Skip to content
2000
Volume 29, Issue 1
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

The complicated internal mechanical and structural qualities of normal bone tissue still prevent the development of effective therapeutic procedures for major bone lesions. It is still difficult to use tissue engineering to return damaged bones back to how they were originally intended. Due to recent advances in 3D printing, together with the introduction of new materials and technological assistance, the basis for BTE has been established. Biological 3D biomaterials have cells inside them, which allows for the creation of structures that mimic real tissues. Microextrusion, inkjet, and laser-assisted bioprinting are the three primary methods used in 3D bioprinting manufacturing. Hydrogels packed with cells, growth hormones, and bioactive ceramics are among the bioinks utilized in bone bioprinting. With the use of magnetic resonance imaging or computed tomography scanning, 3D printing offers substantial benefits for tailored treatment by enabling the creation of scaffolds with the right structural qualities, form, and dimensions. Three-dimensional (3D) bioprinting is a cutting-edge technique that has been utilized recently to create multicellular, biomimetic tissues with layers upon layers of intricate tissue microenvironment printing. We approached the use of hydrogels with great strength in 3D printing for BTE with an emphasis on first providing a thorough study about the development of 3D printing, printing techniques, and ink selection in this review. A brief prediction on how 3D printing would advance in the future was made.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728312464240529050217
2024-06-21
2025-01-29
Loading full text...

Full text loading...

References

  1. KimI.S. YangW.S. KimC.H. Physiological properties, functions, and trends in the matrix metalloproteinase inhibitors in inflammation-mediated human diseases.Curr. Med. Chem.202330182075211210.2174/092986732966622082311273136017851
    [Google Scholar]
  2. FarooqS. MunawarM.A. NgainiZ. Mono-metallic, bi-metallic and tri-metallic biogenic nanoparticles derived from garlic and ginger with their applications.Curr. Org. Chem.202327141202121410.2174/1385272827666230915103130
    [Google Scholar]
  3. SharmaS. SinghK. SinghS. Synthetic strategies for quinoline based derivatives as potential bioactive heterocycles.Curr. Org. Synth.202320660662910.2174/157017942066622100414391036200204
    [Google Scholar]
  4. ShahrajabianM.H. KuangY. CuiH. FuL. SunW. Metabolic changes of active components of important medicinal plants on the basis of traditional chinese medicine under different environmental stresses.Curr. Org. Chem.202327978280610.2174/1385272827666230807150910
    [Google Scholar]
  5. HussenN.H. HasanA.H. MuhammedG.O. YassinA.Y. SalihR.R. EsmailP.A. AlanaziM.M. JamalisJ. Anthracycline in medicinal chemistry: mechanism of cardiotoxicity, preventive and treatment strategies.Curr. Org. Chem.202327436337710.2174/1385272827666230423144150
    [Google Scholar]
  6. SharmaA.S. Salahuddin; Mazumder, A.; Kumar, R.; Datt, V.; Shabana, K.; Tyagi, S.; Yar, M.S.; Ahsan, M.J. Recent updates on synthesis, biological activity, and structure-activity relationship of 1,3,4-oxadiazole-quinoline hybrids: A review.Curr. Org. Synth.202320775878710.2174/157017942066622100414265936200203
    [Google Scholar]
  7. KalarP.L. AgrawalS. KushwahaS. GayenS. DasK. Recent developments on synthesis of organofluorine compounds using green approaches.Curr. Org. Chem.202327319020510.2174/1385272827666230516100739
    [Google Scholar]
  8. MarrellaA. LeeT.Y. LeeD.H. KaruthedomS. SylaD. ChawlaA. KhademhosseiniA. JangH.L. Engineering vascularized and innervated bone biomaterials for improved skeletal tissue regeneration.Mater. Today201821436237610.1016/j.mattod.2017.10.00530100812
    [Google Scholar]
  9. ZhangT. WeiQ. ZhouH. JingZ. LiuX. ZhengY. CaiH. WeiF. JiangL. YuM. ChengY. FanD. ZhouW. LinX. LengH. LiJ. LiX. WangC. TianY. LiuZ. Three-dimensional-printed individualized porous implants: A new “implant-bone” interface fusion concept for large bone defect treatment.Bioact. Mater.20216113659367010.1016/j.bioactmat.2021.03.03033898870
    [Google Scholar]
  10. NieL. ChenD. SuoJ. ZouP. FengS. YangQ. YangS. YeS. Physicochemical characterization and biocompatibility in vitro of biphasic calcium phosphate/polyvinyl alcohol scaffolds prepared by freeze-drying method for bone tissue engineering applications.Colloids Surf. B Biointerfaces201210016917610.1016/j.colsurfb.2012.04.04622766294
    [Google Scholar]
  11. ZhangZ. JiaB. YangH. HanY. WuQ. DaiK. ZhengY. Biodegradable ZnLiCa ternary alloys for critical-sized bone defect regeneration at load-bearing sites: In vitro and in vivo studies.Bioact. Mater.20216113999401310.1016/j.bioactmat.2021.03.04533997489
    [Google Scholar]
  12. VukajlovicD. ParkerJ. BretcanuO. NovakovicK. Chitosan based polymer/bioglass composites for tissue engineering applications.Mater. Sci. Eng. C20199695596710.1016/j.msec.2018.12.02630606607
    [Google Scholar]
  13. JodatiH. YılmazB. EvisZ. A review of bioceramic porous scaffolds for hard tissue applications: Effects of structural features.Ceram. Int.20204610157251573910.1016/j.ceramint.2020.03.192
    [Google Scholar]
  14. SinghA.K. SundramS. MalviyaR. Human-derived biomaterials for biomedical and tissue engineering applications.Curr. Pharm. Des.202329858460310.2174/138161282966623032010341236959154
    [Google Scholar]
  15. MalviyaR. SinghA.K. Graft copolymers of polysaccharide: synthesis methodology and biomedical applications in tissue engineering.Curr. Pharm. Biotechnol.202324451053110.2174/138920102366622081509180636043716
    [Google Scholar]
  16. LinX. GongX. RuanQ. XuW. ZhangC. ZhaoK. Antimicrobial application of chitosan derivatives and their nanocomposites.Curr. Med. Chem.202330151736175510.2174/092986732966622080311472935927801
    [Google Scholar]
  17. PourhaghgouyM. ZamanianA. ShahrezaeeM. MasoulehM.P. Physicochemical properties and bioactivity of freeze-cast chitosan nanocomposite scaffolds reinforced with bioactive glass.Mater. Sci. Eng. C20165818018610.1016/j.msec.2015.07.06526478301
    [Google Scholar]
  18. KankariyaY. ChatterjeeB. Biomedical application of chitosan and chitosan derivatives: A comprehensive review.Curr. Pharm. Des.202329171311132510.2174/138161282966623052415300237226781
    [Google Scholar]
  19. TangZ. TanY. ChenH. WanY. Benzoxazine: A privileged scaffold in medicinal chemistry.Curr. Med. Chem.202330437238910.2174/092986732966622070514084635792127
    [Google Scholar]
  20. SwansonW.B. ZhangZ. XiuK. GongT. EberleM. WangZ. MaP.X. Scaffolds with controlled release of pro-mineralization exosomes to promote craniofacial bone healing without cell transplantation.Acta Biomater.202011821523210.1016/j.actbio.2020.09.05233065285
    [Google Scholar]
  21. ShiR. HuangY. MaC. WuC. TianW. Current advances for bone regeneration based on tissue engineering strategies.Front. Med.201913216018810.1007/s11684‑018‑0629‑930047029
    [Google Scholar]
  22. RatheeshG. VaquetteC. XiaoY. Patient‐specific bone particles bioprinting for bone tissue engineering.Adv. Healthc. Mater.2020923200132310.1002/adhm.20200132333166078
