Skip to content
2000
Volume 29, Issue 3
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Here, we report the solvent-free one-pot multicomponent synthesis of 4-substituted-1,5-benzodiazepine derivatives from -phenylenediamine, aromatic aldehydes, and dimedone using [DBUH][HSO] as a catalyst in excellent yields. This process was carried out in search of a reusable, easily accessible, affordable, and efficient catalyst. 1,5-Benzodiazepines demonstrate a new family of good inhibitors with potent anti-mycobacterial properties. The most promising compounds in the present series are , , and which showed excellent activity and inhibited the growth of both and strains with lower MICs. The most active compounds were further studied for their cytotoxicity against cell lines MCF-7, A549, HCT116, and THP-1 by MTT assays and the compounds were found to be non-toxic. The fact that none of these compounds work against either Gram-positive or Gram-negative bacteria suggests that they are only effective against MTB. The docking of the molecules against mycobacterial enoyl reductase, InhA enzyme could provide well-clustered solutions and have given valuable insights into the thermodynamic elements governing the binding affinities. The findings of this investigation unmistakably point to the discovery of extremely specific and selective MTB inhibitors, which can now be investigated further in search of possible anti-tubercular drugs.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728315680240815095102
2024-08-28
2024-11-19
Loading full text...

Full text loading...

References

  1. DelfaniA.M. KiyaniH. ZamaniM. Synthesis of tetrahydrobenzo[b]pyrans catalyzed by 1,3-dibenzyl-1h-benzo[d]imidazole-3-ium chloride.Curr. Org. Chem.202327171542155210.2174/0113852728269951231009060535
    [Google Scholar]
  2. DelfaniA.M. KiyaniH. ZamaniM. An expeditious synthesis of ethyl-2-(4-(arylmethylene)-5-oxo-4,5-dihydroisoxazol-3-yl)acetate derivatives.Curr. Org. Chem.202226161575158410.2174/1385272827666221124105402
    [Google Scholar]
  3. ReihaniN. KiyaniH. Three-component synthesis of 4-arylidene-3-alkylisoxazol-5(4h)-ones in the presence of potassium 2,5-dioxoimidazolidin-1-ide.Curr. Org. Chem.202125895096210.2174/1385272825666210212120517
    [Google Scholar]
  4. KamalifarS. KiyaniH. An expeditious one-pot three-component synthesis of 4-Aryl-3,4-dihydrobenzo[g]quinoline-2,5,10(1H)-triones under Green Conditions.Curr. Org. Chem.202023232626263410.2174/1385272823666191108123330
    [Google Scholar]
  5. OstadzadehH. KiyaniH. Multicomponent synthesis of tetrahydrobenzo[b]pyrans, pyrano[2,3-d]pyrimidines, and dihydropyrano[3,2-c]chromenes catalyzed by sodium benzoate.Polycycl. Aromat. Compd.202343109318933710.1080/10406638.2022.2162091
    [Google Scholar]
  6. KamalifarS. KiyaniH. An expeditious and green one-pot synthesis of 12-substituted-3,3-dimethyl-3,4,5,12-tetrahydrobenzo[b]acridine-1,6,11(2H)-triones.Res. Chem. Intermed.201945125975598710.1007/s11164‑019‑04014‑9
