Skip to content
2000
Volume 29, Issue 5
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Due to the compatibility of binding and undergoing chemical modification of sugar derivatives with a variety of scaffolds, the design of innovative tools for bio-sensing and bio-marking, energy harvesting, drug design, and delivery is growing steadily. Furthermore, the chemistry of partially protected sugars has not been explored well in terms of its applications in smart materials. However, these sugar derivatives possess a unique characteristic balance between hydrophilic and hydrophobic nature, which makes them act as gelator molecules. Several synthetic strategies pertaining to synthesis and applications are known in the literature. The present review mainly focuses on the partially protected monosaccharide-based -glycosylamines and their applications, with few examples from and glycosides.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728316820240815164622
2024-09-03
2025-01-18
Loading full text...

Full text loading...

References

  1. ShelkeY.G. YashmeenA. GholapA.V.A. GharpureS.J. KapdiA.R. Homogeneous catalysis: A powerful technology for the modification of important biomolecules.Chem. Asian J.201813202991301310.1002/asia.201801020 30063286
    [Google Scholar]
  2. DattaS. BhattacharyaS. Multifarious facets of sugar-derived molecular gels: molecular features, mechanisms of self-assembly and emerging applications.Chem. Soc. Rev.201544155596563710.1039/C5CS00093A 26023922
    [Google Scholar]
  3. MorrisJ. BietschJ. BashawK. WangG. Recently developed carbohydrate-based gelators and their applications.Gels2021712410.3390/gels7010024 33652820
    [Google Scholar]
  4. Rabecca JeniferV. PradhanS. ThangamuthuM.D. Emerging aspects of triazole in organic synthesis: Exploring its potential as a gelator.Curr. Org. Synth.202421445651210.2174/1570179420666221010094531 36221871
    [Google Scholar]
  5. NagarajanS. Mohan DasT. ArjunP. RaamanN. Design, synthesis and gelation studies of 4,6-O-butylidene-α,β-unsaturated-β-C-glycosidic ketones: application to plant tissue culture.J. Mater. Chem.200919264587459610.1039/b902064k
    [Google Scholar]
  6. KumarK.K. ElangoM. SubramanianV. Mohan DasT. Novel saccharide-pyridine based gelators: Selective gelation and diversity in superstructures.New J. Chem.20093371570157710.1039/b821126d
    [Google Scholar]
  7. (a LuL. YuanS. WangJ. ShenY. DengS. XieL. YangQ. The formation mechanism of hydrogels.Curr. Stem Cell Res. Ther.201813749049610.2174/1574888X12666170612102706 28606044
    [Google Scholar]
  8. (b AbdallahD.J. WeissR.G. Organogels and low molecular mass organic gelators.Adv. Mater.200012171237124710.1002/1521‑4095(200009)12:17<1237:AID‑ADMA1237>3.0.CO;2‑B
    [Google Scholar]
  9. (c TerechP. WeissR.G. Low molecular mass gelators of organic liquids and the properties of their gels.Chem. Rev.19979783133316010.1021/cr9700282 11851487
    [Google Scholar]
  10. VermaC. QuraishiM.A. AlfantaziA. RheeK.Y. Corrosion inhibition potential of chitosan based Schiff bases: Design, performance and applications.Int. J. Biol. Macromol.202118413514310.1016/j.ijbiomac.2021.06.049 34119548
    [Google Scholar]
  11. BhavyaP.V. Rabecca JeniferV. AhmadY. Mohan DasT. A simple perspective of glycosciences.J. Indian Chem. Soc.2020971571576
    [Google Scholar]
  12. AlhazmiH.A. NajmiA. JavedS.A. SultanaS. Al BrattyM. MakeenH.A. MerayaA.M. AhsanW. MohanS. TahaM.M.E. KhalidA. Medicinal plants and isolated molecules demonstrating immunomodulation activity as potential alternative therapies for viral diseases including COVID-19.Front. Immunol.20211263755310.3389/fimmu.2021.637553 34054806