    [Google Scholar]
  23. LinK.F. HeS. SongY. WangC.M. GaoY. LiJ.Q. TangP. WangZ. BiL. PeiG.X. Low-temperature additive manufacturing of biomimic three-dimensional hydroxyapatite/collagen scaffolds for bone regeneration.ACS Appl. Mater. Interfaces20168116905691610.1021/acsami.6b0081526930140
    [Google Scholar]
  24. JoseM. ThomasV. JohnsonK. DeanD. NyairoE. Aligned PLGA/HA nanofibrous nanocomposite scaffolds for bone tissue engineering.Acta Biomater.20095130531510.1016/j.actbio.2008.07.01918778977
    [Google Scholar]
  25. Cámara-TorresM. DuarteS. SinhaR. EgizabalA. ÁlvarezN. BastianiniM. SisaniM. ScopeceP. ScattoM. BonettoA. MarcominiA. SanchezA. PatelliA. MotaC. MoroniL. 3D additive manufactured composite scaffolds with antibiotic-loaded lamellar fillers for bone infection prevention and tissue regeneration.Bioact. Mater.2021641073108210.1016/j.bioactmat.2020.09.03133102947
    [Google Scholar]
  26. SchatkoskiV.M. Larissa do Amaral MontanheiroT. Canuto de MenezesB.R. PereiraR.M. RodriguesK.F. RibasR.G. Morais da SilvaD. ThimG.P. Current advances concerning the most cited metal ions doped bioceramics and silicate-based bioactive glasses for bone tissue engineering.Ceram. Int.20214732999301210.1016/j.ceramint.2020.09.213
    [Google Scholar]
  27. NakanoT. Control of crystallographic orientation by metal additive manufacturing process of β-type Ti alloys based on the bone tissue anisotropy.MATEC Web Conf.20203211110.1051/matecconf/202032105002
    [Google Scholar]
  28. XiongY.Z. GaoR.N. ZhangH. DongL.L. LiJ.T. LiX. Rationally designed functionally graded porous Ti6Al4V scaffolds with high strength and toughness built via selective laser melting for load-bearing orthopedic applications.J. Mech. Behav. Biomed. Mater.202010410367310.1016/j.jmbbm.2020.10367332174429
    [Google Scholar]
  29. ZhangH. HuangH. HaoG. ZhangY. DingH. FanZ. SunL. 3D printing hydrogel scaffolds with nanohydroxyapatite gradient to effectively repair osteochondral defects in rats.Adv. Funct. Mater.2021311200669710.1002/adfm.202006697
    [Google Scholar]
  30. ZhaiX. MaY. HouC. GaoF. ZhangY. RuanC. PanH. LuW.W. LiuW. 3D-printed high strength bioactive supramolecular polymer/clay nanocomposite hydrogel scaffold for bone regeneration.ACS Biomater. Sci. Eng.2017361109111810.1021/acsbiomaterials.7b0022433429585
    [Google Scholar]
  31. WangX. XuS. ZhouS. XuW. LearyM. ChoongP. QianM. BrandtM. XieY.M. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review.Biomaterials20168312714110.1016/j.biomaterials.2016.01.01226773669
    [Google Scholar]
  32. BaiL. ZhaoY. ChenP. ZhangX. HuangX. DuZ. CrawfordR. YaoX. TangB. HangR. XiaoY. Targeting early healing phase with titania nanotube arrays on tunable diameters to accelerate bone regeneration and osseointegration.Small2021174200628710.1002/smll.20200628733377275
    [Google Scholar]
  33. BaiL. LiuY. DuZ. WengZ. YaoW. ZhangX. HuangX. YaoX. CrawfordR. HangR. HuangD. TangB. XiaoY. Differential effect of hydroxyapatite nano-particle versus nano-rod decorated titanium micro-surface on osseointegration.Acta Biomater.20187634435810.1016/j.actbio.2018.06.02329908975
    [Google Scholar]
  34. KoonsG.L. DibaM. MikosA.G. Materials design for bone-tissue engineering.Nat. Rev. Mater.20205858460310.1038/s41578‑020‑0204‑2
    [Google Scholar]
  35. WangY. HuangX. ZhangX. Ultrarobust, tough and highly stretchable self-healing materials based on cartilage-inspired noncovalent assembly nanostructure.Nat. Commun.2021121129110.1038/s41467‑021‑21577‑733637743
    [Google Scholar]
  36. HuaM. WuS. MaY. ZhaoY. ChenZ. FrenkelI. StrzalkaJ. ZhouH. ZhuX. HeX. Strong tough hydrogels via the synergy of freeze-casting and salting out.Nature2021590784759459910.1038/s41586‑021‑03212‑z33627812
    [Google Scholar]
  37. ErukhimovichI. Olvera de la CruzM. Phase equilibrium and charge fractionation in polyelectrolyte solutions.J. Polym. Sci. Polym. Phys.200745213003300910.1002/polb.21300
    [Google Scholar]
  38. HirschM. CharletA. AmstadE. 3D printing of strong and tough double network granular hydrogels.Adv. Funct. Mater.2021315200592910.1002/adfm.202005929
    [Google Scholar]
  39. SinghB.N. VeereshV. MallickS.P. JainY. SinhaS. RastogiA. SrivastavaP. Design and evaluation of chitosan/chondroitin sulfate/nano-bioglass based composite scaffold for bone tissue engineering.Int. J. Biol. Macromol.201913381783010.1016/j.ijbiomac.2019.04.10731002908
    [Google Scholar]
  40. RahmanianM. seyfoori, A.; Dehghan, M.M.; Eini, L.; Naghib, S.M.; Gholami, H.; Farzad Mohajeri, S.; Mamaghani, K.R.; Majidzadeh-A, K. Multifunctional gelatin-tricalcium phosphate porous nanocomposite scaffolds for tissue engineering and local drug delivery: In vitro and in vivo studies.J. Taiwan Inst. Chem. Eng.201910121422010.1016/j.jtice.2019.04.028
    [Google Scholar]
  41. KalantariE. NaghibS.M. IravaniN.J. EsmaeiliR. Naimi-JamalM.R. MozafariM. Biocomposites based on hydroxyapatite matrix reinforced with nanostructured monticellite (CaMgSiO4) for biomedical application: Synthesis, characterization, and biological studies.Mater. Sci. Eng. C201910510991210.1016/j.msec.2019.10991231546348
    [Google Scholar]
  42. KalantariE. NaghibS.M. Naimi-JamalM.R. AliahmadiA. IravaniN.J. MozafariM. Nanostructured monticellite for tissue engineering applications - Part I: Microstructural and physicochemical characteristics.Ceram. Int.20184411127311273810.1016/j.ceramint.2018.04.076
    [Google Scholar]
  43. KalantariE. NaghibS.M. IravaniN.J. AliahmadiA. Naimi-JamalM.R. MozafariM. Nanostructured monticellite for tissue engineering applications - Part II: Molecular and biological characteristics.Ceram. Int.20184412147041471110.1016/j.ceramint.2018.05.098
    [Google Scholar]
  44. YaoH. KangJ. LiW. LiuJ. XieR. WangY. LiuS. WangD.A. RenL. Novel β -TCP/PVA bilayered hydrogels with considerable physical and bio-functional properties for osteochondral repair.Biomed. Mater.201713101501210.1088/1748‑605X/aa854128792423
    [Google Scholar]
  45. NahanmoghadamA. AsemaniM. GoodarziV. Ebrahimi-BaroughS. Design and fabrication of bone tissue scaffolds based on PCL/PHBV CONTAINING hydroxyapatite nanoparticles: Dual‐leaching technique.J. Biomed. Mater. Res. A2021109698199310.1002/jbm.a.3708733448637
    [Google Scholar]
  46. LanW. ZhangX. XuM. ZhaoL. HuangD. WeiX. ChenW. Carbon nanotube reinforced polyvinyl alcohol/biphasic calcium phosphate scaffold for bone tissue engineering.RSC Advances2019967389983901010.1039/C9RA08569F35540653
    [Google Scholar]
  47. KazimierczakP. BenkoA. PalkaK. CanalC. KolodynskaD. PrzekoraA. Novel synthesis method combining a foaming agent with freeze-drying to obtain hybrid highly macroporous bone scaffolds.J. Mater. Sci. Technol.202043526310.1016/j.jmst.2020.01.006
    [Google Scholar]
  48. ManavitehraniI. LeT.Y.L. DalyS. WangY. MaitzP.K. SchindelerA. DehghaniF. Formation of porous biodegradable scaffolds based on poly(propylene carbonate) using gas foaming technology.Mater. Sci. Eng. C20199682483010.1016/j.msec.2018.11.08830606596
    [Google Scholar]
  49. HanX. SunM. ChenB. SaidingQ. ZhangJ. SongH. DengL. WangP. GongW. CuiW. Lotus seedpod-inspired internal vascularized 3D printed scaffold for bone tissue repair.Bioact. Mater.2021661639165210.1016/j.bioactmat.2020.11.01933313444