    [Google Scholar]
  7. KiyaniH. GhorbaniF. Efficient tandem synthesis of a variety of pyran-annulated heterocycles, 3,4-disubstituted isoxazol-5(4H)-ones, and α,β-unsaturated nitriles catalyzed by potassium hydrogen phthalate in water.Res. Chem. Intermed.201541107847788210.1007/s11164‑014‑1863‑7
    [Google Scholar]
  8. AslanpourS. KiyaniH. Rapid synthesis of fully substituted arylideneisoxazol-5(4H)-one using zinc oxide nanoparticles.Res. Chem. Intermed.202349104603461910.1007/s11164‑023‑05059‑7
    [Google Scholar]
  9. (a HancuG. GáspárA. GyéresiÁ. Separation of 1,4-benzodiazepines by micellar elektrokinetic capillary chromatography.J. Biochem. Biophys. Methods200769325125910.1016/j.jbbm.2006.02.00316563516
    [Google Scholar]
  10. (b SuJ. TangH. McKittrickB.A. BurnettD.A. ZhangH. Smith-TorhanA. FawziA. LachowiczJ. Modification of the clozapine structure by parallel synthesis.Bioorg. Med. Chem. Lett.200616174548455310.1016/j.bmcl.2006.06.03416806922
    [Google Scholar]
  11. (c KosychovaL. PleckaitieneL. StaniulyteZ. JancieneR. PalaimaA. PuodziunaiteB.D. A convenient synthesis of novel substituted imidazo[1,2-a][1,5]benzodiazepine derivatives.ARKIVOC200620061315816410.3998/ark.5550190.0007.d16
    [Google Scholar]
  12. Praveen KumarC. ReddyT.S. MainkarP.S. BansalV. ShuklaR. ChandrasekharS. HügelH.M. Synthesis and biological evaluation of 5,10-dihydro-11H-dibenzo[b,e][1,4]diazepin-11-one structural derivatives as anti-cancer and apoptosis inducing agents.Eur. J. Med. Chem.201610867468610.1016/j.ejmech.2015.12.007 26735909
    [Google Scholar]
  13. (aNarayana, B.; Vijaya Raj, K.K.; Ashalatha, B.V.; Kumari, N.S. Synthesis of some new substituted triazolo[4,3-a][1,4]benzodiazepine derivatives as potent anticonvulsants.Eur. J. Med. Chem.200641341742210.1016/j.ejmech.2005.12.00316472891
    [Google Scholar]
  14. (b KondaS.G. ShaikhB.M. ChavanS.A. DawaneB.S. Polyethylene glycol (PEG-400): An efficient and recyclable reaction medium for the synthesis of novel 1; 5-benzodiazepines and their antimicrobial activity.Chin. Chem. Lett.2011221656810.1016/j.cclet.2010.09.012
    [Google Scholar]
  15. (c HaS.K. ShobhaD. MoonE. ChariM.A. MukkantiK. KimS.H. AhnK.H. KimS.Y. Anti-neuroinflammatory activity of 1,5-benzodiazepine derivatives.Bioorg. Med. Chem. Lett.201020133969397110.1016/j.bmcl.2010.04.13320537534
    [Google Scholar]
  16. (aNarayana, B.; Vijaya Raj, K.K.; Ashalatha, B.V.; Kumari, N.S. Synthesis of some new substituted triazolo[4,3-a][1,4]benzodiazepine derivatives as potent anticonvulsants.Eur. J. Med. Chem.200641341742210.1016/j.ejmech.2005.12.00316472891
    [Google Scholar]
  17. (aNarayana, B.; Vijaya Raj, K.K.; Ashalatha, B.V.; Kumari, N.S. Synthesis of some new substituted triazolo[4,3-a][1,4]benzodiazepine derivatives as potent anticonvulsants.Eur. J. Med. Chem.200641341742210.1016/j.ejmech.2005.12.00316472891
    [Google Scholar]