    [Google Scholar]
  13. JucáM.M. Cysne FilhoF.M.S. de AlmeidaJ.C. MesquitaD.S. BarrigaJ.R.M. DiasK.C.F. BarbosaT.M. VasconcelosL.C. LealL.K.A.M. RibeiroJ.E. VasconcelosS.M.M. Flavonoids: Biological activities and therapeutic potential.Nat. Prod. Res.202034569270510.1080/14786419.2018.1493588 30445839
    [Google Scholar]
  14. UllahA. MunirS. BadshahS.L. KhanN. GhaniL. PoulsonB.G. EmwasA.H. JaremkoM. Important flavonoids and their role as a therapeutic agent.Molecules20202522524310.3390/molecules25225243 33187049
    [Google Scholar]
  15. ThaljiM.R. IbrahimA.A. ChongK.F. SoldatovA.V. AliG.A.M. Glycopolymer-based materials: Synthesis, properties, and biosensing applications.Top. Curr. Chem. (Cham)202238054510.1007/s41061‑022‑00395‑5 35951265
    [Google Scholar]
  16. BlsakovaA. KvetonF. TkacJ. Glycan-modified interfaces in biosensing: An electrochemical approach.Curr. Opin. Electrochem.201914606510.1016/j.coelec.2018.12.011
    [Google Scholar]
  17. LiuH. ZhangN. WanD. CuiM. LiuZ. LiuS. Mass spectrometry-based analysis of glycoproteins and its clinical applications in cancer biomarker discovery.Clin. Proteomics20141111410.1186/1559‑0275‑11‑14 24722010
    [Google Scholar]
  18. SinghG. VermaA.K. KumarV. Catalytic properties, functional attributes and industrial applications of β-glucosidases.3 Biotech.201661310.1007/s13205‑015‑0328‑z
    [Google Scholar]
  19. TrinconeA. Uncommon glycosidases for the enzymatic preparation of glycosides.Biomolecules2015542160218310.3390/biom5042160 26404386
    [Google Scholar]
  20. ZhuH. LuoW. CiesielskiP.N. FangZ. ZhuJ.Y. HenrikssonG. HimmelM.E. HuL. Wood-derived materials for green electronics, biological devices, and energy applications.Chem. Rev.2016116169305937410.1021/acs.chemrev.6b00225 27459699
    [Google Scholar]
  21. ChenF. HuangG. Application of glycosylation in targeted drug delivery.Eur. J. Med. Chem.201918211161210.1016/j.ejmech.2019.111612 31421631
    [Google Scholar]
  22. Ben-ShabatS. YarmolinskyL. PoratD. DahanA. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies.Drug Deliv. Transl. Res.202010235436710.1007/s13346‑019‑00691‑6 31788762
    [Google Scholar]
  23. KhanH. MirzaeiH.R. AmiriA. Kupeli AkkolE. Ashhad HalimiS.M. MirzaeiH. Glyco-nanoparticles: New drug delivery systems in cancer therapy.Semin. Cancer Biol.202169244210.1016/j.semcancer.2019.12.004 31870939
    [Google Scholar]
  24. MosayyebiB. ImaniM. MohammadiL. AkbarzadehA. ZarghamiN. EdalatiM. AlizadehE. RahmatiM. An update on the toxicity of cyanogenic glycosides bioactive compounds: Possible clinical application in targeted cancer therapy.Mater. Chem. Phys.202024612284110.1016/j.matchemphys.2020.122841
    [Google Scholar]
  25. YangY. XuM. WanZ. YangX. Novel functional properties and applications of steviol glycosides in foods.Curr. Opin. Food Sci.202243919810.1016/j.cofs.2021.11.004
    [Google Scholar]
  26. GuptaM. ZhaJ. ZhangX. JungG.Y. LinhardtR.J. KoffasM.A.G. Production of deuterated cyanidin 3-O-glucoside from recombinant Escherichia coli.ACS Omega201839116431164810.1021/acsomega.8b01134 30320269
    [Google Scholar]
  27. ZhaJ. KoffasM.A.G. Production of anthocyanins in metabolically engineered microorganisms: Current status and perspectives.Synth. Syst. Biotechnol.20172425926610.1016/j.synbio.2017.10.005 29552650
    [Google Scholar]