    [Google Scholar]
  50. BandyopadhyayA. MitraI. BoseS. 3D printing for bone regeneration.Curr. Osteoporos. Rep.202018550551410.1007/s11914‑020‑00606‑232748324
    [Google Scholar]
  51. BendtsenS.T. QuinnellS.P. WeiM. Development of a novel alginate‐polyvinyl alcohol‐hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds.J. Biomed. Mater. Res. A201710551457146810.1002/jbm.a.3603628187519
    [Google Scholar]
  52. WangC. HuangW. ZhouY. HeL. HeZ. ChenZ. HeX. TianS. LiaoJ. LuB. WeiY. WangM. 3D printing of bone tissue engineering scaffolds.Bioact. Mater.202051829110.1016/j.bioactmat.2020.01.00431956737
    [Google Scholar]
  53. MaroulakosM. KamperosG. TayebiL. HalazonetisD. RenY. Applications of 3D printing on craniofacial bone repair: A systematic review.J. Dent.20198011410.1016/j.jdent.2018.11.00430439546
    [Google Scholar]
  54. LipianM. KulakM. StepienM. Fast track integration of computational methods with experiments in small wind turbine development.Energies2019129162510.3390/en12091625
    [Google Scholar]
  55. ZuoH. LiuZ. ZhangL. LiuG. OuyangX. GuanQ. WuQ. YouZ. Self-healing materials enable free-standing seamless large-scale 3D printing.Sci. China Mater.20216471791180010.1007/s40843‑020‑1603‑y
    [Google Scholar]
  56. PasrichaA. GreeningerR. Exploration of 3D printing to create zero-waste sustainable fashion notions and jewelry.Fashion and Textiles2018513010.1186/s40691‑018‑0152‑2
    [Google Scholar]
  57. YangY. ZhangQ. XuT. ZhangH. ZhangM. LuL. HaoY. FuhJ.H. ZhaoX. Photocrosslinkable nanocomposite ink for printing strong, biodegradable and bioactive bone graft.Biomaterials202026312037810.1016/j.biomaterials.2020.12037832932140
    [Google Scholar]
  58. TayY.W.D. PandaB. PaulS.C. Noor MohamedN.A. TanM.J. LeongK.F. 3D printing trends in building and construction industry: a review.Virtual Phys. Prototyp.201712326127610.1080/17452759.2017.1326724
    [Google Scholar]
  59. DalyA.C. CunniffeG.M. SathyB.N. JeonO. AlsbergE. KellyD.J. 3D bioprinting of developmentally inspired templates for whole bone organ engineering.Adv. Healthc. Mater.20165182353236210.1002/adhm.20160018227281607
    [Google Scholar]
  60. PalmieriV. 3D-printed graphene for bone reconstruction. 2D Materials,20207202200410.1088/2053‑1583/ab6a5d
    [Google Scholar]
  61. FengZ. LiY. HaoL. YangY. TangT. TangD. XiongW. Graphene-reinforced biodegradable resin composites for stereolithographic 3D printing of bone structure scaffolds.J. Nanomater.2019201911310.1155/2019/9710264
    [Google Scholar]
  62. Saleh AlghamdiS. JohnS. Roy ChoudhuryN. DuttaN.K. Additive manufacturing of polymer materials: Progress, promise and challenges.Polymers (Basel)202113575310.3390/polym1305075333670934
    [Google Scholar]
  63. XiL. ZhangY. GuptaH. TerrillN. WangP. ZhaoT. FangD. A multiscale study of structural and compositional changes in a natural nanocomposite: Osteoporotic bone with chronic endogenous steroid excess.Bone202114311566610.1016/j.bone.2020.11566633007528
    [Google Scholar]
  64. MidhaS. DalelaM. SybilD. PatraP. MohantyS. Advances in threedimensional bioprinting of bone: Progress and challenges. J. Tissue Eng. Regen. Med.2019136term.284710.1002/term.284730812062
    [Google Scholar]
  65. TangA. JiJ. LiJ. LiuW. WangJ. SunQ. LiQ. Nanocellulose/pegda aerogels with tunable poisson’s ratio fabricated by stereolithography for mouse bone marrow mesenchymal stem cell culture.Nanomaterials (Basel)202111360310.3390/nano1103060333670932
    [Google Scholar]
  66. van BochoveB. GrijpmaD.W. Photo-crosslinked synthetic biodegradable polymer networks for biomedical applications.J. Biomater. Sci. Polym. Ed.20193027710610.1080/09205063.2018.155310530497347
    [Google Scholar]
  67. WeiY. ZhaoD. CaoQ. WangJ. WuY. YuanB. LiX. ChenX. ZhouY. YangX. ZhuX. TuC. ZhangX. Stereolithography-based additive manufacturing of high-performance osteoinductive calcium phosphate ceramics by a digital light-processing system.ACS Biomater. Sci. Eng.2020631787179710.1021/acsbiomaterials.9b0166333455401
    [Google Scholar]
  68. ChenY. FurukawaT. IbiT. NodaY. MaruoS. Multi-scale micro-stereolithography using optical fibers with a photocurable ceramic slurry.Opt. Mater. Express202111110511410.1364/OME.404217
    [Google Scholar]
  69. ZhouL.Y. FuJ. HeY. A review of 3D printing technologies for soft polymer materials.Adv. Funct. Mater.20203028200018710.1002/adfm.202000187
    [Google Scholar]
  70. HeinrichM.A. LiuW. JimenezA. YangJ. AkpekA. LiuX. PiQ. MuX. HuN. SchiffelersR.M. PrakashJ. XieJ. ZhangY.S. 3D bioprinting: from benches to translational applications.Small20191523180551010.1002/smll.20180551031033203
    [Google Scholar]
  71. AnandakrishnanN. YeH. GuoZ. ChenZ. MentkowskiK.I. LangJ.K. RajabianN. AndreadisS.T. MaZ. SpernyakJ.A. LovellJ.F. WangD. XiaJ. ZhouC. ZhaoR. Fast stereolithography printing of large‐scale biocompatible hydrogel models.Adv. Healthc. Mater.20211010200210310.1002/adhm.20200210333586366
    [Google Scholar]
  72. SafonovA. MaltsevE. ChugunovS. TikhonovA. KonevS. EvlashinS. PopovD. PaskoA. AkhatovI. Design and fabrication of complex-shaped ceramic bone implants via 3d printing based on laser stereolithography.Appl. Sci. (Basel)20201020713810.3390/app10207138
    [Google Scholar]
  73. Le GuéhennecL. Van hede, D.; Plougonven, E.; Nolens, G.; Verlée, B.; De Pauw, M.C.; Lambert, F. In vitro and in vivo biocompatibility of calcium‐phosphate scaffolds three‐dimensional printed by stereolithography for bone regeneration.J. Biomed. Mater. Res. A2020108341242510.1002/jbm.a.3682331654476
    [Google Scholar]
  74. AmlerA.K. DinkelborgP.H. SchlauchD. SpinnenJ. StichS. LausterR. SittingerM. NahlesS. HeilandM. KlokeL. RendenbachC. Beck-BroichsitterB. DehneT. Comparison of the translational potential of human mesenchymal progenitor cells from different bone entities for autologous 3D bioprinted bone grafts.Int. J. Mol. Sci.202122279610.3390/ijms2202079633466904
    [Google Scholar]
  75. ThavasiappanK. Design, analysis, fabrication and testing of PC porous scaffolds using rapid prototyping in clinical applications.Biomedicine 2019392339345
    [Google Scholar]
  76. LanW. HuangX. HuangD. WeiX. ChenW. Progress in 3D printing for bone tissue engineering: a review.J. Mater. Sci.20225727126851270910.1007/s10853‑022‑07361‑y
    [Google Scholar]
  77. DistlerT. FournierN. GrünewaldA. PolleyC. SeitzH. DetschR. BoccacciniA.R. Polymer-bioactive glass composite filaments for 3D scaffold manufacturing by fused deposition modeling: fabrication and characterization.Front. Bioeng. Biotechnol.2020855210.3389/fbioe.2020.0055232671025
    [Google Scholar]
  78. AnadaT. PanC.C. StahlA. MoriS. FukudaJ. SuzukiO. YangY. Vascularized bone-mimetic hydrogel constructs by 3D bioprinting to promote osteogenesis and angiogenesis.Int. J. Mol. Sci.2019205109610.3390/ijms2005109630836606
    [Google Scholar]
  79. ChimeneD. KaunasR. GaharwarA.K. Hydrogel bioink reinforcement for additive manufacturing: a focused review of emerging strategies.Adv. Mater.2020321190202610.1002/adma.20190202631599073
    [Google Scholar]
  80. TromansG. Automotive applications. In: Rapid manufacturing: an industrial revolution for the digital age.John Wiley and Sons2006211219
