Skip to content
2000
Volume 29, Issue 3
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

In this paper, we present an efficient procedure for the transformation of a soybean phytosterol mixture into pregna-1,4,16-triene-3,20-dione, which is a key intermediate for the synthesis of valuable corticoids. The possibility of using two alternative methods for 1(2)-dehydrogenation of pregna-4,16-diene-3,20-dione-chemical and microbiological was shown. Microbiological 3-keto-4-ene steroid 1(2)-dehydrogenation was carried out using actinobacterial cells of VKM Ac-2033D. The structures of the synthesized compounds were confirmed by the IR, MS, and 1H-NMR and 13C-NMR methods.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728317835240812102433
2024-08-27
2024-11-19
Loading full text...

Full text loading...

References

  1. WangF-Q. YaoK. WieD-Z. From soybean phytosterols to steroid hormones.Soybean and health.Intechopen201110.5772/18808
    [Google Scholar]
  2. Al JasemY. KhanM. TahaA. ThiemannT. Preparation of steroidal hormones with an emphasis on transformations of phytosterols and cholesterol - A review.Mediterr. J. Chem.20143279683010.13171/mjc.3.2.2014.18.04.15
    [Google Scholar]
  3. TekuchevaD.N. NikolayevaV.M. KarpovM.V. TimakovaT.A. ShutovA.V. DonovaM.V. Bioproduction of testosterone from phytosterol by Mycolicibacterium neoaurum strains: “One-pot”, two modes.Bioresour. Bioprocess.20229111610.1186/s40643‑022‑00602‑7 38647765
    [Google Scholar]
  4. Fernández-CabezónL. GalánB. GarcíaJ.L. New insights on steroid biotechnology.Front. Microbiol.2018995810.3389/fmicb.2018.00958 29867863
    [Google Scholar]
  5. KazantsevA.V. SavinovaT.S. LukashevN.V. DovbnyaD.V. KhomutovS.M. SukhodolskayaG.V. ShutovA.A. FokinaV.V. NikolayevaV.M. DonovaM.V. EgorovaO.V. SurovtsevV.V. Method of obtaining 11beta,17alpha,21-trihydroxy-16alpha-methyl-9alpha-fluoropregna-1,4- diene-3,20-dione (dexamethasone) from phytosterol.R.U. Patent 25329022014
  6. AndryushinaV.A. SavinovaT.S. SkryabinK.G. Method of preparing pregnanes.R.U. Patent 2156255.2000
  7. MaxonW.D. Chapter 8 - Steroid bioconversions: One industrial perspective Annual Reports on Fermentation ProcessesElsevier1985817118510.1016/B978‑0‑12‑040308‑0.50012‑4
    [Google Scholar]
  8. FernandesP. CabralJ.M.S. Phytosterols: Applications and recovery methods.Bioresour. Technol.200798122335235010.1016/j.biortech.2006.10.006 17123816
    [Google Scholar]
  9. NunesV. VanzellottiN. FragaJ. PessoaF. FerreiraT. AmaralP. Biotransformation of phytosterols into androstenedione - A technological prospecting study.Molecules20222710316410.3390/molecules27103164 35630641
    [Google Scholar]
  10. LiuX. ZhangJ. YuanC. DuG. HanS. ShiJ. SunJ. ZhangB. Improving the production of 9α-hydroxy-4-androstene-3,17-dione from phytosterols by 3-ketosteroid-Δ1-dehydrogenase deletions and multiple genetic modifications in Mycobacterium fortuitum.Microb. Cell Fact.20232215310.1186/s12934‑023‑02052‑y 36922830
    [Google Scholar]
  11. HuyL.D. DiepN.T. MaiH. TungT. Recovery of phytosterols from by-product of soybean oil production.International Scientific Conference on “Chemistry for Development and Integration”Hanoi2008485490
    [Google Scholar]
  12. HuyL.D. DiepN.T. SavinovaT.S. LukashevN.V. BeletskayaI.P. Study on extracting phytosterols from industrial wastes of soybean oil.Vietnam J. Chem.2010482203210
    [Google Scholar]
  13. SavinovaT.S. LukashevN.V. KhomutovS.M. DovbnyaD.V. DonovaM.V. Phytosterols from vegetable oil processing wastes are a valuable raw material for the production of steroid drugs.Oils Fats201415531415
    [Google Scholar]
  14. AndryushinaV.A. RodinaN.V. StytsenkoT.S. HuyL.D. DruzhininaA.V. YaderetzV.V. VoishvilloN.E. Conversion of soybean sterols into 3,17-diketosteroids using actinobacteria Mycobacterium neoaurum, Pimelobacter simplex, and Rhodococcus erythropolis.Appl. Biochem. Microbiol.201147327027310.1134/S0003683811030021