  28. FengY. YaoM. WangY. DingM. ZhaJ. XiaoW. YuanY. Advances in engineering UDP-sugar supply for recombinant biosynthesis of glycosides in microbes.Biotechnol. Adv.20204110753810.1016/j.biotechadv.2020.107538 32222423
    [Google Scholar]
  29. MohananP. SubramaniyamS. MathiyalaganR. YangD.C. Molecular signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions.J. Ginseng Res.201842212313210.1016/j.jgr.2017.01.008 29719458
    [Google Scholar]
  30. Luley-GoedlC. NidetzkyB. Glycosides as compatible solutes: Biosynthesis and applications.Nat. Prod. Rep.201128587589610.1039/c0np00067a 21390397
    [Google Scholar]
  31. DiasO.A.T. KonarS. PakharenkoV. GrazianoA. LeãoA.L. TjongJ. JafferS. SainM. Regioselective protection and deprotection of nanocellulose molecular design architecture: Robust platform for multifunctional applications.Biomacromolecules202122124980498710.1021/acs.biomac.1c00909 34791880
    [Google Scholar]
  32. ÁgostonK. StreicherH. FügediP. Orthogonal protecting group strategies in carbohydrate chemistry.Tetrahedron Asymmetry2016271670772810.1016/j.tetasy.2016.06.010
    [Google Scholar]
  33. KulkarniS.S. WangC.C. SabbavarapuN.M. PodilapuA.R. LiaoP.H. HungS.C. “One-Pot” protection, glycosylation, and protection-glycosylation strategies of carbohydrates.Chem. Rev.2018118178025810410.1021/acs.chemrev.8b00036 29870239
    [Google Scholar]
  34. BátiG. HeJ.X. PalK.B. LiuX.W. Stereo- and regioselective glycosylation with protection-less sugar derivatives: An alluring strategy to access glycans and natural products.Chem. Soc. Rev.201948154006401810.1039/C8CS00905H 31169838
    [Google Scholar]
  35. WangT. DemchenkoA.V. Synthesis of carbohydrate building blocks via regioselective uniform protection/deprotection strategies.Org. Biomol. Chem.201917204934495010.1039/C9OB00573K 31044205
    [Google Scholar]
  36. CrawfordC.J. SeebergerP.H. Advances in glycoside and oligosaccharide synthesis.Chem. Soc. Rev.202352227773780110.1039/D3CS00321C 37830906
    [Google Scholar]
  37. GhoshB. KulkarniS.S. Common protection deprotection strategies in carbohydrate synthesis.Synthetic Strategies in Carbohydrate Chemistry.Elsevier202427329510.1016/B978‑0‑323‑91729‑2.00006‑9
    [Google Scholar]
  38. NielsenM.M. PedersenC.M. Catalytic glycosylations in oligosaccharide synthesis.Chem. Rev.2018118178285835810.1021/acs.chemrev.8b00144 29969248
    [Google Scholar]
  39. YadavR.N. HossainM.F. DasA. SrivastavaA.K. BanikB.K. Organocatalysis: A recent development on stereoselective synthesis of o-glycosides.Catal. Rev., Sci. Eng.2024661111810.1080/01614940.2022.2041303
    [Google Scholar]
  40. DimakosV. TaylorM.S. Site-selective functionalization of hydroxyl groups in carbohydrate derivatives.Chem. Rev.201811823114571151710.1021/acs.chemrev.8b00442 30507165
    [Google Scholar]
  41. MorelliL. CompostellaF. PanzaL. ImperioD. Unusual promoters and leaving groups in glycosylation reactions: The evolution of carbohydrate synthesis.Carbohydr. Res.202251910862510.1016/j.carres.2022.108625 35763874
    [Google Scholar]
  42. DewanjeeS. ChakrabortyP. MukherjeeB. De FeoV. Plant-based antidiabetic nanoformulations: The emerging paradigm for effective therapy.Int. J. Mol. Sci.2020216221710.3390/ijms21062217 32210082
    [Google Scholar]
  43. KhorC.M. NgW.K. ChanK.P. DongY. Preparation and characterization of quercetin/dietary fiber nanoformulations.Carbohydr. Polym.201716110911710.1016/j.carbpol.2016.12.059 28189219
    [Google Scholar]
  44. YeX.S. LuW. General aspects in O-glycosidic bond formation.Glycochemical Synthesis.Strategies and Applications2016699510.1002/9781119006435.ch3