    [Google Scholar]
  81. TrubyR.L. LewisJ.A. Printing soft matter in three dimensions.Nature2016540763337137810.1038/nature2100327974748
    [Google Scholar]
  82. NadgornyM. AmeliA. Functional polymers and nanocomposites for 3D printing of smart structures and devices.ACS Appl. Mater. Interfaces20181021174891750710.1021/acsami.8b0178629742896
    [Google Scholar]
  83. YangK. GrantJ.C. LameyP. Joshi-ImreA. LundB.R. SmaldoneR.A. VoitW. Diels-Alder reversible thermoset 3D printing: Isotropic thermoset polymers via fused filament fabrication.Adv. Funct. Mater.20172724170031810.1002/adfm.201700318
    [Google Scholar]
  84. NowickiM.A. CastroN.J. PlesniakM.W. ZhangL.G. 3D printing of novel osteochondral scaffolds with graded microstructure.Nanotechnology2016274141400110.1088/0957‑4484/27/41/41400127606933
    [Google Scholar]
  85. Alizadeh-OsgoueiM. LiY. VahidA. AtaeeA. WenC. High strength porous PLA gyroid scaffolds manufactured via fused deposition modeling for tissue-engineering applications.Smart Materials in Medicine20212152510.1016/j.smaim.2020.10.003
    [Google Scholar]
  86. ChenG. ChenN. WangQ. Fabrication and properties of poly(vinyl alcohol)/β-tricalcium phosphate composite scaffolds via fused deposition modeling for bone tissue engineering.Compos. Sci. Technol.2019172172810.1016/j.compscitech.2019.01.004
    [Google Scholar]
  87. YangC. LiJ. ZhuC. ZhangQ. YuJ. WangJ. WangQ. TangJ. ZhouH. ShenH. Advanced antibacterial activity of biocompatible tantalum nanofilm via enhanced local innate immunity.Acta Biomater.20198940341810.1016/j.actbio.2019.03.02730880236
    [Google Scholar]
  88. NultyJ. FreemanF.E. BroweD.C. BurdisR. AhernD.P. PitaccoP. LeeY.B. AlsbergE. KellyD.J. 3D bioprinting of prevascularised implants for the repair of critically-sized bone defects.Acta Biomater.202112615416910.1016/j.actbio.2021.03.00333705989
    [Google Scholar]
  89. OjansivuM. RashadA. AhlinderA. MasseraJ. MishraA. SyverudK. Finne-WistrandA. MiettinenS. MustafaK. Wood-based nanocellulose and bioactive glass modified gelatin-alginate bioinks for 3D bioprinting of bone cells.Biofabrication201911303501010.1088/1758‑5090/ab069230754034
    [Google Scholar]
  90. MandryckyC. WangZ. KimK. KimD.H. 3D bioprinting for engineering complex tissues.Biotechnol. Adv.201634442243410.1016/j.biotechadv.2015.12.01126724184
    [Google Scholar]
  91. XiongZ. LiuW. QianH. LeiT. HeX. HuY. LeiP. Tantalum nanoparticles reinforced PCL scaffolds using direct 3D printing for bone tissue engineering.Front. Mater.2021860977910.3389/fmats.2021.609779
    [Google Scholar]
  92. Okafor-MuoO.L. HassaninH. KayyaliR. ElShaerA. 3D printing of solid oral dosage forms: numerous challenges with unique opportunities.J. Pharm. Sci.2020109123535355010.1016/j.xphs.2020.08.02932976900
    [Google Scholar]
  93. LvC.F. The fabrication of tissue engineering scaffolds by inkjet printing technology.MSF201893412913310.4028/www.scientific.net/MSF.934.129
    [Google Scholar]
  94. RajzerI. RomM. MenaszekE. PasierbP. Conductive PANI patterns on electrospun PCL/gelatin scaffolds modified with bioactive particles for bone tissue engineering.Mater. Lett.2015138606310.1016/j.matlet.2014.09.077
    [Google Scholar]
  95. GaoG. SchillingA.F. YonezawaT. WangJ. DaiG. CuiX. Bioactive nanoparticles stimulate bone tissue formation in bioprinted three‐dimensional scaffold and human mesenchymal stem cells.Biotechnol. J.20149101304131110.1002/biot.20140030525130390
    [Google Scholar]
  96. CuiX. DeanD. RuggeriZ.M. BolandT. Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells.Biotechnol. Bioeng.2010106696396910.1002/bit.2276220589673
    [Google Scholar]
  97. VanderburghJ.P. FernandoS.J. MerkelA.R. SterlingJ.A. GuelcherS.A. Fabrication of trabecular bone‐templated tissue‐engineered constructs by 3D inkjet printing.Adv. Healthc. Mater.2017622170036910.1002/adhm.20170036928892261
    [Google Scholar]
  98. TianF. CondeJ. BaoC. ChenY. CurtinJ. CuiD. Gold nanostars for efficient in vitro and in vivo real-time SERS detection and drug delivery via plasmonic-tunable Raman/FTIR imaging.Biomaterials2016106879710.1016/j.biomaterials.2016.08.01427552319
    [Google Scholar]
  99. LiaoB. XiaR.F. LiW. LuD. JinZ.M. 3D-printed Ti6Al4V scaffolds with graded triply periodic minimal surface structure for bone tissue engineering.J. Mater. Eng. Perform.20213074993500410.1007/s11665‑021‑05580‑z
    [Google Scholar]
  100. KambojN. AghayanM. Rodrigo-VazquezC.S. RodríguezM.A. HussainovaI. Novel silicon-wollastonite based scaffolds for bone tissue engineering produced by selective laser melting.Ceram. Int.20194518246912470110.1016/j.ceramint.2019.08.208
    [Google Scholar]
  101. HullS.M. LindsayC.D. BrunelL.G. ShiwarskiD.J. TashmanJ.W. RothJ.G. MyungD. FeinbergA.W. HeilshornS.C. 3D bioprinting using UNIversal orthogonal network (UNION) bioinks.Adv. Funct. Mater.2021317200798310.1002/adfm.20200798333613150
    [Google Scholar]
  102. KimS.H. YeonY.K. LeeJ.M. ChaoJ.R. LeeY.J. SeoY.B. SultanM.T. LeeO.J. LeeJ.S. YoonS. HongI.S. KhangG. LeeS.J. YooJ.J. ParkC.H. Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing.Nat. Commun.201891162010.1038/s41467‑018‑03759‑y29693652
    [Google Scholar]
  103. HeY. WangF. WangX. ZhangJ. WangD. HuangX. A photocurable hybrid chitosan/acrylamide bioink for DLP based 3D bioprinting.Mater. Des.202120210958810.1016/j.matdes.2021.109588
    [Google Scholar]
  104. HongH. SeoY.B. KimD.Y. LeeJ.S. LeeY.J. LeeH. AjiteruO. SultanM.T. LeeO.J. KimS.H. ParkC.H. Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering.Biomaterials202023211967910.1016/j.biomaterials.2019.11967931865191
    [Google Scholar]
  105. OuyangL. ArmstrongJ.P.K. LinY. WojciechowskiJ.P. Lee-ReevesC. HachimD. ZhouK. BurdickJ.A. StevensM.M. Expanding and optimizing 3D bioprinting capabilities using complementary network bioinks.Sci. Adv.2020638eabc552910.1126/sciadv.abc552932948593
    [Google Scholar]
  106. DuymazB.T. ErdilerF.B. AlanT. AydogduM.O. InanA.T. EkrenN. UzunM. SahinY.M. BulusE. OktarF.N. SelviS.S. ToksoyOner, E.; Kilic, O.; Bostan, M.S.; Eroglu, M.S.; Gunduz, O. 3D bio-printing of levan/polycaprolactone/gelatin blends for bone tissue engineering: Characterization of the cellular behavior.Eur. Polym. J.201911942643710.1016/j.eurpolymj.2019.08.015
    [Google Scholar]
  107. MicicM. Developing a novel resorptive hydroxyapatite-based bone substitute for over-critical size defect reconstruction: Physicochemical and biological characterization and proof of concept in segmental rabbit’s ulna reconstruction.Biomed. Engin.202065449150510.1515/bmt‑2019‑0218
    [Google Scholar]
  108. DemirtaşT.T. IrmakG. GümüşderelioğluM. A bioprintable form of chitosan hydrogel for bone tissue engineering.Biofabrication20179303500310.1088/1758‑5090/aa7b1d28639943
    [Google Scholar]
  109. LiuX. GaihreB. GeorgeM.N. MillerA.L.II XuH. WaletzkiB.E. LuL. 3D bioprinting of oligo(poly[ethylene glycol] fumarate) for bone and nerve tissue engineering.J. Biomed. Mater. Res. A2021109161710.1002/jbm.a.3700232418273
    [Google Scholar]
  110. XuT. GregoryC. MolnarP. CuiX. JalotaS. BhaduriS. BolandT. Viability and electrophysiology of neural cell structures generated by the inkjet printing method.Biomaterials200627193580358810.1016/j.biomaterials.2006.01.04816516288