    [Google Scholar]
  15. Carpova-RodinaN.V. AndryushinaV.A. YaderetzV.V. DruzhininaA.V. StytsenkoT.S. Shaskol’skiyB.L. LozinskyV.I. HuyL.D. VoishvilloN.E. Transformation of Δ4-3-ketosteroids by free and immobilized cells of Rhodococcus erythropolis actinobacterium.Appl. Biochem. Microbiol.201147438639210.1134/S0003683811040041
    [Google Scholar]
  16. SavinovaT.S. DovbnyaD.V. KhomutovS.M. KazantsevA.V. HuyL.D. LukashevN.V. DonovaM.V. Conversion of soybean phytosterol into androsta-4,9(11)-diene-3,17-dione.Appl. Biochem. Microbiol.202056445946610.1134/S0003683820030126
    [Google Scholar]
  17. SavinovaT.S. KazantsevA.V. HuyL.D. LukashevN.V. Dehydration of 9α-hydroxy-androst-4-en-3.17-dione in organic solvents.Pharm. Chem. J.201751761261510.1007/s11094‑017‑1662‑8
    [Google Scholar]
  18. SavinovaT.S. LukashevN.V. HuyL.D. BeletskayaI.P. Autooxidation of Δ17(20)-20-hydroxy derivatives of steroids. Synthesis of 3β-acetoxy-17α-hydroperoxy-16α-methylpregn-5-en-20-one and its reduction to 17α-hydroxy derivative.Russ. J. Org. Chem.2011471546110.1134/S1070428011010052
    [Google Scholar]
  19. HuyL.D. DiepN.T. NhungL.T.K. Alternative road for synthesis of 16α,17α-epoxy-pregn-4,9(11)-dien-21-ol-3,20-dione from 9α-hydroxy-androstenedione.Pharm. Chem. J.2014471056256510.1007/s11094‑014‑1006‑x
    [Google Scholar]
  20. HuyL.D. DiepN.T. VuT.K. SavinovaT.S. DonovaM.V. An efficient procedure for synthesis of 21-acetoxypregna-1,4,9(11),16-tetraene-3,20-dione.Comb. Chem. High Throughput Screen.202023322523110.2174/1386207323666200219122644 32072895
    [Google Scholar]
  21. HuyL.D. DiepN.T. Synthesis of 16β-methylpregn-4,9(11)-diene-17α-Ol-3,20-dione from 9α-hydroxyandrostenedione.Pharm. Chem. J.201549748648910.1007/s11094‑015‑1311‑z
    [Google Scholar]
  22. SavinovaT.S. KazantsevA.V. LukashevN.V. Method for synthesizing disodium salt of dexamethasone 21-phosphate applied for treating patients with coronavirus infection (COVID-19). R.U. Patent 27645972022
  23. SavinovaT.S. KazantsevA.V. LukashevN.V. Method for obtaining the disodium salt of dexamethasone 21-phosphate used for the treatment of patients with coronavirus infection (COVID-19).R.U. Patent 27691952022
  24. WangYi. Process for synthesizing triamcinolone acetonide acetate.R.U. Patent 1028635052013
  25. PatilS. ShuklaA. ShindeK. BanerjeeT. Bioconversion of 3β-acetoxypregna-5,16-diene-20-one to androsta-1,4-diene-3,17-dione by mixed bacterial culture.Lett. Appl. Microbiol.2002352959710.1046/j.1472‑765X.2002.01138.x 12100580
    [Google Scholar]
  26. SegersP. VancanneytM. PotB. TorckU. HosteB. DewettinckD. FalsenE. KerstersK. De VosP. Classification of Pseudomonas diminuta Leifson and Hugh 1954 and Pseudomonas vesicularis Busing, doll, and Freytag 1953 in Brevundimonas gen. nov. as Brevundimonas diminuta comb. nov. and Brevundimonas vesicularis comb. nov., respectively.Int. J. Syst. Bacteriol.199444349951010.1099/00207713‑44‑3‑499 8068543
    [Google Scholar]
  27. WenA. FeganM. HaywardC. ChakrabortyS. SlyL.I. Phylogenetic relationships among members of the Comamonadaceae, and description of Delftia acidovorans (den Dooren de Jong 1926 and Tamaoka et al. 1987) gen. nov., comb. nov.Int. J. Syst. Evol. Microbiol.199949256757610.1099/00207713‑49‑2‑567 10319477
    [Google Scholar]
  28. AndryushinaV.A. VoishvilloN.E. SkryabinK.G. BartoshevichJu. Strain of bacterium Mycobacterium smegmatis used for oxidation of plant and animal sterols to androst-4-ene-3,17-dione.R.U. Patent 21268371999
  29. HuyL.D. TuD.N. DiepN.T. KhanhH.V. KazantsevA.V. SavinovaT.S. Study on preparation of pregna‐4‐en‐17α, 21‐diol‐3,20‐dione from androst‐4‐en‐3,17‐dione.Vietnam J. Chem.202159683083510.1002/vjch.202100052
    [Google Scholar]
  30. WangY. Method for preparing progesterone from 4-androstenedione R.U.Patent 1035245882014