  18. (aNarayana, B.; Vijaya Raj, K.K.; Ashalatha, B.V.; Kumari, N.S. Synthesis of some new substituted triazolo[4,3-a][1,4]benzodiazepine derivatives as potent anticonvulsants.Eur. J. Med. Chem.200641341742210.1016/j.ejmech.2005.12.00316472891
    [Google Scholar]
  19. (aNarayana, B.; Vijaya Raj, K.K.; Ashalatha, B.V.; Kumari, N.S. Synthesis of some new substituted triazolo[4,3-a][1,4]benzodiazepine derivatives as potent anticonvulsants.Eur. J. Med. Chem.200641341742210.1016/j.ejmech.2005.12.00316472891
    [Google Scholar]
  20. (aNarayana, B.; Vijaya Raj, K.K.; Ashalatha, B.V.; Kumari, N.S. Synthesis of some new substituted triazolo[4,3-a][1,4]benzodiazepine derivatives as potent anticonvulsants.Eur. J. Med. Chem.200641341742210.1016/j.ejmech.2005.12.00316472891
    [Google Scholar]
  21. (aNarayana, B.; Vijaya Raj, K.K.; Ashalatha, B.V.; Kumari, N.S. Synthesis of some new substituted triazolo[4,3-a][1,4]benzodiazepine derivatives as potent anticonvulsants.Eur. J. Med. Chem.200641341742210.1016/j.ejmech.2005.12.00316472891
    [Google Scholar]
  22. (aNarayana, B.; Vijaya Raj, K.K.; Ashalatha, B.V.; Kumari, N.S. Synthesis of some new substituted triazolo[4,3-a][1,4]benzodiazepine derivatives as potent anticonvulsants.Eur. J. Med. Chem.200641341742210.1016/j.ejmech.2005.12.00316472891
    [Google Scholar]
  23. (aNarayana, B.; Vijaya Raj, K.K.; Ashalatha, B.V.; Kumari, N.S. Synthesis of some new substituted triazolo[4,3-a][1,4]benzodiazepine derivatives as potent anticonvulsants.Eur. J. Med. Chem.200641341742210.1016/j.ejmech.2005.12.00316472891
    [Google Scholar]
  24. (aNarayana, B.; Vijaya Raj, K.K.; Ashalatha, B.V.; Kumari, N.S. Synthesis of some new substituted triazolo[4,3-a][1,4]benzodiazepine derivatives as potent anticonvulsants.Eur. J. Med. Chem.200641341742210.1016/j.ejmech.2005.12.00316472891
    [Google Scholar]
  25. (aNarayana, B.; Vijaya Raj, K.K.; Ashalatha, B.V.; Kumari, N.S. Synthesis of some new substituted triazolo[4,3-a][1,4]benzodiazepine derivatives as potent anticonvulsants.Eur. J. Med. Chem.200641341742210.1016/j.ejmech.2005.12.00316472891
    [Google Scholar]
  26. (aNarayana, B.; Vijaya Raj, K.K.; Ashalatha, B.V.; Kumari, N.S. Synthesis of some new substituted triazolo[4,3-a][1,4]benzodiazepine derivatives as potent anticonvulsants.Eur. J. Med. Chem.200641341742210.1016/j.ejmech.2005.12.00316472891
    [Google Scholar]
  27. (aNarayana, B.; Vijaya Raj, K.K.; Ashalatha, B.V.; Kumari, N.S. Synthesis of some new substituted triazolo[4,3-a][1,4]benzodiazepine derivatives as potent anticonvulsants.Eur. J. Med. Chem.200641341742210.1016/j.ejmech.2005.12.00316472891
    [Google Scholar]
  28. (aNarayana, B.; Vijaya Raj, K.K.; Ashalatha, B.V.; Kumari, N.S. Synthesis of some new substituted triazolo[4,3-a][1,4]benzodiazepine derivatives as potent anticonvulsants.Eur. J. Med. Chem.200641341742210.1016/j.ejmech.2005.12.00316472891
    [Google Scholar]