    [Google Scholar]
  111. ZhaoX. LiuL. WangJ. XuY. ZhangW. KhangG. WangX. In vitro vascularization of a combined system based on a 3D printing technique.J. Tissue Eng. Regen. Med.2016101083384210.1002/term.186324399638
    [Google Scholar]
  112. PoldervaartM.T. GremmelsH. van DeventerK. FledderusJ.O. ÖnerF.C. VerhaarM.C. DhertW.J.A. AlblasJ. Prolonged presence of VEGF promotes vascularization in 3D bioprinted scaffolds with defined architecture.J. Control. Release2014184586610.1016/j.jconrel.2014.04.00724727077
    [Google Scholar]
  113. PescosolidoL. SchuurmanW. MaldaJ. MatricardiP. AlhaiqueF. CovielloT. van WeerenP.R. DhertW.J.A. HenninkW.E. VermondenT. Hyaluronic acid and dextran-based semi-IPN hydrogels as biomaterials for bioprinting.Biomacromolecules20111251831183810.1021/bm200178w21425854
    [Google Scholar]
  114. LeeY.B. PolioS. LeeW. DaiG. MenonL. CarrollR.S. YooS.S. Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture.Exp. Neurol.2010223264565210.1016/j.expneurol.2010.02.01420211178
    [Google Scholar]
  115. SuriS. HanL.H. ZhangW. SinghA. ChenS. SchmidtC.E. Solid freeform fabrication of designer scaffolds of hyaluronic acid for nerve tissue engineering.Biomed. Microdevices201113698399310.1007/s10544‑011‑9568‑921773726
    [Google Scholar]
  116. BoseS. KoskiC. VuA.A. Additive manufacturing of natural biopolymers and composites for bone tissue engineering.Mater. Horiz.2020782011202710.1039/D0MH00277A
    [Google Scholar]
  117. SkardalA. ZhangJ. McCoardL. XuX. OottamasathienS. PrestwichG.D. Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting.Tissue Eng. Part A20101682675268510.1089/ten.tea.2009.079820387987
    [Google Scholar]
  118. ParkJ.K. ShimJ-H. KangK.S. YeomJ. JungH.S. KimJ.Y. LeeK.H. KimT-H. KimS-Y. ChoD-W. HahnS.K. Solid free‐form fabrication of tissue‐engineering scaffolds with a poly (lactic‐co‐glycolic acid) grafted hyaluronic acid conjugate encapsulating an intact bone morphogenetic protein-2/poly (ethylene glycol) complex.Adv. Funct. Mater.201121152906291210.1002/adfm.201100612
    [Google Scholar]
  119. BoseS. VahabzadehS. BandyopadhyayA. Bone tissue engineering using 3D printing.Mater. Today2013161249650410.1016/j.mattod.2013.11.017
    [Google Scholar]
  120. ArdeleanI.L. GudovanD. FicaiD. FicaiA. AndronescuE. Albu-KayaM.G. NeacsuP. IonR.N. CimpeanA. MitranV. Collagen/hydroxyapatite bone grafts manufactured by homogeneous/heterogeneous 3D printing.Mater. Lett.201823117918210.1016/j.matlet.2018.08.042
    [Google Scholar]
  121. AldanaA.A. ValenteF. DilleyR. DoyleB. Development of 3D bioprinted GelMA-alginate hydrogels with tunable mechanical properties.Bioprinting202121e0010510.1016/j.bprint.2020.e00105
    [Google Scholar]
  122. ChimeneD. LennoxK.K. KaunasR.R. GaharwarA.K. Advanced bioinks for 3D printing: a materials science perspective.Ann. Biomed. Eng.20164462090210210.1007/s10439‑016‑1638‑y27184494
    [Google Scholar]
  123. YangY. SongX. LiX. ChenZ. ZhouC. ZhouQ. ChenY. Recent progress in biomimetic additive manufacturing technology: from materials to functional structures.Adv. Mater.20183036170653910.1002/adma.20170653929920790
    [Google Scholar]
  124. OuyangL. YaoR. ZhaoY. SunW. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells.Biofabrication20168303502010.1088/1758‑5090/8/3/03502027634915
    [Google Scholar]
  125. ZhengY. HanQ. WangJ. LiD. SongZ. YuJ. Promotion of osseointegration between implant and bone interface by titanium alloy porous scaffolds prepared by 3D printing.ACS Biomater. Sci. Eng.2020695181519010.1021/acsbiomaterials.0c0066233455268
    [Google Scholar]
  126. GaoF. XuZ. LiangQ. LiuB. LiH. WuY. ZhangY. LinZ. WuM. RuanC. LiuW. Direct 3D printing of high strength biohybrid gradient hydrogel scaffolds for efficient repair of osteochondral defect.Adv. Funct. Mater.20182813170664410.1002/adfm.201706644
    [Google Scholar]
  127. ChouD.T. WellsD. HongD. LeeB. KuhnH. KumtaP.N. Novel processing of iron-manganese alloy-based biomaterials by inkjet 3-D printing.Acta Biomater.20139108593860310.1016/j.actbio.2013.04.01623624222
    [Google Scholar]
  128. SiuT.L. RogersJ.M. LinK. ThompsonR. OwbridgeM. Custom-made titanium 3-dimensional printed interbody cages for treatment of osteoporotic fracture-related spinal deformity.World Neurosurg.20181111510.1016/j.wneu.2017.11.16029223522
    [Google Scholar]
  129. NuneK.C. MisraR.D.K. GaytanS.M. MurrL.E. Interplay between cellular activity and three‐dimensional scaffold‐cell constructs with different foam structure processed by electron beam melting.J. Biomed. Mater. Res. A201510351677169210.1002/jbm.a.3530725111154
    [Google Scholar]
  130. YuW. ZhaoH. DingZ. ZhangZ. SunB. ShenJ. ChenS. ZhangB. YangK. LiuM. ChenD. HeY. In vitro and in vivo evaluation of MgF2 coated AZ31 magnesium alloy porous scaffolds for bone regeneration.Colloids Surf. B Biointerfaces201714933034010.1016/j.colsurfb.2016.10.03727792982
    [Google Scholar]
  131. DumasM. TerriaultP. BrailovskiV. Modelling and characterization of a porosity graded lattice structure for additively manufactured biomaterials.Mater. Des.201712138339210.1016/j.matdes.2017.02.021
    [Google Scholar]
  132. SoroN. AttarH. BrodieE. VeidtM. MolotnikovA. DarguschM.S. Evaluation of the mechanical compatibility of additively manufactured porous Ti-25Ta alloy for load-bearing implant applications.J. Mech. Behav. Biomed. Mater.20199714915810.1016/j.jmbbm.2019.05.01931121433
    [Google Scholar]
  133. KuoT.Y. ChinW.H. ChienC.S. HsiehY.H. Mechanical and biological properties of graded porous tantalum coatings deposited on titanium alloy implants by vacuum plasma spraying.Surf. Coat. Tech.201937239940910.1016/j.surfcoat.2019.05.003
    [Google Scholar]
  134. WengZ. BaiL. LiuY. ZhaoY. SunY. ZhangX. HuangX. HuangD. YaoX. HangR. Osteogenic activity, antibacterial ability, and Ni release of Mg-incorporated Ni-Ti-O nanopore coatings on NiTi alloy.Appl. Surf. Sci.201948644145110.1016/j.apsusc.2019.04.259
    [Google Scholar]
  135. LeeJ. WenH. BattulaS. AkellaR. CollinsM. RomanosG. Outcome after placement of tantalum porous engineered dental implants in fresh extraction sockets: a canine study.Int. J. Oral Maxillofac. Implants201530113414210.11607/jomi.369225615921
    [Google Scholar]
  136. WangL. HuX. MaX. MaZ. ZhangY. LuY. LiX. LeiW. FengY. Promotion of osteointegration under diabetic conditions by tantalum coating-based surface modification on 3-dimensional printed porous titanium implants.Colloids Surf. B Biointerfaces201614844045210.1016/j.colsurfb.2016.09.01827648775
    [Google Scholar]
  137. BandyopadhyayA. MitraI. ShivaramA. DasguptaN. BoseS. Direct comparison of additively manufactured porous titanium and tantalum implants towards in vivo osseointegration.Addit. Manuf.20192825926610.1016/j.addma.2019.04.02531406683
    [Google Scholar]
  138. ZhaoD. MaZ. WangT. LiuB. Biocompatible porous tantalum metal plates in the treatment of tibial fracture.Orthop. Surg.201911232532910.1111/os.1243230884151
    [Google Scholar]
  139. ZhaoG. LiS. ChenX. QuX. ChenR. WuY. LiuY. ZouX. LuX. Porous tantalum scaffold fabricated by gel casting based on 3D printing and electrolysis.Mater. Lett.20192395810.1016/j.matlet.2018.12.047
    [Google Scholar]