    [Google Scholar]
  45. CresseyP. ReeveJ. Metabolism of cyanogenic glycosides: A review.Food Chem. Toxicol.201912522523210.1016/j.fct.2019.01.002 30615957
    [Google Scholar]
  46. Libik-KoniecznyM. CapeckaE. TulejaM. KoniecznyR. Synthesis and production of steviol glycosides: Recent research trends and perspectives.Appl. Microbiol. Biotechnol.2021105103883390010.1007/s00253‑021‑11306‑x 33914136
    [Google Scholar]
  47. PeriyasamyR. SoundarajanK. Mohan DasT. Simple perspective of sugar-based gel chemistry.SMC Bulletin2017812532
    [Google Scholar]
  48. Brito-AriasM. N-Glycosides.Synthesis and Characterization of Glycosides.Boston, MASpringer200713817810.1007/978‑0‑387‑70792‑1_3
    [Google Scholar]
  49. Glycosides.International Union of Pure and Applied ChemistryGold Book201410.1351/goldbook.G02661
    [Google Scholar]
  50. AlamgirA.N.M. Phytoconstituents-active and inert constituents, metabolic pathways, chemistry and application of phytoconstituents, primary metabolic products, and bioactive compounds of primary metabolic origin.Therapeutic Use of Medicinal Plants and their Extracts201822516410.1007/978‑3‑319‑92387‑1_2
    [Google Scholar]
  51. SculfortO. de CastroE.C.P. KozakK.M. BakS. EliasM. NayB. LlaurensV. Variation of chemical compounds in wild Heliconiini reveals ecological factors involved in the evolution of chemical defenses in mimetic butterflies.Ecol. Evol.20201052677269410.1002/ece3.6044 32185010
    [Google Scholar]
  52. AwuchiC.G. OndariE.N. OgbonnaC.U. UpadhyayA.K. BaranK. OkpalaC.O.R. KorzeniowskaM. GuinéR.P.F. Mycotoxins affecting animals, foods, humans, and plants: Types, occurrence, toxicities, action mechanisms, prevention, and detoxification strategies-A revisit.Foods2021106127910.3390/foods10061279 34205122
    [Google Scholar]
  53. ChakrabortyS. MishraB. Kumar DasP. PasariS. HothaS. Synthesis of N‐glycosides by silver‐assisted gold catalysis.Angew. Chem. Int. Ed.2023626e20221416710.1002/anie.202214167 36458817
    [Google Scholar]
  54. KhodairA.I. AttiaA.M. GendyE.A. ElshaierY.A.M.M. El-MagdM.A. Discovery of new S‐glycosides and N‐glycosides of pyridine‐biphenyl system with antiviral activity and induction of apoptosis in MCF 7 cells.J. Heterocycl. Chem.20195661733174710.1002/jhet.3527
    [Google Scholar]
  55. ZenkovR.G. VlasovaO.A. MaksimovaV.P. FetisovT.I. KarpechenkoN.Y. EktovaL.V. EreminaV.A. PopovaV.G. UsalkaO.G. LesovayaE.A. BelitskyG.A. YakubovskayaM.G. KirsanovK.I. Molecular mechanisms of anticancer activity of N-glycosides of indolocarbazoles LCS-1208 and LCS-1269.Molecules20212623732910.3390/molecules26237329 34885910
    [Google Scholar]
  56. SangwanR. KhanamA. MandalP.K. An overview on the chemical N‐Functionalization of sugars and formation of N‐glycosides.Eur. J. Org. Chem.20202020375949597710.1002/ejoc.202000813
    [Google Scholar]
  57. SantiagoC.C. LafuenteL. PonzinibbioA. Synthesis of biologically relevant B‐N‐glycosides by biphasic epoxidation‐aminolysis of D‐glycals.ChemistrySelect20205164928493110.1002/slct.202000343
    [Google Scholar]
  58. ParidaS.P. DasT. AhemadM.A. PatiT. MohapatraS. NayakS. Recent advances on synthesis of C-glycosides.Carbohydr. Res.202353010885610.1016/j.carres.2023.108856 37315353
    [Google Scholar]
  59. GhouilemJ. de RobichonM. Le BideauF. FerryA. MessaoudiS. Emerging organometallic methods for the synthesis of C‐branched (hetero) aryl, alkenyl, and alkyl glycosides: C− H functionalization and dual photoredox approaches.Chemistry202127249151110.1002/chem.202003267 32813294
