Skip to content
2000
Volume 28, Issue 20
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

The synthesis of a series of multifunctionalized 4,5-diarylpyridazines inverse electron-demand Diels-Alder reaction between highly oxygenated diarylacetylenes and unsubstituted 1,2,4,5-tetrazine was developed using polyalkoxybenzenes isolated from industrial essential oils as starting material. The reaction proceeded smoothly to afford combretastatin A-4 analogues with pyridazine linker in consistently high yield. In a phenotypic sea urchin embryo assay, diarylpyridazine with 3,4,5-trimethoxyphenyl and 3-amino-4-methoxyphenyl aryl rings was identified as a potent antimitotic microtubule-destabilizing compound.

#.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728314401240613045216
2024-12-01
2025-01-10
Loading full text...

Full text loading...

References

  1. SergeevP.G. NenajdenkoV.G. Recent advances in the chemistry of pyridazine - an important representative of six-membered nitrogen heterocycles.Russ. Chem. Rev.202089439342910.1070/rcr4922
    [Google Scholar]
  2. WermuthC.G. Are pyridazines privileged structures?MedChemComm201121093594110.1039/c1md00074h
    [Google Scholar]
  3. AsifM. AlghamdiS. A mini-review on pyridazine analogs: Chemical and pharmacological potentials.Mini Rev. Org. Chem.202320210012310.2174/1570193x19666220329155551
    [Google Scholar]
  4. MalikA. MishraR. MazumderR. MazumderA. MishraP.S. A comprehensive study on synthesis and biological activities of pyridazine derivatives.Res. J. Pharm. Technol.20211463423342910.52711/0974‑360x.2021.00595
    [Google Scholar]
  5. HeZ-X. GongY.P. ZhangX. MaL.Y. ZhaoW. Pyridazine as a privileged structure: An updated review on anticancer activity of pyridazine containing bioactive molecules.Eur. J. Med. Chem.202120911294610.1016/j.ejmech.2020.112946 33129590
    [Google Scholar]
  6. SonkerP. SinghM. NidharM. SharmaV.P. YadavP. SinghR. KochB. TewariA.K. Novel pyrimido-pyridazine derivatives: design, synthesis, anticancer evaluation and in silico studies.Future Med. Chem.202214231693170410.4155/fmc‑2022‑0199 36533662
    [Google Scholar]
  7. ElmeligieS. AhmedE.M. Abuel-MaatyS.M. ZaitoneS.A. MikhailD.S. Design and synthesis of pyridazine containing compounds with promising anticancer activity.Chem. Pharm. Bull. 201765323624710.1248/cpb.c16‑00532 28250345
    [Google Scholar]
  8. SabtA. EldehnaW.M. Al-WarhiT. AlotaibiO.J. ElaasserM.M. SulimanH. Abdel-AzizH.A. Discovery of 3,6-disubstituted pyridazines as a novel class of anticancer agents targeting cyclin-dependent kinase 2: synthesis, biological evaluation and in silico insights.J. Enzyme Inhib. Med. Chem.20203511616163010.1080/14756366.2020.1806259 32781872
    [Google Scholar]
  9. AsifM. The anticancer potential of various substituted pyridazines and related compounds.Int. J. Adv. Chem.20142214816110.14419/ijac.v2i2.2661
    [Google Scholar]
  10. JaballahM.Y. SeryaR.T. AbouzidK. Pyridazine based scaffolds as privileged structures in anti-cancer therapy.Drug Res. (Stuttg.)201767313814810.1055/s‑0042‑119992 28073115
    [Google Scholar]
  11. Al-MehiziaA.A. BakheitA.H. ZargarS. BhatM.A. AsmariM.M. WaniT.A. Evaluation of biophysical interaction between newly synthesized pyrazoline pyridazine derivative and bovine serum albumin by spectroscopic and molecular docking studies.J. Spectrosc.2019201911210.1155/2019/3848670
    [Google Scholar]