  29. SangshettiJ.N. ChoutheR.S. JadhavM.R. SakleN.S. ChabukswarA. GonjariI. DarandaleS. ShindeD.B. Green synthesis and anxiolytic activity of some new dibenz-[1,4]diazepine-1-one analogues.Arab. J. Chem.201710S1356S136310.1016/j.arabjc.2013.04.004
    [Google Scholar]
  30. El-SabbaghO.I. El-NabtityS.M. Synthesis and pharmacological studies for new benzotriazole and dibenzodiazepine derivatives as antipsychotic agents.Bull. Korean Chem. Soc.20093071445145110.5012/bkcs.2009.30.7.1445
    [Google Scholar]
  31. ZouH. LimpertA.S. ZouJ. DemboA. LeeP.S. GrantD. ArdeckyR. PinkertonA.B. MagnusonG.K. GoldmanM.E. RongJ. TerieteP. ShefflerD.J. ReedJ.C. CosfordN.D.P. Benzodiazepinone derivatives protect against endoplasmic reticulum stress-mediated cell death in human neuronal cell lines.ACS Chem. Neurosci.20156346447510.1021/cn500297v 25544056
    [Google Scholar]
  32. McGowanD. NyanguileO. CummingsM.D. VendevilleS. VandyckK. Van den BroeckW. BouttonC.W. De BondtH. QuirynenL. AmssomsK. BonfantiJ.F. LastS. RombautsK. TahriA. HuL. DelouvroyF. VermeirenK. VandercruyssenG. Van der HelmL. CleirenE. MostmansW. LoryP. PilleG. Van EmelenK. FanningG. PauwelsF. LinT.I. SimmenK. RaboissonP. 1,5-Benzodiazepine inhibitors of HCV NS5B polymerase.Bioorg. Med. Chem. Lett.20091992492249610.1016/j.bmcl.2009.03.035 19342234
    [Google Scholar]
  33. (a SchimerJ. CíglerP. VeselýJ. Grantz ŠaškováK. LepšíkM. BryndaJ. ŘezáčováP. KožíšekM. CísařováI. OberwinklerH. KraeusslichH.G. KonvalinkaJ. Structure-aided design of novel inhibitors of HIV protease based on a benzodiazepine scaffold.J. Med. Chem.20125522101301013510.1021/jm301249q23050738
    [Google Scholar]
  34. (b FaderL.D. BethellR. BonneauP. BösM. BousquetY. CordingleyM.G. CoulombeR. DeroyP. FaucherA.M. GagnonA. GoudreauN. Grand-MaîtreC. GuseI. HuckeO. KawaiS.H. LacosteJ.E. LandryS. LemkeC.T. MalenfantE. MasonS. MorinS. O’MearaJ. SimoneauB. TitoloS. YoakimC. Discovery of a 1,5-dihydrobenzo[b][1,4]diazepine-2,4-dione series of inhibitors of HIV-1 capsid assembly.Bioorg. Med. Chem. Lett.201121139840410.1016/j.bmcl.2010.10.131 21087861
    [Google Scholar]
  35. (a LuoY.Q. XuF. HanX.Y. Qi, Samarium diiodide catalyzed synthesis of 2,3-dihydro-1H-benzo[b][1,4]-diazepine derivatives.Chin. J. Chem.200523101417142010.1002/cjoc.200591417
    [Google Scholar]
  36. (b BandgarB.P. PatilA.V. ChavanO.S. Silica supported fluoroboric acid as a novel, efficient and reusable catalyst for the synthesis of 1,5-benzodiazepines under solvent-free conditions.J. Mol. Catal. Chem.20062561-29910510.1016/j.molcata.2006.04.024
    [Google Scholar]
  37. (c CuriniM. EpifanoF. MarcotullioM.C. RosatiO. Ytterbium triflate promoted synthesis of 1,5-benzodiazepine derivatives.Tetrahedron Lett.200142183193319510.1016/S0040‑4039(01)00413‑0
    [Google Scholar]
  38. (d ShindeP.V. ShingateB.B. ShingareM.S. An organocatalyzed and ultrasound accelerated expeditious synthetic route to 1,5-benzodiazepines under solvent-free conditions.Bull. Korean Chem. Soc.20113241179118210.5012/bkcs.2011.32.4.1179