    [Google Scholar]
  60. XuL.Y. FanN.L. HuX.G. Recent development in the synthesis of C-glycosides involving glycosyl radicals.Org. Biomol. Chem.202018275095510910.1039/D0OB00711K 32555831
    [Google Scholar]
  61. SirirungruangS. BarnumC.R. TangS.N. ShihP.M. Plant glycosyltransferases for expanding bioactive glycoside diversity.Nat. Prod. Rep.20234071170118010.1039/D2NP00077F 36853278
    [Google Scholar]
  62. SadurníA. GilmourR. Stereocontrolled synthesis of 2‐fluorinated C‐glycosides.Eur. J. Org. Chem.2018201827-283684368710.1002/ejoc.201800618 30147438
    [Google Scholar]
  63. WangQ. SunQ. JiangY. ZhangH. YuL. TianC. ChenG. KohM.J. Iron-catalysed reductive cross-coupling of glycosyl radicals for the stereoselective synthesis of C-glycosides.Nature Synthesis20221323524410.1038/s44160‑022‑00024‑5
    [Google Scholar]
  64. ZhangY.Q. ZhangM. WangZ.L. QiaoX. YeM. Advances in plant-derived C-glycosides: Phytochemistry, bioactivities, and biotechnological production.Biotechnol. Adv.20226010803010.1016/j.biotechadv.2022.108030 36031083
    [Google Scholar]
  65. Zagrean-TuzaC. MotA.C. ChmielT. BendeA. TurcuI. Sugar matters: sugar moieties as reactivity-tuning factors in quercetin O-glycosides.Food Funct.20201165293530710.1039/D0FO00319K 32458896
    [Google Scholar]
  66. WangQ. LaiM. LuoH. RenK. WangJ. HuangN. DengZ. ZouK. YaoH. Stereoselective O-glycosylation of glycals with arylboronic acids using air as the oxygen source.Org. Lett.20222481587159210.1021/acs.orglett.1c04378 35080399
    [Google Scholar]
  67. PałaszA. CieżD. TrzewikB. MiszczakK. TynorG. BazanB. In the search of glycoside-based molecules as antidiabetic agents.Top. Curr. Chem. (Cham)201937741910.1007/s41061‑019‑0243‑6 31165274
    [Google Scholar]
  68. EidenbergerT. SelgM. KrennhuberK. Inhibition of dipeptidyl peptidase activity by flavonol glycosides of guava (Psidium guajava L.): A key to the beneficial effects of guava in type II diabetes mellitus.Fitoterapia201389747910.1016/j.fitote.2013.05.015 23707747
    [Google Scholar]
  69. ChenA. YangB. ZhouZ. ZhuF. Recent advances in transition-metal-catalyzed glycosyl cross-coupling reactions.Chem Catal.20222123430347010.1016/j.checat.2022.10.019
    [Google Scholar]
  70. HuangC.S. YinM.C. ChiuL.C. Antihyperglycemic and antioxidative potential of Psidium guajava fruit in streptozotocin-induced diabetic rats.Food Chem. Toxicol.20114992189219510.1016/j.fct.2011.05.032 21679740
    [Google Scholar]
  71. DhinakaranM.K. SoundarajanK. Mohan DasT. Synthesis of novel benzimidazole-carbazole-N-glycosylamines and their self-assembly into nanofibers.New J. Chem.20143894371437910.1039/C4NJ00415A
    [Google Scholar]
  72. RajasekarM. Mohan DasT. Synthesis, characterization and gelation studies of a novel class of rhodamine based N-glycosylamines.RSC Advances2014459309763098310.1039/C4RA03198A
    [Google Scholar]
  73. SoundarajanK. RajasekarM. DasT.M. Self-assembly of sugar based glyco-lipids: Gelation studies of partially protected d-glucose derivatives.Mater. Sci. Eng. C20189377678110.1016/j.msec.2018.08.038 30274111
    [Google Scholar]
  74. BhavyaP.V. Rabecca JeniferV. MuthuvelP. Mohan DasT. Insights into a novel class of azobenzenes incorporating 4,6-O-protected sugars as photo-responsive organogelators.RSC Advances2019972422194222710.1039/C9RA08033C 35542832
    [Google Scholar]
  75. SoundarajanK. Mohan DasT. Design, synthesis, characterization and gelation studies of sugar-oxadiozole based N-glycosylamines.Trends Carbohydr. Res.20191111421
