Skip to content
2000
Volume 29, Issue 1
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Cesium carbonate is an alkali carbonate salt that has numerous applications and has been proven to be a mild inorganic base in organic synthesis. It has garnered significant attention due to its practicality in C-H functionalization and heteroatom-heteroatom bond formation reactions, in addition to its application in conventional synthetic transformations. In this six-year update, we have examined the most important applications of CsCO in organic synthesis from 2018 to the present, including the scope of the reaction and providing detailed explanations of the underlying mechanisms.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728325969240711105055
2024-07-29
2025-01-29
Loading full text...

Full text loading...

References

  1. FlessnerT. DoyeS. Cesium carbonate: A powerful inorganic base in organic synthesis.J. Prakt. Chem.1999341218619010.1002/(SICI)1521‑3897(199902)341:2<186::AID‑PRAC186>3.0.CO;2‑6
    [Google Scholar]
  2. LehmannF. Cesium carbonate (Cs2CO3).Synlett20042447-2448132447244810.1055/s‑2004‑834787
    [Google Scholar]
  3. OstrowickiA. KoeppE. VogtleF. Topics in Current Chemistry; Weber, E.; Vogtle, F., Eds.; Springer: Heidelberg199216137
    [Google Scholar]
  4. KogaY. KanedaT. SaitoY. MurakamiK. ItamiK. Synthesis of partially and fully fused polyaromatics by annulative chlorophenylene dimerization.Science2018359637443543910.1126/science.aap9801 29371465
    [Google Scholar]
  5. LiuD. ZengQ. XuC. LiangH. ChenL. SongQ. Dual function modification of Cs2CO3 for efficient Perovskite solar cells.Nanomaterials 20221218314410.3390/nano12183144 36144931
    [Google Scholar]
  6. Atchuta RamaraoT. JhaA. SenA. Jha, A.; Sen, A. A mechanistic approach on the Cs2CO3 mediated synthesis of 4-azaindole analogues bearing pyridine-3-carboxamide and 1-phenylethanone.ChemistrySelect2022721e20220071910.1002/slct.202200719
    [Google Scholar]
  7. XuL.P. QianS. ZhuangZ. YuJ.Q. MusaevD.G. Unconventional mechanism and selectivity of the Pd-catalyzed C–H bond lactonization in aromatic carboxylic acid.Nat. Commun.202213131510.1038/s41467‑022‑27986‑6 35031612
    [Google Scholar]
  8. XuL.P. RoqueJ.B. SarpongR. MusaevD.G. Reactivity and selectivity controlling factors in the Pd/dialkylbiarylphosphine-catalyzed C-C cleavage/cross-coupling of an N-fused bicyclo α-hydroxy-β-lactam.J. Am. Chem. Soc.202014250211402115210.1021/jacs.0c10220 33289383
    [Google Scholar]
  9. XuL.P. HainesB.E. AjithaM.J. MurakamiK. ItamiK. MusaevD.G. Roles of base in the Pd-catalyzed annulative chlorophenylene dimerization.ACS Catal.20201053059307310.1021/acscatal.9b05328
    [Google Scholar]
  10. ZhaoM.N. GuanZ-H. Synthesis of 2,3-diaryl-2H-azirines via Cs2CO3-mediated cyclization of ketoxime acetates.Org. Synth.201996667910.15227/orgsyn.096.0066
    [Google Scholar]
  11. TheunissenC. ThilmanyP. LahboubiM. BlanchardN. EvanoG. Synthesis of ynamides by copper-mediated coupling of 1,1-dibromo-1-alkenes with nitrogen nucleophiles. Preparation of 4-methyl-N-(2-phenyl-ethynyl)-N-(phenylmethyl)benzenesulfonamide.Org. Synth.20199619521310.15227/orgsyn.096.0195
    [Google Scholar]
  12. RupnarB.D. KachaveT.R. JawaleP.D. ShisodiaS.U. PawarR.P. Microwave assisted, cesium carbonate catalyzed mild and efficient synthesis of pyranochromenes.Pharma Chem.20179120124
    [Google Scholar]
  13. CastilloJ.C. Orrego-HernándezJ. PortillaJ. Orrego-Hernández, J.; Portilla, J. Cs2CO3-Promoted direct N-alkylation: Highly chemoselective synthesis of N-alkylated benzylamines and anilines.Eur. J. Org. Chem.20162016223824383510.1002/ejoc.201600549
    [Google Scholar]
