TuktarovA.R. KorolevV.V. KhalilovL.M. Cycloaddition of cage and polycyclic diazo compounds to C60 fullerene catalyzed by Pd(acac)2-2PPh3-4Et3Al.Petrol. Chem.201151123127
    [Google Scholar]
  20. ReinovM.V. YurovskayaM.A. The formation of [5,6]- and [6,6]-open fulleroid structures.Russ. Chem. Rev.200776871573010.1070/RC2007v076n08ABEH003695
    [Google Scholar]
  21. IsaacsL. WehrsigA. DiederichF. Improved Purification of C60 and Formation of σ‐ and π‐Homoaromatic methano‐bridged fullerenes by reaction with alkyl diazoacetates.Helv. Chim. Acta19937631231125010.1002/hlca.19930760310
    [Google Scholar]
  22. DiederichF. IsaacsL. PhilpD. Valence isomerism and rearrangements in methanofullerenes.J. Chem. Soc., Perkin Trans. 21994339139410.1039/p29940000391
    [Google Scholar]
  23. OsterodtJ. ZettA. VögtleF. Fullerenes by pyrolysis of hydrocarbons and synthesis of isomeric methanofullerenes.Tetrahedron199652144949496210.1016/0040‑4020(96)00103‑2
    [Google Scholar]
  24. MeijerM.D. RumpM. GossageR.A. JastrzebskiJ.H.T.B. van KotenG. New “bucky-ligands”. Potentially monoanionic terdentate diamino aryl pincer ligands anchored to C60.Tetrahedron Lett.199839376773677610.1016/S0040‑4039(98)01423‑3
    [Google Scholar]
  25. LiZ. BouhadirK.H. ShevlinP.B. Convenient synthesis of 6,5 open and 6,6 closed cycloalkylidenefullerenes.Tetrahedron Lett.199637274651465410.1016/0040‑4039(96)00917‑3
    [Google Scholar]
  26. EiermannM. WudlF. PratoM. MagginiM. Electrochemically induced isomerization of a fulleroid to a methanofullerene.J. Am. Chem. Soc.1994116188364836510.1021/ja00097a053
    [Google Scholar]
  27. EchegoyenL. EchegoyenL.E. Electrochemistry of fullerenes and their derivatives.Acc. Chem. Res.199831959360110.1021/ar970138v
    [Google Scholar]
  28. CeroniP. ContiF. CorvajaC. MagginiM. PaolucciF. RoffiaS. ScorranoG. ToffolettiA. Tempo-C 61: An unusual example of fulleroid to methanofullerene conversion.J. Phys. Chem. A2000104115616310.1021/jp9929014
    [Google Scholar]
  29. JanssenR.A.J. HummelenJ.C. WudlF. Photochemical fulleroid to methanofullerene conversion via the Di-.pi.-methane (zimmerman) rearrangement.J. Am. Chem. Soc.1995117154454510.1021/ja00106a068
    [Google Scholar]
  30. GonzalezR. HummelenJ.C. WudlF. The specific acid-catalyzed and photochemical isomerization of a robust fulleroid to a methanofullerene.J. Org. Chem.19956082618262010.1021/jo00113a049
    [Google Scholar]
  31. LiH. ZhaoW. SaravanamuruganS. DaiW. HeJ. MeierS. YangS. RiisagerA. Control of selectivity in hydrosilane-promoted heterogeneous palladium-catalysed reduction of furfural and aromatic carboxides.Commun. Chem.2018113210.1038/s42004‑018‑0033‑z
    [Google Scholar]
  32. LiH. ZhaoW. RiisagerA. SaravanamuruganS. WangZ. FangZ. YangS. A Pd-Catalyzed in situ domino process for mild and quantitative production of 2,5-dimethylfuran directly from carbohydrates.Green Chem.20171992101210610.1039/C7GC00580F
    [Google Scholar]
  33. LiH. ZhaoW. FangZ. Hydrophobic Pd nanocatalysts for one-pot and high-yield production of liquid furanic biofuels at low temperatures.Appl. Catal. B2017215182710.1016/j.apcatb.2017.05.039
    [Google Scholar]
  34. KinzyabaevaZ.S. SharipovG.L. A selective synthesis of the fullerene-fused dioxane adduct via heterogeneous reaction of C60 with α-diols and NaOH under ultrasonication.Ultrason. Sonochem.20184211912310.1016/j.ultsonch.2017.11.012 29429652
    [Google Scholar]
  35. KinzyabaevaZ.S. SabirovD.S. Sonochemical synthesis of novel C60 fullerene 1,4-oxathiane derivative through the intermediate fullerene radical anion.Ultrason. Sonochem.20206710516910.1016/j.ultsonch.2020.105169 32417624
    [Google Scholar]
  36. KinzyabaevaZ.S. SabirovD.Sh. New sonochemical reactions of the C60 fullerene with amino alcohols yielding morpholine–C60 adducts.Fuller. Nanotub. Carbon Nanostruct.20223011341141
    [Google Scholar]
  37. SmithA.B.III StronginR.M. BrardL. FurstG.T. RomanowW.J. OwensK.G. GoldschmidtR.J. KingR.C. Synthesis of prototypical fullerene cyclopropanes and annulenes. isomer differentiation via nmr and uv spectroscopy.J. Am. Chem. Soc.1995117205492550210.1021/ja00125a009
    [Google Scholar]
  38. SchickG. HirschA. Highly diastereoselective formation of stable fulleroids.Tetrahedron199854174283429610.1016/S0040‑4020(98)00125‑2
    [Google Scholar]
  39. WarnerP.M. Fullerenes vs. fulleroids: understanding their relative energies.J. Am. Chem. Soc.199411624110591106610.1021/ja00103a023
    [Google Scholar]