    [Google Scholar]
  39. (e SalveP.S. MaliD.S. An expeditious and efficient microwave assisted synthesis of 1,5-benzodiazepine derivatives.J. Chem. Pharm. Res.20135158161
    [Google Scholar]
  40. (f ShushizadehM. DalbandN. SiO2/H2SO4: An efficient catalytic system for solvent-free 1,5-benzodiazepines synthesis.Jundishapur J. Nat. Pharm. Prod.201272616410.5812/jjnpp.362424624156
    [Google Scholar]
  41. (g MuraiK. NakataniR. KitaY. FujiokaH. One-pot three-component reaction providing 1,5-benzodiazepine derivatives.Tetrahedron20086449110341104010.1016/j.tet.2008.09.076
    [Google Scholar]
  42. (h VijayasankarA.V. DeepaS. VenugopalB.R. NagarajuN. Amorphous mesoporous iron aluminophosphate catalyst for the synthesis of 1,5-benzodiazepines.Chin. J. Catal.20103111-121321132710.1016/S1872‑2067(10)60120‑9
    [Google Scholar]
  43. (i MalekiA. Fe3O4/SiO2 nanoparticles: An efficient and magnetically recoverable nanocatalyst for the one-pot multicomponent synthesis of diazepines.Tetrahedron201268387827783310.1016/j.tet.2012.07.034
    [Google Scholar]
  44. (j KaouaR. Nedjar-KolliB. RoisnelT. Le GalY. LorcyD. Electroactive 1,5-benzodiazepines bearing either a tetrathiafulvalene or a ferrocene moiety.Tetrahedron201369234636464010.1016/j.tet.2013.04.005
    [Google Scholar]
  45. (a CortéasE.C. BañosM.A. De CortésO.G.M. Efficient synthesis and spectral determination of 11‐[(o‐m‐ and p‐substituted)‐phenyl]‐8‐chloro‐3,3‐dimethyl‐2,3,4,5,10,11‐hexahydro‐1H‐dibenzo[b,e][1,4]diazepin‐1‐ones.J. Heterocycl. Chem.200441227728010.1002/jhet.5570410221
    [Google Scholar]
  46. (b WangS.L. ChengC. WuF.Y. JiangB. ShiF. TuS.J. RajaleT. LiG. Microwave-assisted multi-component reaction in water leading to highly regioselective formation of benzo[f]azulen-1-ones.Tetrahedron201167254485449310.1016/j.tet.2011.05.00221731115
    [Google Scholar]
  47. (c TolpyginI.E. MikhailenkoN.V. BumberA.A. ShepelenkoE.N. RevinskyU.V. DubonosovA.D. Bren’V.A. MinkinV.I. 11-R-dibenzo[b,e][1,4]diazepin-1-ones, the chemosensors for transition metal cations.Russ. J. Gen. Chem.20128271243124910.1134/S1070363212070109
    [Google Scholar]
  48. (d TonkikhN. StrakovsA. RizhanovaK. PetrovaM. 11-Aryl-3,3-dimethyl-7-and 7,8-disubstituted 1,2,3,4,5,6-hexahydro-5H-dibenzo[b,e]-1,4-diazepin-1-ones.Chem. Het. Comp.20044094995510.1023/B:COHC.0000044581.23486.59
    [Google Scholar]
  49. (e StrakovA.Y. PetrovaM.V. TonkikhN.N. GurkovskiiA.I. PopelisY. KreishmanG.P. BelyakovS.V. Dibenzodiazepines in reactions of 2-acetyl-dimedone with 3,4-diaminobenzophenone.Chem. Heterocycl. Compd.199733332133210.1007/BF02253113
    [Google Scholar]
  50. (f ParmarN.J. BaradH.A. PansuriyaB.R. TeraiyaS.B. GuptaV.K. KantR. An efficient one-pot synthesis, structure, antimicrobial and antioxidant investigations of some novel quinolyldibenzo[b,e][1,4]diazepinones.Bioorg. Med. Chem. Lett.201222113816382110.1016/j.bmcl.2012.03.10022560587