  140. ZhaoS. XieK. GuoY. TanJ. WuJ. YangY. FuP. WangL. JiangW. HaoY. Fabrication and biological activity of 3D-printed polycaprolactone/magnesium porous scaffolds for critical size bone defect repair.ACS Biomater. Sci. Eng.2020695120513110.1021/acsbiomaterials.9b0191133455263
    [Google Scholar]
  141. Bobby KannanM. ChappellJ. KhakbazH. TaherisharghM. FiedlerT. Biodegradable 3D porous zinc alloy scaffold for bone fracture fixation devices.Med. Devices Sens.202036e1010810.1002/mds3.10108
    [Google Scholar]
  142. Martinez HolguinD.A. HanS. KimN.P. Magnesium alloy 3D printing by wire and arc additive manufacturing (WAAM).MRS Adv.20183492959296410.1557/adv.2018.553
    [Google Scholar]
  143. XuW. ZhuangY. ZhangX. CaiH. GaoX. Preparation of medical magnesium matrix composite for bone defect and design method of 3D printed material.Sci. Adv. Mater.201911682483410.1166/sam.2019.3557
    [Google Scholar]
  144. PeiX. MaL. ZhangB. SunJ. SunY. FanY. GouZ. ZhouC. ZhangX. Creating hierarchical porosity hydroxyapatite scaffolds with osteoinduction by three-dimensional printing and microwave sintering.Biofabrication20179404500810.1088/1758‑5090/aa90ed28976356
    [Google Scholar]
  145. DriscollJ.A. LubbeR. JakusA.E. ChangK. HaleemM. YunC. SinghG. SchneiderA.D. KatchkoK.M. SorianoC. NewtonM. MaerzT. LiX. BakerK. HsuW.K. ShahR.N. StockS.R. HsuE.L. 3D-printed ceramic-demineralized bone matrix hyperelastic bone composite scaffolds for spinal fusion.Tissue Eng. Part A2020263-415716610.1089/ten.tea.2019.016631469055
    [Google Scholar]
  146. GmeinerR. MitteramskoglerG. StampflJ. BoccacciniA.R. Stereolithographic ceramic manufacturing of high strength bioactive glass.Int. J. Appl. Ceram. Technol.2015121384510.1111/ijac.12325
    [Google Scholar]
  147. TesavibulP. FelzmannR. GruberS. LiskaR. ThompsonI. BoccacciniA.R. StampflJ. Processing of 45S5 Bioglass® by lithography-based additive manufacturing.Mater. Lett.201274818410.1016/j.matlet.2012.01.019
    [Google Scholar]
  148. HartmannM. PfaffingerM. StampflJ. The role of solvents in lithography-based ceramic manufacturing of lithium disilicate.Materials 2021144104510.3390/ma1404104533672167
    [Google Scholar]
  149. BaumgartnerS. GmeinerR. SchönherrJ.A. StampflJ. Stereolithography-based additive manufacturing of lithium disilicate glass ceramic for dental applications.Mater. Sci. Eng. C202011611118010.1016/j.msec.2020.11118032806296
    [Google Scholar]
  150. LiX. YuanY. LiuL. LeungY-S. ChenY. GuoY. ChaiY. ChenY. 3D printing of hydroxyapatite/tricalcium phosphate scaffold with hierarchical porous structure for bone regeneration.Biodes. Manuf.202031152910.1007/s42242‑019‑00056‑5
    [Google Scholar]
  151. RajaN. SungA. ParkH. YunH. Low-temperature fabrication of calcium deficient hydroxyapatite bone scaffold by optimization of 3D printing conditions.Ceram. Int.20214757005701610.1016/j.ceramint.2020.11.051
    [Google Scholar]
  152. MirkhalafM. DaoA. SchindelerA. LittleD.G. DunstanC.R. ZreiqatH. Personalized Baghdadite scaffolds: stereolithography, mechanics and in vivo testing.Acta Biomater.202113221722610.1016/j.actbio.2021.03.01233711527
    [Google Scholar]
  153. FernandesM.H. AlvesM.M. CebotarencoM. RibeiroI.A.C. GrenhoL. GomesP.S. CarmezimM.J. SantosC.F. Citrate zinc hydroxyapatite nanorods with enhanced cytocompatibility and osteogenesis for bone regeneration.Mater. Sci. Eng. C202011511114710.1016/j.msec.2020.11114732600733
    [Google Scholar]
  154. KoksalO.K. WrobelP. ApaydinG. CengizE. LankoszM. TozarA. KarahanI.H. ÖzkalayciF. Elemental analysis for iron, cobalt, copper and zinc decorated hydroxyapatite synthetic bone dusts by EDXRF and SEM.Microchem. J.2019144838710.1016/j.microc.2018.08.050
    [Google Scholar]
  155. ChenS. ShiY. ZhangX. MaJ. Biomimetic synthesis of Mg‐substituted hydroxyapatite nanocomposites and three‐dimensional printing of composite scaffolds for bone regeneration.J. Biomed. Mater. Res. A2019107112512252110.1002/jbm.a.3675731319006
    [Google Scholar]
  156. DengC. YaoQ. FengC. LiJ. WangL. ChengG. ShiM. ChenL. ChangJ. WuC. Retracted: 3D printing of bilineage constructive biomaterials for bone and cartilage regeneration.Adv. Funct. Mater.20172736170311710.1002/adfm.201703117
    [Google Scholar]
  157. InzanaJ.A. OlveraD. FullerS.M. KellyJ.P. GraeveO.A. SchwarzE.M. KatesS.L. AwadH.A. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration.Biomaterials201435134026403410.1016/j.biomaterials.2014.01.06424529628
    [Google Scholar]
  158. HuangT. FanC. ZhuM. ZhuY. ZhangW. LiL. 3D-printed scaffolds of biomineralized hydroxyapatite nanocomposite on silk fibroin for improving bone regeneration.Appl. Surf. Sci.2019467-46834535310.1016/j.apsusc.2018.10.166
    [Google Scholar]
  159. HassanajiliS. Karami-PourA. OryanA. Talaei-KhozaniT. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.Mater. Sci. Eng. C201910410996010.1016/j.msec.2019.10996031500051
    [Google Scholar]
  160. CroisierF. JérômeC. Chitosan-based biomaterials for tissue engineering.Eur. Polym. J.201349478079210.1016/j.eurpolymj.2012.12.009
    [Google Scholar]
  161. ChenJ.K. ShenC.R. LiuC.L. N-acetylglucosamine: production and applications.Mar. Drugs2010892493251610.3390/md809249320948902
    [Google Scholar]
  162. IvanovaE.P. BazakaK. CrawfordR.J. New functional biomaterials for medicine and healthcare.IndiaWoodhead Publishing New Delhi2014Vol. 67
    [Google Scholar]
  163. CenL. LiuW. CuiL. ZhangW. CaoY. Collagen tissue engineering: development of novel biomaterials and applications.Pediatr. Res.200863549249610.1203/PDR.0b013e31816c5bc318427293
    [Google Scholar]
  164. KhalilS. SunW. Bioprinting endothelial cells with alginate for 3D tissue constructs.J. Biomech. Eng.20091311111100210.1115/1.312872920353253
    [Google Scholar]
  165. NeufurthM. WangX. SchröderH.C. FengQ. Diehl-SeifertB. ZiebartT. SteffenR. WangS. MüllerW.E.G. Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells.Biomaterials201435318810881910.1016/j.biomaterials.2014.07.00225047630
    [Google Scholar]
  166. WangX. TolbaE. SchröderH.C. NeufurthM. FengQ. Diehl-SeifertB. MüllerW.E.G. Effect of bioglass on growth and biomineralization of SaOS-2 cells in hydrogel after 3D cell bioprinting.PLoS One2014911e11249710.1371/journal.pone.011249725383549
    [Google Scholar]
  167. JeonO. AltD.S. AhmedS.M. AlsbergE. The effect of oxidation on the degradation of photocrosslinkable alginate hydrogels.Biomaterials201233133503351410.1016/j.biomaterials.2012.01.04122336294
    [Google Scholar]
  168. JiaJ. RichardsD.J. PollardS. TanY. RodriguezJ. ViscontiR.P. TruskT.C. YostM.J. YaoH. MarkwaldR.R. MeiY. Engineering alginate as bioink for bioprinting.Acta Biomater.201410104323433110.1016/j.actbio.2014.06.03424998183
    [Google Scholar]
  169. XuC. ZhangM. HuangY. OgaleA. FuJ. MarkwaldR.R. Study of droplet formation process during drop-on-demand inkjetting of living cell-laden bioink.Langmuir201430309130913810.1021/la501430x25005170
    [Google Scholar]
  170. GasperiniL. ManiglioD. MottaA. MigliaresiC. An electrohydrodynamic bioprinter for alginate hydrogels containing living cells.Tissue Eng. Part C Methods201521212313210.1089/ten.tec.2014.014924903714
    [Google Scholar]