  31. JengM-H. WangJ-R. TsaurM-H. XiaoJ-Z. Method for manufacturing Danazol and its intermediate. T.W.Patent 3344391998
  32. CarruthersM. Compositions comprising ethisterone or its derivatives. U.S.Patent 66459542003
  33. KanojiaR.M. 17β-Ethynyl-3,17α-estradiol and derivatives thereof. U.S. Patent 40228921977
  34. NicholasK.M. Chemistry and synthetic utility of cobalt-complexed propargyl cations.Acc. Chem. Res.198720620721410.1021/ar00138a001
    [Google Scholar]
  35. 16-Alkyl-17,20,21-trihydroxy-pregna-4,9(11)-dien-3-ones and derivatives thereof.G.B. Patent 13641931974
  36. ShullG.M. Preparation of delta 1,4-3-keto steroids from delta4 3-keto steroids by protaminobacter.U.S. Patent 201600002631957
  37. TakeuchiM. YokotaA. Taxonomy of “Protaminobacter alboflavus”: Reclassification as Mycobacterium diernhoferi.J. Gen. Appl. Microbiol.199036319520210.2323/jgam.36.195
    [Google Scholar]
  38. GuptaR.S. LoB. SonJ. Phylogenomics and comparative genomic studies robustly support division of the genus Mycobacterium into an emended genus Mycobacterium and four novel genera.Front. Microbiol.201896710.3389/fmicb.2018.00067 29497402
    [Google Scholar]
  39. BousfieldI.J. GreenP.N. Reclassification of bacteria of the genus Protomonas Urakami and Komagata 1984 in the genus Methylobacterium (Patt, Cole, and Hanson) Emend. green and bousfield 1983.Int. J. Syst. Bacteriol.198535220910.1099/00207713‑35‑2‑209
    [Google Scholar]
  40. GreenP.N. ArdleyJ.K. Review of the genus Methylobacterium and closely related organisms: A proposal that some Methylobacterium species be reclassified into a new genus, Methylorubrum gen. nov.Int. J. Syst. Evol. Microbiol.20186892727274810.1099/ijsem.0.002856 30024371
    [Google Scholar]
  41. TekuchevaD.N. FokinaV.V. NikolaevaV.M. ShutovA.A. KarpovM.V. DonovaM.V. Cascade biotransformation of phytosterol to testosterone by Mycolicibacterium neoaurum VKM ac-1815d and Nocardioides simplex VKM ac-2033d strains.Microbiology202291330331210.1134/S0026261722300099
    [Google Scholar]
  42. FreemanA. LillyM. The effect of water-miscible solvents on the? 1-dehydrogenase activity of free and PAAH-entrapped Arthrobacter simplex.Appl. Microbiol. Biotechnol.198725649550110.1007/BF00252006
    [Google Scholar]
  43. KaulR. MattiassonB. Extractive bioconversion in aqueous two-phase systems.Appl. Microbiol. Biotechnol.198624425926510.1007/BF00257046
    [Google Scholar]
  44. DuchêneD. New trends in cyclodextrins and derivatives.ParisEditions de Santé1991604
    [Google Scholar]
  45. ShtratnikovaV.Y. SchelkunovM.I. FokinaV.V. BraginE.Y. ShutovA.A. DonovaM.V. Different genome-wide transcriptome responses of Nocardioides simplex VKM Ac-2033D to phytosterol and cortisone 21-acetate.BMC Biotechnol.2021211710.1186/s12896‑021‑00668‑9 33441120
    [Google Scholar]
  46. FokinaV.V. DonovaM.V. 21-Acetoxy-pregna-4(5),9(11),16(17)-triene-21-ol-3,20-dione conversion by Nocardioides simplex VKM Ac-2033D.J. Steroid Biochem. Mol. Biol.2003874-531932510.1016/j.jsbmb.2003.10.002 14698213
    [Google Scholar]
  47. LobastovaT. FokinaV. TarlachkovS. ShutovA. BraginE. KazantsevA. DonovaM. Steroid metabolism in thermophilic actinobacterium Saccharopolyspora hirsuta VKM Ac-666T.Microorganisms2021912255410.3390/microorganisms9122554 34946155
    [Google Scholar]
  48. ShiY. Process for preparation of Ethisterone C.N.Patent 1050012942015
  49. WieskeR. PrezewowskyK. Dehydrating 17-ethynyl 17-hydroxy steroids - having a partially unsatd. A ring, with phosphorus oxychloride to 16-unsatd. cpds.D.E. Patent 25177701976
  50. RubinM. Aromatic steroids and intermediates thereof.U.S. Patent 27057191955
/content/journals/coc/10.2174/0113852728317835240812102433
Loading
/content/journals/coc/10.2174/0113852728317835240812102433
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test