    [Google Scholar]
  51. (g JiangB. LiQ.Y. ZhangH. TuS.J. PindiS. LiG. Efficient domino approaches to multifunctionalized fused pyrroles and dibenzo[b,e][1,4]diazepin-1-ones.Org. Lett.201214370070310.1021/ol203166c22260312
    [Google Scholar]
  52. (h NaeimiH. ForoughiH. Facile three-component preparation of benzodiazepine derivatives catalyzed by zinc sulfide nanoparticles via grinding method.Res. Chem. Intermed.20164253999402010.1007/s11164‑015‑2254‑4
    [Google Scholar]
  53. (iChemSpider. Search and Share Chemistry.Available from: https://www.chemspider.com/Chemical-Structure.2583325.html?rid=dd49e786-a18a-465f-a8e3-a143f4fe69c1&page_num=0
  54. (j NagarajuS. PerumalP. O.; Divakar, K.; Paplal, B.; Kashinath, D. “On water” synthesis of dibenzo-[1,4]-diazepin-1-ones using l-proline as an organocatalyst and under catalyst-free conditions, and their evaluation as α-glucosidase inhibitors.New J. Chem.201741178993900110.1039/C7NJ01021D
    [Google Scholar]
  55. (k ArellanoM.R. MartínezR. CortésE. Mass spectral fragmentation patterns of 3,3‐dimethyl‐2,3,4,5,10,11‐hexahydro‐11‐(o‐ and p‐R‐phenyl)‐1H‐dibenzo‐[b,e][1,4]diazepin‐1‐ones. II.J. Heterocycl. Chem.198219232132610.1002/jhet.5570190221
    [Google Scholar]
  56. (l KolosN.N. YurchenkoE.N. OrlovV.D. ShishkinaS.V. ShishkinO.V. Investigation of the products of interaction of cyclic diketones with nitrogen-containing 1,4-binucleophiles.Chem. Heterocycl. Compd.200440121550155910.1007/s10593‑005‑0098‑3
    [Google Scholar]
  57. (m TarannumS. SiddiquiZ.N. Fe(OTs)3/SiO2: A novel catalyst for the multicomponent synthesis of dibenzodiazepines under solvent-free conditions.RSC Advances2015591742427425010.1039/C5RA12085C
    [Google Scholar]
  58. (a SiddiquiM.M. NagargojeA.A. AkolkarS.V. SangshettiJ.N. KhedkarV.M. PisalP.M. ShingateB.B. [HDBU][HSO4]-catalyzed facile synthesis of new 1,2,3-triazole-tethered 2,3-dihydroquinazolin-4[1H]-one derivatives and their DPPH radical scavenging activity.Res. Chem. Intermed.20224831199122510.1007/s11164‑021‑04639‑9
    [Google Scholar]
  59. (b SubhedarD.D. ShaikhM.H. NawaleL. YewareA. SarkarD. KhanF.A.K. SangshettiJ.N. ShingateB.B. Novel tetrazoloquinoline–rhodanine conjugates: Highly efficient synthesis and biological evaluation.Bioorg. Med. Chem. Lett.20162692278228310.1016/j.bmcl.2016.03.04527013391
    [Google Scholar]
  60. (c SubhedarD.D. ShaikhM.H. Kalam KhanF.A. SangshettiJ.N. KhedkarV.M. ShingateB.B. Facile synthesis of new N-sulfonamidyl-4-thiazolidinone derivatives and their biological evaluation.New J. Chem.20164043047305810.1039/C6NJ00021E
    [Google Scholar]
  61. (d SubhedarD.D. ShaikhM.H. NawaleL. SarkarD. KhedkarV.M. ShingateB.B. Quinolidene based monocarbonyl curcumin analogues as promising antimycobacterial agents: Synthesis and molecular docking study.Bioorg. Med. Chem. Lett.201727492292810.1016/j.bmcl.2017.01.004 28110868
    [Google Scholar]