    [Google Scholar]
  76. BhavyaP.V. SoundarajanK. MałeckiJ.G. Mohan DasT. Sugar-based phase-selective supramolecular self-assembly system for dye removal and selective detection of Cu2+ ions.ACS Omega2022743393103932410.1021/acsomega.2c05466 36340083
    [Google Scholar]
  77. Rabecca JeniferV. Mohan DasT. Smart supramolecular photoresponsive gelator with long-alkyl chain azobenzene incorporated sugar derivatives for recycling aromatic solvents and sequestration of cationic dyes.Soft Matter202218479017902510.1039/D2SM01367C 36404737
    [Google Scholar]
  78. Rabecca JeniferV. MałeckiJ.G. Mohan DasT. Synthesis of aryl azobenzene-based sugar derivatives for organogelators and the colorimetric detection of Cu2+ metal ions.Ind. Eng. Chem. Res.20236233130341304510.1021/acs.iecr.3c01766
    [Google Scholar]
  79. AlkanS. TelliF.Ç. SalmanY. AstleyS.T. Synthesis of novel Schiff base ligands from gluco- and galactochloraloses for the Cu(II) catalyzed asymmetric Henry reaction.Carbohydr. Res.20154079710310.1016/j.carres.2015.01.023 25742867
    [Google Scholar]
  80. BaigN. MadduluriV.K. SahA.K. Selective oxidation of organic sulfides to sulfoxides using sugar derived cis-dioxo molybdenum(vi) complexes: Kinetic and mechanistic studies.RSC Advances2016633280152802210.1039/C6RA01087C
    [Google Scholar]
  81. QuraishiM.A. AnsariK.R. ChauhanD.S. UmorenS.A. MazumderM.A.J. Vanillin modified chitosan as a new bio-inspired corrosion inhibitor for carbon steel in oil-well acidizing relevant to petroleum industry.Cellulose202027116425644310.1007/s10570‑020‑03239‑x
    [Google Scholar]
  82. BansalM. ChauhanG.S. KaushikA. SharmaA. Extraction and functionalization of bagasse cellulose nanofibres to Schiff-base based antimicrobial membranes.Int. J. Biol. Macromol.20169188789410.1016/j.ijbiomac.2016.06.045 27316771
    [Google Scholar]
  83. LiS. PeiM. WanT. YangH. GuS. TaoY. LiuX. ZhouY. XuW. XiaoP. Self-healing hyaluronic acid hydrogels based on dynamic Schiff base linkages as biomaterials.Carbohydr. Polym.202025011692210.1016/j.carbpol.2020.116922 33049836
    [Google Scholar]
  84. HozumiT. KageyamaT. OhtaS. FukudaJ. ItoT. Injectable hydrogel with slow degradability composed of gelatin and hyaluronic acid cross-linked by Schiff’s base formation.Biomacromolecules201819228829710.1021/acs.biomac.7b01133 29284268
    [Google Scholar]
  85. HemamaliniA. Azhagiya SingamE.R. MudedlaS.K. SubramanianV. Mohan DasT. Design and synthesis of sugar-triazole based uracil appended sugar-imine derivatives - An application in DNA binding studies.New J. Chem.20153964575458210.1039/C4NJ02221A
    [Google Scholar]
  86. BhavyaP.V. PunithavathiP. Mohan DasT. Design, synthesis and characterisation of a disulphide appended sugar bis-triazole.Indian J. Chem. Sect. A20205991364136810.56042/ijca.v59i9.41285
    [Google Scholar]
  87. HemamaliniA. Mohan DasT. Design and synthesis of sugar-triazole low molecular weight gels as mercury ion sensor.New J. Chem.20133782419242510.1039/c3nj00072a
    [Google Scholar]
  88. SoundarajanK. PeriyasamyR. Mohan DasT. Design and synthesis of sugar-benzohydrazides: Low molecular weight organogelators.RSC Advances2016685818388184610.1039/C6RA18715C
    [Google Scholar]
  89. SoundarajanK. Mohan DasT. Sugar-benzohydrazide based phase selective gelators for marine oil spill recovery and removal of dye from polluted water.Carbohydr. Res.2019481606610.1016/j.carres.2019.06.011 31252336
    [Google Scholar]