  12. MikstackaR. StefanskiT. RozanskiJ. Tubulin-interactive stilbene derivatives as anticancer agents.Cell. Mol. Biol. Lett.201318336839710.2478/s11658‑013‑0094‑z 23818224
    [Google Scholar]
  13. YangX. ChengB. XiaoY. XueM. LiuT. CaoH. ChenJ. Discovery of novel CA-4 analogs as dual inhibitors of tubulin polymerization and PD-1/PD-L1 interaction for cancer treatment.Eur. J. Med. Chem.202121311305810.1016/j.ejmech.2020.113058 33280898
    [Google Scholar]
  14. BaytasS.N. Recent advances in combretastatin A-4 inspired inhibitors of tubulin polymerization: An Update.Curr. Med. Chem.202229203557358510.2174/1871526522666220105114437 34986762
    [Google Scholar]
  15. LiuP. QinY. WuL. YangS. LiN. WangH. XuH. SunK. ZhangS. HanX. SunY. A phase I clinical trial assessing the safety and tolerability of combretastatin A4 phosphate injections.Anticancer Drugs201425446247110.1097/CAD.0000000000000070 24500030
    [Google Scholar]
  16. JarochK. KarolakM. GorskiP. JarochA. KrajewskiA. IlnickaA. SloderbachA. StefanskiT. SobiakS. Combretastatins: In vitro structure-activity relationship, mode of action and current clinical status.Pharmacol. Rep.20166861266127510.1016/j.pharep.2016.08.007 27686966
    [Google Scholar]
  17. GrishamR. KyB. TewariK.S. ChaplinD.J. WalkerJ. Clinical trial experience with CA4P anticancer therapy: focus on efficacy, cardiovascular adverse events, and hypertension management.Gynecol. Oncol. Res. Pract.20185111010.1186/s40661‑017‑0058‑5 29318022
    [Google Scholar]
  18. CushmanM. NagarathnamD. GopalD. ChakrabortiA.K. LinC.M. HamelE. Synthesis and evaluation of stilbene and dihydrostilbene derivatives as potential anticancer agents that inhibit tubulin polymerization.J. Med. Chem.19913482579258810.1021/jm00112a036 1875350
    [Google Scholar]
  19. PettitG.R. RhodesM.R. HeraldD.L. HamelE. SchmidtJ.M. PettitR.K. Antineoplastic agents. 445. Synthesis and evaluation of structural modifications of (Z)- and (E)-combretastatin A-41.J. Med. Chem.200548124087409910.1021/jm0205797 15943482
    [Google Scholar]
  20. SemenovV.V. KiselyovA.S. TitovI.Y. SagamanovaI.K. IkizalpN.N. ChernyshevaN.B. TsyganovD.V. KonyushkinL.D. FirgangS.I. SemenovR.V. KarmanovaI.B. Synthesis of antimitotic polyalkoxyphenyl derivatives of combretastatin using plant allylpolyalkoxybenzenes.J. Nat. Prod.201073111796180210.1021/np1004278 21049975
    [Google Scholar]
  21. RajakH. DewanganP.K. PatelV. JainD.K. SinghA. VeerasamyR. SharmaP.C. DixitA. Design of combretastatin A-4 analogs as tubulin targeted vascular disrupting agent with special emphasis on their cis-restricted isomers.Curr. Pharm. Des.201319101923195510.2174/1381612811319100013 23237054
    [Google Scholar]
  22. SemenovaM.N. DemchukD.V. TsyganovD.V. ChernyshevaN.B. SametA.V. SilyanovaE.A. KislyiV.P. MaksimenkoA.S. VarakutinA.E. KonyushkinL.D. RaihstatM.M. Sea urchin embryo model as a reliable in vivo phenotypic screen to characterize selective antimitotic molecules. Comparative evaluation of combretapyrazoles, -isoxazoles, -1,2,3-triazoles, and -pyrroles as tubulin-binding agents.ACS Comb. Sci.2018201270072110.1021/acscombsci.8b00113 30452225
    [Google Scholar]
  23. RomagnoliR. OlivaP. SalvadorM.K. ManfrediniS. PadroniC. BrancaleA. FerlaS. HamelE. RoncaR. MaccarinelliF. RrugaF. A facile synthesis of diaryl pyrroles led to the discovery of potent colchicine site antimitotic agents.Eur. J. Med. Chem.202121411322910.1016/j.ejmech.2021.113229 33550186