  62. (a SubhedarD.D. ShaikhM.H. ArkileM.A. YewareA. SarkarD. ShingateB.B. Facile synthesis of 1,3-thiazolidin-4-ones as antitubercular agents.Bioorg. Med. Chem. Lett.20162671704170810.1016/j.bmcl.2016.02.05626927426
    [Google Scholar]
  63. (b SubhedarD.D. ShaikhM.H. NawaleL. YewareA. SarkarD. ShingateB.B. [Et3NH][HSO4]catalyzed efficient synthesis of 5-arylidene-rhodanine conjugates and their antitubercular activity.Res. Chem. Intermed.20164286607662610.1007/s11164‑016‑2484‑0
    [Google Scholar]
  64. (c ShaikhM.H. SubhedarD.D. Kalam KhanF.A. SangshettiJ.N. ShingateB.B. [Et3NH][HSO4]-catalyzed one-pot, solvent-free synthesis and biological evaluation of α-amino phosphonates.Res. Chem. Intermed.20164255115513110.1007/s11164‑015‑2348‑z
    [Google Scholar]
  65. (d ShaikhM.H. SubhedarD.D. KhedkarV.M. ShingateB.B. [Et3NH][HSO4]-Catalyzed one-pot solvent free syntheses of functionalized [1,6]-naphthyridines and biological evaluation.Polycycl. Aromat. Compd.20224296043605910.1080/10406638.2021.1970587
    [Google Scholar]
  66. (e SubhedarD.D. ShaikhM.H. NagargojeA.A. AkolkarS.V. BhansaliS.G. SarkarD. ShingateB.B. Amide-linked monocarbonyl curcumin analogues: Efficient synthesis, antitubercular activity and molecular docking study.Polycycl. Aromat. Compd.20224252655267110.1080/10406638.2020.1852288
    [Google Scholar]
  67. (f SubhedarD.D. ShaikhM.H. NagargojeA.A. SarkarD. KhedkarV.M. ShingateB.B. ShingateB.B. [DBUH][OAc]-Catalyzed domino synthesis of novel benzimidazole incorporated 3,5-bis (arylidene)-4-piperidones as potential antitubercular agents.Polycycl. Aromat. Compd.202242107010702410.1080/10406638.2021.1995008
    [Google Scholar]
  68. (g SiddiquiM.A. ShaikhM.H. NagargojeA.A. ShaikhT.T. KhedkarV.M. DeshpandeP.P. ShingateB.B. [DBU][OAc]-mediated synthesis and anthelmintic activity of triazole–tetrazole conjugates.Res. Chem. Intermed.202248125187520810.1007/s11164‑022‑04842‑2
    [Google Scholar]
  69. EncinasL. O’KeefeH. NeuM. RemuiñánM.J. PatelA.M. GuardiaA. DavieC.P. Pérez-MacíasN. YangH. ConveryM.A. MesserJ.A. Pérez-HerránE. CentrellaP.A. Álvarez-GómezD. ClarkM.A. HussS. O’DonovanG.K. Ortega-MuroF. McDowellW. CastañedaP. Arico-MuendelC.C. PajkS. RullásJ. Angulo-BarturenI. Álvarez-RuízE. Mendoza-LosanaA. Ballell PagesL. Castro-PichelJ. EvindarG. Encoded library technology as a source of hits for the discovery and lead optimization of a potent and selective class of bactericidal direct inhibitors of Mycobacterium tuberculosis InhA.J. Med. Chem.20145741276128810.1021/jm401326j 24450589
    [Google Scholar]
  70. BarryC.E.III LeeR.E. MdluliK. SampsonA.E. SchroederB.G. SlaydenR.A. YuanY. Mycolic acids: Structure, biosynthesis and physiological functions.Prog. Lipid Res.1998372-314317910.1016/S0163‑7827(98)00008‑3 9829124
    [Google Scholar]
  71. GreenwoodD. SlackR.C.B. PeuthererJ.F. Medical Microbiology: A guide to microbial infections: Pathogenesis, immunity, laboratory diagnosis and control.15th edLondonChurchill Livingstone1997