  171. BelaidH. NagarajanS. BarouC. HuonV. BaresJ. BalmeS. MieleP. CornuD. CavaillèsV. TeyssierC. BechelanyM. Boron nitride based nanobiocomposites: design by 3D printing for bone tissue engineering.ACS Appl. Bio Mater.2020341865187410.1021/acsabm.9b0096535025309
    [Google Scholar]
  172. GrottkauB.E. HuiZ. YaoY. PangY. Rapid fabrication of anatomically-shaped bone scaffolds using indirect 3D printing and perfusion techniques.Int. J. Mol. Sci.202021131510.3390/ijms2101031531906530
    [Google Scholar]
  173. LiX. WangY. WangZ. QiY. LiL. ZhangP. ChenX. HuangY. Composite PLA/PEG/nHA/dexamethasone scaffold prepared by 3D printing for bone regeneration.Macromol. Biosci.2018186180006810.1002/mabi.20180006829687630
    [Google Scholar]
  174. HungB.P. NavedB.A. NybergE.L. DiasM. HolmesC.A. ElisseeffJ.H. DorafsharA.H. GraysonW.L. Three-dimensional printing of bone extracellular matrix for craniofacial regeneration.ACS Biomater. Sci. Eng.20162101806181610.1021/acsbiomaterials.6b0010127942578
    [Google Scholar]
  175. LeeH. YangG.H. KimM. LeeJ. HuhJ. KimG. Fabrication of micro/nanoporous collagen/dECM/silk-fibroin biocomposite scaffolds using a low temperature 3D printing process for bone tissue regeneration.Mater. Sci. Eng. C20188414014710.1016/j.msec.2017.11.01329519423
    [Google Scholar]
  176. LohrasbiS. MirzaeiE. KarimizadeA. TakalluS. RezaeiA. Collagen/cellulose nanofiber hydrogel scaffold: physical, mechanical and cell biocompatibility properties.Cellulose202027292794010.1007/s10570‑019‑02841‑y
    [Google Scholar]
  177. DruryJ.L. MooneyD.J. Hydrogels for tissue engineering: scaffold design variables and applications.Biomaterials200324244337435110.1016/S0142‑9612(03)00340‑512922147
    [Google Scholar]
  178. XuZ. FanC. ZhangQ. LiuY. CuiC. LiuB. WuT. ZhangX. LiuW. A self‐thickening and self‐strengthening strategy for 3D printing high‐strength and antiswelling supramolecular polymer hydrogels as meniscus substitutes.Adv. Funct. Mater.20213118210046210.1002/adfm.202100462
    [Google Scholar]
  179. NiT. LiuM. ZhangY. CaoY. PeiR. 3D bioprinting of bone marrow mesenchymal stem cell-laden silk fibroin double network scaffolds for cartilage tissue repair.Bioconjug. Chem.20203181938194710.1021/acs.bioconjchem.0c0029832644779
    [Google Scholar]
  180. JiangP. YanC. GuoY. ZhangX. CaiM. JiaX. WangX. ZhouF. Direct ink writing with high-strength and swelling-resistant biocompatible physically crosslinked hydrogels.Biomater. Sci.2019751805181410.1039/C9BM00081J30855616
    [Google Scholar]
  181. DalyR. HarringtonT.S. MartinG.D. HutchingsI.M. Inkjet printing for pharmaceutics - A review of research and manufacturing.Int. J. Pharm.2015494255456710.1016/j.ijpharm.2015.03.01725772419
    [Google Scholar]
  182. LinH. ZhangD. AlexanderP.G. YangG. TanJ. ChengA.W.M. TuanR.S. Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture.Biomaterials201334233133910.1016/j.biomaterials.2012.09.04823092861
    [Google Scholar]
  183. Dybowska-SarapukL. KielbasinskiK. AraznaA. FuteraK. SkalskiA. JanczakD. SlomaM. JakubowskaM. Efficient inkjet printing of graphene-based elements: Influence of dispersing agent on ink viscosity.Nanomaterials 20188860210.3390/nano808060230096800
    [Google Scholar]
  184. ZhongM. ZhangF. YuY. ZhangJ. ShenW. GuoS. Flexible micro-supercapacitors assembled via chemically reduced graphene oxide films assisted by a laser printer.Nanotechnology2018294343LT0110.1088/1361‑6528/aad88630084387
    [Google Scholar]
  185. KyleS. JessopZ.M. Al-SabahA. WhitakerI.S. ‘Printability’of candidate biomaterials for extrusion based 3D printing: state‐of‐the‐art.Adv. Healthc. Mater.2017616170026410.1002/adhm.20170026428558161
    [Google Scholar]
  186. ShenY. TangH. HuangX. HangR. ZhangX. WangY. YaoX. DLP printing photocurable chitosan to build bio-constructs for tissue engineering.Carbohydr. Polym.202023511597010.1016/j.carbpol.2020.11597032122504
    [Google Scholar]
  187. ZhouL. RamezaniH. SunM. XieM. NieJ. LvS. CaiJ. FuJ. HeY. 3D printing of high-strength chitosan hydrogel scaffolds without any organic solvents.Biomater. Sci.20208185020502810.1039/D0BM00896F32844842
    [Google Scholar]
  188. JiangP. LinP. YangC. QinH. WangX. ZhouF. 3D printing of dual-physical cross-linking hydrogel with ultrahigh strength and toughness.Chem. Mater.202032239983999510.1021/acs.chemmater.0c02941
    [Google Scholar]
  189. LiQ. XuZ.Y. ZhangD.F. YangJ.H. LiuW.G. T-shaped trifunctional crosslinker-toughening hydrogels.Sci. China Technol. Sci.20206391721172910.1007/s11431‑020‑1537‑6
    [Google Scholar]
  190. BertassoniL.E. CardosoJ.C. ManoharanV. CristinoA.L. BhiseN.S. AraujoW.A. ZorlutunaP. VranaN.E. GhaemmaghamiA.M. DokmeciM.R. KhademhosseiniA. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels.Biofabrication20146202410510.1088/1758‑5082/6/2/02410524695367
    [Google Scholar]
  191. BillietT. GevaertE. De SchryverT. CornelissenM. DubruelP. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability.Biomaterials2014351496210.1016/j.biomaterials.2013.09.07824112804
    [Google Scholar]
  192. LiuW. HeinrichM.A. ZhouY. AkpekA. HuN. LiuX. GuanX. ZhongZ. JinX. KhademhosseiniA. ZhangY.S. Extrusion bioprinting of shear‐thinning gelatin methacryloyl bioinks.Adv. Healthc. Mater.2017612160145110.1002/adhm.20160145128464555
    [Google Scholar]
  193. ParkH.E. GasekN. HwangJ. WeissD.J. LeeP.C. Effect of temperature on gelation and cross-linking of gelatin methacryloyl for biomedical applications.Phys. Fluids202032303310210.1063/1.5144896
    [Google Scholar]
  194. AvalloneP.R. RacconeE. CostanzoS. DelmonteM. SarricaA. PasquinoR. GrizzutiN. Gelation kinetics of aqueous gelatin solutions in isothermal conditions via rheological tools.Food Hydrocoll.202111110624810.1016/j.foodhyd.2020.106248
    [Google Scholar]
  195. YinJ. YanM. WangY. FuJ. SuoH. 3D bioprinting of low-concentration cell-laden gelatin methacrylate (GelMA) bioinks with a two-step cross-linking strategy.ACS Appl. Mater. Interfaces20181086849685710.1021/acsami.7b1605929405059
    [Google Scholar]
  196. XavierJ.R. ThakurT. DesaiP. JaiswalM.K. SearsN. Cosgriff-HernandezE. KaunasR. GaharwarA.K. Bioactive nanoengineered hydrogels for bone tissue engineering: a growth-factor-free approach.ACS Nano2015933109311810.1021/nn507488s25674809
    [Google Scholar]
  197. LiuW. ZhongZ. HuN. ZhouY. MaggioL. MiriA.K. FragassoA. JinX. KhademhosseiniA. ZhangY.S. Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments.Biofabrication201810202410210.1088/1758‑5090/aa9d4429176035
    [Google Scholar]
  198. GaoQ. NiuX. ShaoL. ZhouL. LinZ. SunA. FuJ. ChenZ. HuJ. LiuY. HeY. 3D printing of complex GelMA-based scaffolds with nanoclay.Biofabrication201911303500610.1088/1758‑5090/ab0cf630836349
    [Google Scholar]
  199. WangY. HuangX. ShenY. HangR. ZhangX. WangY. YaoX. TangB. Direct writing alginate bioink inside pre-polymers of hydrogels to create patterned vascular networks.J. Mater. Sci.201954107883789210.1007/s10853‑019‑03447‑2
    [Google Scholar]
  200. AnsariS. SarrionP. Hasani-SadrabadiM.M. AghalooT. WuB.M. MoshaveriniaA. Regulation of the fate of dental‐derived mesenchymal stem cells using engineered alginate‐GelMA hydrogels.J. Biomed. Mater. Res. A2017105112957296710.1002/jbm.a.3614828639378
    [Google Scholar]