    [Google Scholar]
  24. SimoniD. GrisoliaG. GianniniG. RobertiM. RondaninR. PiccagliL. BaruchelloR. RossiM. RomagnoliR. InvidiataF.P. GrimaudoS. Heterocyclic and phenyl double-bond-locked combretastatin analogues possessing potent apoptosis-inducing activity in HL60 and in MDR cell lines.J. Med. Chem.200548372373610.1021/jm049622b
    [Google Scholar]
  25. ZhengS. ZhongQ. MottamalM. ZhangQ. ZhangC. LemelleE. McFerrinH. WangG. Design, synthesis, and biological evaluation of novel pyridine-bridged analogues of combretastatin-A4 as anticancer agents.J. Med. Chem.20145783369338110.1021/jm500002k 24669888
    [Google Scholar]
  26. PunganuruS.R. SamalaR. SrivenugopalK.S. One-pot synthesis and antitumor activity of unsymmetrical terphenyls.Drug Res. (Stuttg.)2017671253110.1055/s‑0042‑114776 27626606
    [Google Scholar]
  27. HuoZ. LiuK. ZhangX. LiangY. SunX. Discovery of pyrimidine-bridged CA-4 CBSIs for the treatment of cervical cancer in combination with cisplatin with significantly reduced nephrotoxicity.Eur. J. Med. Chem.202223511427110.1016/j.ejmech.2022.114271 35339837
    [Google Scholar]
  28. SauerJ. LangD. Diels-Alder-Reaktionen der 1.2.4.5-Tetrazine.Angew. Chem.1964761360360310.1002/ange.196407613122
    [Google Scholar]
  29. BirkoferL. HänselE. SteigelA. Synthese von 3‐Phenyl‐5‐silylpyridazinen durch regioselektive [4 + 2]‐.Cycloadditionen. Chem. Ber.200611572574258510.1002/cber.19821150720
    [Google Scholar]
  30. OliveiraB.L. GuoZ. BernardesG.J.L. Inverse electron demand Diels-Alder reactions in chemical biology.Chem. Soc. Rev.201746164895495010.1039/c7cs00184c 28660957
    [Google Scholar]
  31. LiX. LiuZ. DongS. Bicyclo[6.1.0]nonyne and tetrazine amino acids for Diels–Alder reactions.RSC Adv.201778444704447310.1039/c7ra08136g
    [Google Scholar]
  32. FosterR.A. WillisM.C. Tandem inverse-electron-demand hetero-/retro-Diels-Alder reactions for aromatic nitrogen heterocycle synthesis.Chem. Soc. Rev.2013421637610.1039/c2cs35316d 23079670
    [Google Scholar]
  33. SauerJ. HeldmannD.K. HetzeneggerJ. KrauthanJ. SichertH. SchusterJ. 1,2,4,5-Tetrazine: Synthesis and Reactivity in.[4+2] Cycloadditions. Eur. J. Org. Chem.19981998122885289610.1002/(sici)1099‑0690(199812)1998:12<2885::aid‑ejoc2885>3.0.co;2‑l
    [Google Scholar]
  34. BogerD.L. SoenenD.R. BoyceC.W. HedrickM.P. JinQ. Total synthesis of ningalin B utilizing a heterocyclic azadiene Diels-Alder reaction and discovery of a new class of potent multidrug resistant (MDR) reversal agents.J. Org. Chem.20006582479248310.1021/jo9916535 10789460
    [Google Scholar]
  35. SaracogluN. Recent advances and applications in 1,2,4,5-tetrazine chemistry.Tetrahedron200763204199423610.1016/j.tet.2007.02.051
    [Google Scholar]
  36. SemenovV.V. RusakV.V. ChartovE.M. ZaretskiiM.I. KonyushkinL.D. FirgangS.I. ChizhovA.O. ElkinV.V. LatinN.N. BonashekV.M. Stas’evaO.N. Polyalkoxybenzenes from plant raw materials 1. Isolation of polyalkoxybenzenes from CO2 extracts of Umbelliferae plant seeds.Russ. Chem. Bull.200756122448245510.1007/s11172‑007‑0389‑1
    [Google Scholar]
  37. RusanovD.A. SametA.V. RusakV.V. SemenovV.V. Synthesis of functionalized 1-methylchromeno[3,4-b]pyrrol-4(3H)-ones via the Barton–Zard reaction starting from pseudonitrosites.Chem. Heterocycl. Compd.202157994494810.1007/s10593‑021‑03004‑3
    [Google Scholar]