  90. HemamaliniA. Microwave assisted reaction, photophysical studies and antibacterial activities of simple sugar chalcone derivatives.Indian J. Chem.202362212112510.56042/ijc.v62i2.65632
    [Google Scholar]
  91. RajasekarM. Mohan DasT. Synthesis and antioxidant activity of a novel class of fluorescein-based β-C-glycosides.Carbohydr. Res.2013379384210.1016/j.carres.2013.06.016 23867296
    [Google Scholar]
  92. RajasekarM. Mohan DasT. One-pot synthesis of fluorescein based β-aminoglycosylketones and their biological and material applications.RSC Advances2014480425384254510.1039/C4RA06569G
    [Google Scholar]
  93. RajashakerM. Mohan DasT. New class of rhodamine-based β-C-glycosides and their applications.Trends Carbohydr. Res.2016812635
    [Google Scholar]
  94. PradhanS. MuthuvelP. Mohan DasT. Synthesis of a novel series of [1,5]-benzothiazepine-C-β-D-glycoside derivatives in a facile one-pot method and insight into their anti-oxidant properties.J. Mol. Struct.2023128113513810.1016/j.molstruc.2023.135138
    [Google Scholar]
  95. ShanmugamM.J. Mohan DasT. A concise pathway to synthesize a novel class of pyrido(2,3-d)pyrimidine-C-β-d-glycosides.Carbohydr. Res.2013368404610.1016/j.carres.2012.11.013 23333769
    [Google Scholar]
  96. Rabecca JeniferV. MuthuvelP. Mohan DasT. Rational design of heterocyclic moieties incorporated in [1,2,3]Sugar‐Triazole derivatives for anti-oxidant studies.ChemistrySelect20216379955995910.1002/slct.202102516
    [Google Scholar]
  97. ZhaoX. ZhangZ. XuJ. WangN. HuangN. YaoH. Stereoselective synthesis of O-glycosides with borate acceptors.J. Org. Chem.20238816117351174710.1021/acs.joc.3c01011 37525574
    [Google Scholar]
  98. KamilogluS. TomasM. CapanogluE. Dietary flavonols and O-Glycosides.Handbook of Dietary Phytochemicals201910.1007/978‑981‑13‑1745‑3_4‑1
    [Google Scholar]
  99. BashyalP. PandeyR.P. ThapaS.B. KangM.K. KimC.J. SohngJ.K. Biocatalytic synthesis of non-natural monoterpene o-glycosides exhibiting superior antibacterial and antinematodal properties.ACS Omega2019459367937510.1021/acsomega.9b00535 31460026
    [Google Scholar]
  100. LiP. HeH. XuL. HuangY. ChenZ. ZhangY. YangR. XiaoG. Ortho-(1-phenylvinyl)benzyl glycosides: Ether-type glycosyl donors for the efficient synthesis of both O-glycosides and nucleosides.Green Synth. Catal.20201216016610.1016/j.gresc.2020.10.003
    [Google Scholar]
  101. LiuR. HuaQ. LouQ. WangJ. LiX. MaZ. YangY. NIS/TMSOTf-promoted glycosidation of glycosyl ortho-hexynylbenzoates for versatile synthesis of O-glycosides and nucleosides.J. Org. Chem.20218664763477810.1021/acs.joc.1c00151 33689328
    [Google Scholar]
  102. LiP. HeH. ZhangY. YangR. XuL. ChenZ. HuangY. BaoL. XiaoG. Glycosyl ortho-(1-phenylvinyl)benzoates versatile glycosyl donors for highly efficient synthesis of both O-glycosides and nucleosides.Nat. Commun.202011140510.1038/s41467‑020‑14295‑z 31964883
    [Google Scholar]
  103. LiK. FengJ. KuangY. SongW. ZhangM. JiS. QiaoX. YeM. Enzymatic synthesis of bufadienolide O‐glycosides as potent antitumor agents using a microbial glycosyltransferase.Adv. Synth. Catal.2017359213765377210.1002/adsc.201700777
    [Google Scholar]
/content/journals/coc/10.2174/0113852728316820240815164622
Loading
/content/journals/coc/10.2174/0113852728316820240815164622
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): C-glycosides; gelators; Glycosides; hydrogels; imines; N-glycosides; O-glycosides; organogels; sensor
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test