    [Google Scholar]
  72. (a CiapettiG. CenniE. PratelliL. PizzoferratoA. In vitro evaluation of cell/biomaterial interaction by MTT assay.Biomaterials199314535936410.1016/0142‑9612(93)90055‑78507779
    [Google Scholar]
  73. (b DzoyemJ.P. GuruS.K. PiemeC.A. KueteV. SharmaA. KhanI.A. SaxenaA.K. VishwakarmaR.A. Cytotoxic and antimicrobial activity of selected Cameroonian edible plants.BMC Complement. Altern. Med.20131317810.1186/1472‑6882‑13‑7823565827
    [Google Scholar]
  74. (c van de LoosdrechtA.A. BeelenR.H.J. OssenkoppeleG.J. BroekhovenM.G. LangenhuijsenM.M.A.C. A tetrazolium-based colorimetric MTT assay to quantitate human monocyte mediated cytotoxicity against leukemic cells from cell lines and patients with acute myeloid leukemia.J. Immunol. Methods19941741-231132010.1016/0022‑1759(94)90034‑58083535
    [Google Scholar]
  75. (d DoyenC.M. MoshkinY.M. ChalkleyG.E. BezstarostiK. DemmersJ.A.A. RathkeC. Renkawitz-PohlR. VerrijzerC.P. Subunits of the histone chaperone CAF1 also mediate assembly of protamine-based chromatin.Cell Rep.201341596510.1016/j.celrep.2013.06.002 23810557
    [Google Scholar]
  76. (a ProtopopovaM. HanrahanC. NikonenkoB. SamalaR. ChenP. GearhartJ. EinckL. NacyC.A. Identification of a new antitubercular drug candidate, SQ109, from a combinatorial library of 1,2-ethylenediamines.J. Antimicrob. Chemother.200556596897410.1093/jac/dki31916172107
    [Google Scholar]
  77. (b PoggiM. BarrosoR. Costa-FilhoA.J. de BarrosH.B. PavanF. LeiteC.Q. GambinoD. TorreM.H. New isoniazid complexes, promising agents against Mycobacterium tuberculosis.J. Mex. Chem. Soc.201357198204
    [Google Scholar]
  78. (c GundersenL.L. Nissen-MeyerJ. SpilsbergB. Synthesis and antimycobacterial activity of 6-arylpurines: The requirements for the N-9 substituent in active antimycobacterial purines.J. Med. Chem.20024561383138610.1021/jm0110284 11882008
    [Google Scholar]
  79. (d SivakumarK.K. RajasekaranA. Synthesis, In-vitro antimicrobial and antitubercular screening of some Schiff base of 5-amino-4-[2-(4-phenyl-1,3-thiazol-2-yl)hydrazinylidene]-2,4-dihydro-3H-pyrazol-3-one.J Pharm Bioallied Sci.201341065107610.4103/0975‑7406.111828
    [Google Scholar]
  80. SinghR. NawaleL.U. ArkileM. ShedbalkarU.U. WadhwaniS.A. SarkarD. ChopadeB.A. Chemical and biological metal nanoparticles as antimycobacterial agents: A comparative study.Int. J. Antimicrob. Agents201546218318810.1016/j.ijantimicag.2015.03.014 26009020
    [Google Scholar]
  81. FriesnerR.A. MurphyR.B. RepaskyM.P. FryeL.L. GreenwoodJ.R. HalgrenT.A. SanschagrinP.C. MainzD.T. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy.J. Med. Chem.2004471739174910.1021/jm0306430 15027865
    [Google Scholar]
/content/journals/coc/10.2174/0113852728315680240815095102
Loading
/content/journals/coc/10.2174/0113852728315680240815095102
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s web site along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test