  14. SunS. YuJ.T. JiangY. ChengJ. Cs2CO3-promoted carboxylation of N-tosylhydrazones with carbon dioxide toward α-arylacrylic acids.J. Org. Chem.20158052855286010.1021/jo502908v 25695856
    [Google Scholar]
  15. VaralaR. RaoK.S. Cesium salts in organic synthesis: A review.Curr. Org. Chem.2015191242127410.2174/1385272819666150507220755
    [Google Scholar]
  16. RabieR. HammoudaM.M. ElattarK.M. Cesium carbonate as a mediated inorganic base in some organic transformations.Res. Chem. Intermed.20174341979201510.1007/s11164‑016‑2744‑z
    [Google Scholar]
  17. FotiC. PipernoA. ScalaA. GiuffrèO. Oxazolidinone antibiotics: Chemical, biological and analytical aspects.Molecules20212614428010.3390/molecules26144280 34299555
    [Google Scholar]
  18. FernandesG.F.S. ScarimC.B. KimS.H. WuJ. CastagnoloD. Oxazolidinones as versatile scaffolds in medicinal chemistry.RSC Medicinal Chemistry202314582384710.1039/D2MD00415A 37252095
    [Google Scholar]
  19. ZhaoQ. XinL. LiuY. LiangC. LiJ. JianY. LiH. ShiZ. LiuH. CaoW. Current landscape and future perspective of oxazolidinone scaffolds containing antibacterial drugs.J. Med. Chem.20216415105571058010.1021/acs.jmedchem.1c00480 34260235
    [Google Scholar]
  20. LiuP. JiangY. JiaoL. LuoY. WangX. YangT. Strategies for the discovery of oxazolidinone antibacterial agents: Development and future perspectives.J. Med. Chem.20236620138601387310.1021/acs.jmedchem.3c01040 37807849
    [Google Scholar]
  21. SunF. Van der EyckenE.V. FengH. Recent advances in the synthesis and ring-opening transformations of 2-oxazolidinones.Adv. Synth. Catal.2021363235168519510.1002/adsc.202100746
    [Google Scholar]
  22. FehrL. SewaldL. HuberR. KaiserM. Facile multicomponent synthesis of oxazolidinones from primary amines and cesium (hydrogen)carbonate.Eur. J. Org. Chem.20232627e20230013510.1002/ejoc.202300135
    [Google Scholar]
  23. MahmoudE. HayallahA.M. KovacicS. AbdelhamidD. Abdel-AzizM. Recent progress in biologically active indole hybrids: A mini review.Pharmacol. Rep.202274457058210.1007/s43440‑022‑00370‑3 35594012
    [Google Scholar]
  24. NetoJ.S.S. ZeniG. Recent advances in the synthesis of indoles from alkynes and nitrogen sources.Org. Chem. Front.20207115521010.1039/C9QO01315F
    [Google Scholar]
  25. PanS.Q. MaF.C. ZhangY. X. XiongS.H. YangX.Y. WangX.J. ZhangY.J. Fused bicyclic compounds as ASK1 activity regulators and their preparation, pharmaceutical compositions and use in the treatment of diseases.World Patent, 20182335532018
    [Google Scholar]
  26. KratenaN. MarinicB. DonohoeT.J. Recent advances in the dearomative functionalisation of heteroarenes.Chem. Sci. 20221348142131422510.1039/D2SC04638E 36545133
    [Google Scholar]
  27. XiaZ.L. Xu-XuQ.F. ZhengC. YouS.L. Chiral phosphoric acid-catalyzed asymmetric dearomatization reactions.Chem. Soc. Rev.202049128630010.1039/C8CS00436F 31829319
    [Google Scholar]
  28. HuangC. JinZ. ZhangB. ZhouY. LinH. KangH. ShenG. LvX. One-pot synthesis of 4-(imidazol-1-yl)indole derivatives through a sequential dearomatization and Ag-catalyzed cyclization/Cs2CO3-mediated addition/aromatization reaction.Org. Biomol. Chem.202321204245425610.1039/D3OB00316G 37145103
    [Google Scholar]
  29. SkhiriA. Ben SalemR. SouléJ.F. DoucetH. Access to (hetero)arylated selenophenes via palladium-catalysed Stille, Negishi or Suzuki couplings or C-H bond functionalization reaction.ChemCatChem20179152895291310.1002/cctc.201700256
    [Google Scholar]
  30. PaegleE. DomrachevaI. TurovskaB. PetrovaM. Kanepe-LapsaI. GulbeA. LiepinshE. ArsenyanP. Natural-antioxidant-inspired benzo[b]selenophenes: Synthesis, redox properties, and antiproliferative activity.Chem. Asian J.201611131929193810.1002/asia.201600472 27146245