  40. DragoeN. ShimotaniH. WangJ. IwayaM. de Bettencourt-DiasA. BalchA.L. KitazawaK. First unsymmetrical bisfullerene, C 121: Evidence for the presence of both homofullerene and methanofullerene cages in one molecule.J. Am. Chem. Soc.200112371294130110.1021/ja003350u
    [Google Scholar]
  41. SmithA.B.III StronginR.M. BrardL. FurstG.T. RomanowW.J. OwensK.G. KingR.C. 1,2-Methanobuckminsterfullerene (C61H2), the parent fullerene cyclopropane: synthesis and structure.J. Am. Chem. Soc.1993115135829583010.1021/ja00066a063
    [Google Scholar]
  42. HallM.H. LuH. ShevlinP.B. Observation of both thermal first-order and photochemical zero-order kinetics in the rearrangement of [6,5] open fulleroids to [6,6] closed fullerenes.J. Am. Chem. Soc.200112371349135410.1021/ja003042w
    [Google Scholar]
  43. ChuikoV.A. VyglazovO.G. Skeletal rearrangements of monoterpenoids of the carane series.Russ. Chem. Rev.2003721496710.1070/RC2003v072n01ABEH000735
    [Google Scholar]
  44. LiZ. ShevlinP.B. Why is the rearrangement of [6,5] open fulleroids to [6,6] closed fullerenes zero order?J. Am. Chem. Soc.199711951149115010.1021/ja963088i
    [Google Scholar]
  45. RieszP. BerdahlD. ChristmanC.L. Free radical generation by ultrasound in aqueous and nonaqueous solutions.Environ. Health Perspect.19856423325210.1289/ehp.8564233 3007091
    [Google Scholar]
  46. KinzyabaevaZ.S. SadykovR.A. SharipovG.L. Free-radical mechanism of the sonochemical reaction of fullerenes C60 and C70 with ethylene glycol in the presence of NaOH.Fuller. Nanotub. Carbon Nanostruct.20192787888610.1080/1536383X.2019.1653857
    [Google Scholar]
  47. BersonJ.A. WillcottM.R.III Thermally induced skeletal rearrangements of tropilidenes.J. Am. Chem. Soc.196688112494250210.1021/ja00963a025
    [Google Scholar]
  48. SuslickK.S. Mechanochemistry and sonochemistry: concluding remarks.Faraday Discuss.201417041142210.1039/C4FD00148F 25406388
    [Google Scholar]
  49. BangJ.H. SuslickK.S. Applications of ultrasound to the synthesis of nanostructured materials.Adv. Mater.201022101039105910.1002/adma.200904093 20401929
    [Google Scholar]
  50. SuslickK.S. HammertonD.A. ClineR.E. Sonochemical hot spot.J. Am. Chem. Soc.1986108185641564210.1021/ja00278a055
    [Google Scholar]
  51. FlintE.B. SuslickK.S. The temperature of cavitation.Science199125350261397139910.1126/science.253.5026.1397 17793480
    [Google Scholar]
  52. SuslickK.S. Sonochemistry.Science199024749491439144510.1126/science.247.4949.1439 17791211
    [Google Scholar]
  53. KlessA. NendelM. WilseyS. HoukK.N. Origin of the preference for the orbital symmetry forbidden stereochemistry of the 1,5-sigmatropic shift of substituted norcaradienes.J. Am. Chem. Soc.1999121184524452510.1021/ja9840192
    [Google Scholar]
  54. KlärnerF-G. Stereochemistry of the degenerate norcaradiene rearrangement: a stereospecific symmetry‐forbidden process.Angew. Chem. Int. Ed. Engl.197413426827010.1002/anie.197402681
    [Google Scholar]
  55. KlärnerF-G. YaslakS. WetteM. Zur Stereochemie Der Norcaradien‐Norcaradien‐Umlagerung, II. die thermische umlagerung optisch aktiver [norcaradien ⇌ cycloheptatrien]‐derivate.Chem. Ber.197911241168118810.1002/cber.19791120412
    [Google Scholar]
  56. KlaernerF.G. BrasselB. Stereochemistry of the thermal walk rearrangement of optically active 2,7-dimethyl-7-methoxymethyl-1,3,5-cyclohep-tatriene: 1,5-carbon migration with inversion, no one-center epimerization at C-7.J. Am. Chem. Soc.198010272469247010.1021/ja00527a062
    [Google Scholar]
  57. JarzȩckiA.A. GajewskiJ. DavidsonE.R. Thermal rearrangements of norcaradiene.J. Am. Chem. Soc.1999121296928693510.1021/ja984471l
    [Google Scholar]
  58. RubinY. KhanS. FreedbergD.I. YeretzianC. Synthesis and X-ray structure of a Diels-Alder adduct of fullerene C60.J. Am. Chem. Soc.1993115134434510.1021/ja00054a049
    [Google Scholar]
  59. ElemesY. SilvermanS.K. SheuC. KaoM. FooteC.S. AlvarezM.M. WhettenR.L. Reaction of C60 with dimethyldioxirane-formation of an epoxide and a 1,3‐dioxolane derivative.Angew. Chem. Int. Ed. Engl.199231335135310.1002/anie.199203511
    [Google Scholar]
  60. TuktarovA.R. AkhmetovA.R. KhuzinA.A. DzhemilevU.M. Synthesis and properties of energy-rich methanofullerenes containing norbornadiene and quadricyclane moieties.J. Org. Chem.20188374160416610.1021/acs.joc.8b00119 29533625
    [Google Scholar]
/content/journals/coc/10.2174/0113852728338711240815062515
Loading
/content/journals/coc/10.2174/0113852728338711240815062515
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test