  201. KestiM. MüllerM. BecherJ. SchnabelrauchM. D’EsteM. EglinD. Zenobi-WongM. A versatile bioink for three-dimensional printing of cellular scaffolds based on thermally and photo-triggered tandem gelation.Acta Biomater.20151116217210.1016/j.actbio.2014.09.03325260606
    [Google Scholar]
  202. DuanB. KapetanovicE. HockadayL.A. ButcherJ.T. Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells.Acta Biomater.20141051836184610.1016/j.actbio.2013.12.00524334142
    [Google Scholar]
  203. AbarB. Alonso-CallejaA. KellyA. KellyC. GallK. WestJ.L. 3D printing of high‐strength, porous, elastomeric structures to promote tissue integration of implants.J. Biomed. Mater. Res. A20211091546310.1002/jbm.a.3700632418348
    [Google Scholar]
  204. ZhongL. ChenJ. MaZ. FengH. ChenS. CaiH. XueY. PeiX. WangJ. WanQ. 3D printing of metal-organic framework incorporated porous scaffolds to promote osteogenic differentiation and bone regeneration.Nanoscale20201248244372444910.1039/D0NR06297A33305769
    [Google Scholar]
  205. WangX. FangJ. ZhuW. ZhongC. YeD. ZhuM. LuX. ZhaoY. RenF. Bioinspired highly anisotropic, ultrastrong and stiff, and osteoconductive mineralized wood hydrogel composites for bone repair.Adv. Funct. Mater.20213120201006810.1002/adfm.202010068
    [Google Scholar]
  206. WanZ. ZhangP. LiuY. LvL. ZhouY. Four-dimensional bioprinting: Current developments and applications in bone tissue engineering.Acta Biomater.2020101264210.1016/j.actbio.2019.10.03831672585
    [Google Scholar]
  207. KimS.H. SeoY.B. YeonY.K. LeeY.J. ParkH.S. SultanM.T. LeeJ.M. LeeJ.S. LeeO.J. HongH. LeeH. AjiteruO. SuhY.J. SongS.H. LeeK.H. ParkC.H. 4D-bioprinted silk hydrogels for tissue engineering.Biomaterials202026012028110.1016/j.biomaterials.2020.12028132858503
    [Google Scholar]
  208. DarabiM.A. KhosrozadehA. WangY. AshammakhiN. AlemH. ErdemA. ChangQ. XuK. LiuY. LuoG. KhademhosseiniA. XingM. An alkaline based method for generating crystalline, strong, and shape memory polyvinyl alcohol biomaterials.Adv. Sci.2020721190274010.1002/advs.20190274033173720
    [Google Scholar]
  209. ShouY. 4D-printable thermoresponsive hydrogel exhibits high mechanical properties.Springer202110.1557/s43577‑021‑00086‑4
    [Google Scholar]
  210. SenatovF.S. NiazaK.V. ZadorozhnyyM.Y. MaksimkinA.V. KaloshkinS.D. EstrinY.Z. Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds.J. Mech. Behav. Biomed. Mater.20165713914810.1016/j.jmbbm.2015.11.03626710259
    [Google Scholar]
  211. SenatovF.S. ZadorozhnyyM.Y. NiazaK.V. MedvedevV.V. KaloshkinS.D. AnisimovaN.Y. KiselevskiyM.V. YangK-C. Shape memory effect in 3D-printed scaffolds for self-fitting implants.Eur. Polym. J.20179322223110.1016/j.eurpolymj.2017.06.011
    [Google Scholar]
  212. MurphyS.V. AtalaA. 3D bioprinting of tissues and organs.Nat. Biotechnol.201432877378510.1038/nbt.295825093879
    [Google Scholar]
  213. KankalaR. XuX.M. LiuC.G. ChenA.Z. WangS.B. 3D-printing of microfibrous porous scaffolds based on hybrid approaches for bone tissue engineering.Polymers201810780710.3390/polym1007080730960731
    [Google Scholar]
  214. NeufurthM. WangX. WangS. SteffenR. AckermannM. HaepN.D. SchröderH.C. MüllerW.E.G. 3D printing of hybrid biomaterials for bone tissue engineering: Calcium-polyphosphate microparticles encapsulated by polycaprolactone.Acta Biomater.20176437738810.1016/j.actbio.2017.09.03128966095
    [Google Scholar]
  215. OladapoB.I. ZahediS.A. AdeoyeA.O.M. 3D printing of bone scaffolds with hybrid biomaterials.Compos., Part B Eng.201915842843610.1016/j.compositesb.2018.09.065
    [Google Scholar]
  216. BahceciogluG. HasirciN. BilgenB. HasirciV. A 3D printed PCL/hydrogel construct with zone-specific biochemical composition mimicking that of the meniscus.Biofabrication201911202500210.1088/1758‑5090/aaf70730530944
    [Google Scholar]
  217. DávilaJ.L. FreitasM.S. Inforçatti NetoP. SilveiraZ.C. SilvaJ.V.L. d’ÁvilaM.A. Fabrication of PCL/β‐TCP scaffolds by 3D mini‐screw extrusion printing.J. Appl. Polym. Sci.201613315app.43031.10.1002/app.43031
    [Google Scholar]
  218. NybergE. RindoneA. DorafsharA. GraysonW.L. Comparison of 3D-printed poly-ɛ-caprolactone scaffolds functionalized with tricalcium phosphate, hydroxyapatite, bio-oss, or decellularized bone matrix.Tissue Eng. Part A20172311-1250351410.1089/ten.tea.2016.041828027692
    [Google Scholar]
  219. AxpeE. OyenM. Applications of alginate-based bioinks in 3D bioprinting.Int. J. Mol. Sci.20161712197610.3390/ijms1712197627898010
    [Google Scholar]
  220. KilianD. AhlfeldT. AkkineniA.R. BernhardtA. GelinskyM. LodeA.3D Bioprinting of osteochondral tissue substitutes - in vitro-chondro-genesis in multi-layered mineralized constructs.Sci. Rep.2020101827710.1038/s41598‑020‑65050‑932427838
    [Google Scholar]
  221. MorrisonR.J. Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients. Sci. translat. med.20157285285ra64285ra610.1126/scitranslmed.3010825
    [Google Scholar]
  222. GaoB. YangQ. ZhaoX. JinG. MaY. XuF. 4D bioprinting for biomedical applications.Trends Biotechnol.201634974675610.1016/j.tibtech.2016.03.00427056447
    [Google Scholar]
  223. LiY.C. ZhangY.S. AkpekA. ShinS.R. KhademhosseiniA. 4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials.Biofabrication20169101200110.1088/1758‑5090/9/1/01200127910820
    [Google Scholar]
  224. WangC. YueH. LiuJ. ZhaoQ. HeZ. LiK. LuB. HuangW. WeiY. TangY. WangM. Advanced reconfigurable scaffolds fabricated by 4D printing for treating critical-size bone defects of irregular shapes.Biofabrication202012404502510.1088/1758‑5090/abab5b32736373
    [Google Scholar]
  225. Sydney GladmanA. MatsumotoE.A. NuzzoR.G. MahadevanL. LewisJ.A. Biomimetic 4D printing.Nat. Mater.201615441341810.1038/nmat454426808461
    [Google Scholar]
  226. RossettiL. KuntzL.A. KunoldE. SchockJ. MüllerK.W. GrabmayrH. Stolberg-StolbergJ. PfeifferF. SieberS.A. BurgkartR. BauschA.R. The microstructure and micromechanics of the tendon-bone insertion.Nat. Mater.201716666467010.1038/nmat486328250445
    [Google Scholar]
  227. KuangX. WuJ. ChenK. ZhaoZ. DingZ. HuF. FangD. QiH.J. Grayscale digital light processing 3D printing for highly functionally graded materials.Sci. Adv.201955eaav579010.1126/sciadv.aav579031058222
    [Google Scholar]
  228. QuM. JiangX. ZhouX. WangC. WuQ. RenL. ZhuJ. ZhuS. TebonP. SunW. KhademhosseiniA. Stimuliresponsive delivery of growth factors for tissue engineering.Adv. Healthc. Mater.202097190171410.1002/adhm.20190171432125786
    [Google Scholar]
  229. LuY. AimettiA.A. LangerR. GuZ. Bioresponsive materials.Nat. Rev. Mater.2016211607510.1038/natrevmats.2016.75
    [Google Scholar]
  230. LarushL. 3D printing of responsive hydrogels for drug-delivery systems.Med.20171219229
    [Google Scholar]
  231. GuptaM.K. MengF. JohnsonB.N. KongY.L. TianL. YehY.W. MastersN. SingamaneniS. McAlpineM.C. 3D printed programmable release capsules.Nano Lett.20151585321532910.1021/acs.nanolett.5b0168826042472
    [Google Scholar]
  232. KangX. ZhangX.B. GaoX.D. HaoD.J. LiT. XuZ.W. Bioprinting for bone tissue engineering.Front. Bioeng. Biotechnol.202210103637510.3389/fbioe.2022.103637536507261
    [Google Scholar]
/content/journals/coc/10.2174/0113852728312464240529050217
Loading
/content/journals/coc/10.2174/0113852728312464240529050217
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test