    [Google Scholar]
  31. MatsumuraM. KitamuraY. YamauchiA. KanazawaY. MurataY. HyodoT. YamaguchiK. YasuikeS. Synthesis of benzo[d]imidazo[2,1- b]benzoselenoazoles: Cs2CO3-mediated cyclization of 1-(2-bromoaryl)-benzimidazoles with selenium.Beilstein J. Org. Chem.2019152029203510.3762/bjoc.15.199 31501670
    [Google Scholar]
  32. LiuW. TanH. ChenC. PanY. A method to access symmetrical tetrasubstituted pyridines via iodine and ammonium persulfate mediated [2+2+1+1]-cycloaddition reaction.Adv. Synth. Catal.201735991594159810.1002/adsc.201601225
    [Google Scholar]
  33. ZhangQ. SongC. HuangH. ZhangK. ChangJ. Cesium carbonate promoted cascade reaction involving DMF as a reactant for the synthesis of dihydropyrrolizino[3,2- b]indol-10-ones.Org. Chem. Front.201851808710.1039/C7QO00771J
    [Google Scholar]
  34. DingA. MeazzaM. GuoH. YangJ.W. RiosR. New development in the enantioselective synthesis of spiro compounds.Chem. Soc. Rev.201847155946599610.1039/C6CS00825A 29953153
    [Google Scholar]
  35. ChengJ.T. ZhengX. HuangP.Q. Construction of multifunctional heterocycles bearing aza-quaternary carbons by titanocene-catalyzed umpolung reactions.Tetrahedron201975121612162310.1016/j.tet.2018.11.067
    [Google Scholar]
  36. DomínguezG. Pérez-CastellsJ. Recent advances in [2+2+2] cycloaddition reactions.Chem. Soc. Rev.20114073430344410.1039/c1cs15029d 21431173
    [Google Scholar]
  37. DaiC. XieZ. LiM. WangC. Cs2CO3-Promoted [2+2+2] cycloaddition reaction of 4-aryliden-5(4H)-oxazolones and β-nitrostyrenes: Access to spirocycloalkyloxazolones.Asian J. Org. Chem.202091616710.1002/ajoc.201900632
    [Google Scholar]
  38. KhanamH. Shamsuzzaman, Bioactive benzofuran derivatives: A review.Eur. J. Med. Chem.20159748350410.1016/j.ejmech.2014.11.039 25482554
    [Google Scholar]
  39. LiuY. LuT. TangW.F. GaoJ. Transition-metal-free base catalyzed intramolecular cyclization of 2-ynylphenols for efficient and facile synthesis of 2-substituted benzo[ b]furans.RSC Advances2018850286372864110.1039/C8RA03882A 35542491
    [Google Scholar]
  40. RongZ. GaoK. ZhouL. LinJ. QianG. Facile synthesis of 2-substituted benzo[b]furans and indoles by copper-catalyzed intramolecular cyclization of 2-alkynyl phenols and tosylanilines.RSC Advances2019931179751797810.1039/C9RA01260E 35520559
    [Google Scholar]
  41. AgastiS. DeyA. MaitiD. Palladium-catalyzed benzofuran and indole synthesis by multiple C–H functionalizations.Chem. Commun. 201753496544655610.1039/C7CC02053H 28569899
    [Google Scholar]
  42. PandayA.K. AliD. ChoudhuryL.H. Cs2CO3-Mediated rapid room-temperature synthesis of 3-amino-2-aroyl benzofurans and their copper-catalyzed N-arylation reactions.ACS Omega2020573646366010.1021/acsomega.9b04169 32118180
    [Google Scholar]
  43. GoyalD. KaurA. GoyalB. Benzofuran and indole: Promising scaffolds for drug development in Alzheimer’s disease.ChemMedChem201813131275129910.1002/cmdc.201800156 29742314
    [Google Scholar]
  44. XuZ. ZhaoS. LvZ. FengL. WangY. ZhangF. BaiL. DengJ. Benzofuran derivatives and their anti-tubercular, anti-bacterial activities.Eur. J. Med. Chem.201916226627610.1016/j.ejmech.2018.11.025 30448416
    [Google Scholar]
  45. SuiG. LiT. ZhangB. WangR. HaoH. ZhouW. Recent advances on synthesis and biological activities of aurones.Bioorg. Med. Chem.20212911589510.1016/j.bmc.2020.115895 33271454
    [Google Scholar]
  46. YuJ. XuM. WangX. ZhangB. MaoH. LvX. ZhouL. Catalyst-controlled cycloisomerization/[4+3]cycloaddition sequence to construct 2,3-furan-fused dihydroazepines and 2,3-pyrrole-fused dihydrooxepines.Org. Chem. Front.2022971850185410.1039/D1QO01733K