  38. OhiraS. Methanolysis of dimethyl (1-diazo-2-oxopropyl) phosphonate: generation of dimethyl (diazomethyl) phosphonate and reaction with carbonyl compounds.Synth. Commun.1998193-456156410.1080/00397918908050700
    [Google Scholar]
  39. DhamejaM. PandeyJ. Bestmann–Ohira reagent: A convenient and promising reagent in the chemical world.Asian J. Org. Chem.2018781502152310.1002/ajoc.201800051
    [Google Scholar]
  40. JamaliM.F. VaishanvN.K. MohananK. The Bestmann-Ohira reagent and related diazo compounds for the synthesis of azaheterocycles.Chem. Rec.202020111394140810.1002/tcr.202000091 32986304
    [Google Scholar]
  41. ZuoY. HeX. TangQ. HuW. ZhouT. HuW. ShangY. Palladium‐catalyzed 5‐exo‐dig cyclization cascade, sequential amination/etherification for stereoselective construction of 3‐methyleneindolinones.Adv. Synth. Catal.202036382117212310.1002/adsc.202001369
    [Google Scholar]
  42. OhtsukaN. OkunoM. HoshinoY. HondaK. A base-mediated self-propagative Lossen rearrangement of hydroxamic acids for the efficient and facile synthesis of aromatic and aliphatic primary amines.Org. Biomol. Chem.201614389046905410.1039/c6ob01178k 27605448
    [Google Scholar]
  43. SchultzkeS. WaltherM. StaubitzA. Active ester functionalized azobenzenes as versatile building blocks.Molecules20212613391610.3390/molecules26133916 34206950
    [Google Scholar]
  44. PodsiadłoM. JakóbekK. KatrusiakA. Density, freezing and molecular aggregation in pyridazine, pyridine and benzene.CrystEngComm20101292561256710.1039/c001153c
    [Google Scholar]
  45. ChernyshevaN.B. MaksimenkoA.S. AndreyanovF.A. KislyiV.P. StrelenkoY.A. KhrustalevV.N. SemenovaM.N. SemenovV.V. Regioselective synthesis of 3,4-diaryl-5-unsubstituted isoxazoles, analogues of natural cytostatic combretastatin A4.Eur. J. Med. Chem.201814651151810.1016/j.ejmech.2018.01.070 29407976
    [Google Scholar]
  46. DemchukD.V. SametA.V. ChernyshevaN.B. UshkarovV.I. StashinaG.A. KonyushkinL.D. RaihstatM.M. FirgangS.I. PhilchenkovA.A. ZavelevichM.P. KuiavaL.M. Synthesis and antiproliferative activity of conformationally restricted 1,2,3-triazole analogues of combretastatins in the sea urchin embryo model and against human cancer cell lines.Bioorg. Med. Chem.201422273875510.1016/j.bmc.2013.12.015 24387982
    [Google Scholar]
  47. PettitG.R. SinghS.B. BoydM.R. HamelE. PettitR.K. SchmidtJ.M. HoganF. Antineoplastic agents. 291. Isolation and synthesis of combretastatins A-4, A-5, and A-6(1a).J. Med. Chem.199538101666167210.1021/jm00010a011 7752190
    [Google Scholar]
  48. CrysAlisPro, 1.171.41; Rigaku Oxford Diffraction: 2021
    [Google Scholar]
  49. SheldrickG.M. SHELXT - integrated space-group and crystal-structure determination.Acta Crystallogr. A Found. Adv.20157113810.1107/S2053273314026370 25537383
    [Google Scholar]
  50. SheldrickG.M. Crystal structure refinement with SHELXL.Acta Crystallogr. C Struct. Chem.20157113810.1107/S2053229614024218 25567568
    [Google Scholar]
  51. DolomanovO.V. BourhisL.J. GildeaR.J. HowardJ.A.K. PuschmannH. OLEX2: a complete structure solution, refinement and analysis program.J. Appl. Crystallogr.200942233934110.1107/s0021889808042726
    [Google Scholar]
  52. SheldrickG.M. A short history of SHELX.Acta Crystallogr. A200864111212210.1107/S0108767307043930 18156677
    [Google Scholar]
/content/journals/coc/10.2174/0113852728314401240613045216
Loading
/content/journals/coc/10.2174/0113852728314401240613045216
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test