    [Google Scholar]
  47. JinH.S. ZhuT. Synthesis of benzofuran-fused oxepines through Cs2CO3-promoted [4+3] annulation of aurones with crotonate-derived sulfonium salts.J. Org. Chem.20248953271327810.1021/acs.joc.3c02715 38332626
    [Google Scholar]
  48. RodrigalvarezJ. HautF.L. MartinR. Regiodivergent sp3 C–H functionalization via Ni-catalyzed chain-walking reactions.JACS Au20233123270328210.1021/jacsau.3c00617 38155646
    [Google Scholar]
  49. LinS. LiuC. ZhaoX. HanX. LiX. YeY. LiZ. Recent advances of pyridinone in medicinal chemistry.Front Chem.20221086986010.3389/fchem.2022.869860 35402370
    [Google Scholar]
  50. De AngelisL. HaugG.C. RiveraG. BiswasS. Al-SayyedA. ArmanH. LarionovO. DoyleM.P. Site reversal in nucleophilic addition to 1,2,3-triazine 1-oxides.J. Am. Chem. Soc.202314524130591306810.1021/jacs.3c01347 37294869
    [Google Scholar]
  51. BiswasS. HughesW.B. De AngelisL. HaugG.C. TrevinoR. FreminS.O. ArmanH.D. LarionovO.V. DoyleM.P. The “cesium effect” magnified: Exceptional chemoselectivity in cesium ion mediated nucleophilic reactions.Chem. Sci. 202415145277528310.1039/D4SC00316K 38577370
    [Google Scholar]
  52. SteinbachT. WurmF.R. Poly(phosphoester)s: A new platform for degradable polymer.Angew. Chem. Int. Ed.201554216098610810.1002/anie.201500147 25951459
    [Google Scholar]
  53. GuleaM. Progress in the chemistry of phosphorothioates.Adv. Org. Synth.20181211715010.2174/9781681086804118120005
    [Google Scholar]
  54. EcksteinF. Phosphorothioates, essential components of therapeutic oligonucleotides.Nucleic Acid Ther.201424637438710.1089/nat.2014.0506 25353652
    [Google Scholar]
  55. QiuY. WorchJ.C. ChirdonD.N. KaurA. MaurerA.B. AmsterdamS. CollinsC.R. PintauerT. YaronD. BernhardS. NoonanK.J.T. Tuning thiophene with phosphorus: Synthesis and electronic properties of benzobisthiaphospholes.Chemistry201420257746775110.1002/chem.201402561 24817444
    [Google Scholar]
  56. LeeC-F. BaiR. LiuK-C. ChenZ-W. GurjarA. BadsaraS.S. Cs2CO3-Mediated synthetic strategy for iprobenfos derivatives via thiophilic addition of H-phosphites on in situ generated thioaldehydes.ARKIVOC20242023210.24820/ark.5550190.p012.055
    [Google Scholar]
  57. ChenZ.W. PratheepkumarA. BaiR. HuY. BadsaraS.S. HuangK.W. LeeC.F. Cesium carbonate-catalyzed synthesis of phosphorothioates via S -phosphination of thioketones.Chem. Commun. 20225878110011100410.1039/D2CC04331A 36093933
    [Google Scholar]
  58. FisherS.P. TomichA.W. LoveraS.O. KleinsasserJ.F. GuoJ. AsayM.J. NelsonH.M. LavalloV. Nonclassical applications of closo-carborane anions: From main group chemistry and catalysis to energy storage.Chem. Rev.2019119148262829010.1021/acs.chemrev.8b00551 30707011
    [Google Scholar]
  59. PopovS. ShaoB. BagdasarianA.L. BentonT.R. ZouL. YangZ. HoukK.N. NelsonH.M. Teaching an old carbocation new tricks: Intermolecular C–H insertion reactions of vinyl cations.Science2018361640038138710.1126/science.aat5440 30049877
    [Google Scholar]
  60. FisherS.P. TomichA.W. GuoJ. LavalloV. Teaching an old dog new tricks: New directions in fundamental and applied closo -carborane anion chemistry.Chem. Commun. 201955121684170110.1039/C8CC09663E 30666325
    [Google Scholar]
  61. LoveraS.O. BagsdasarianA.L. GuoJ. NelsonH.M. LavalloV. Cesium carbonate mediated C–H functionalization of perhalogenated 12-vertex carborane anions.Chem. Commun. 202258254060406210.1039/D2CC00173J 35262161
    [Google Scholar]
  62. VinogradovA.A. YinY. SugaH. Macrocyclic peptides as drug candidates: Recent progress and remaining challenges.J. Am. Chem. Soc.2019141104167418110.1021/jacs.8b13178 30768253
    [Google Scholar]
  63. SrivastavaV. Peptide-based Drug Discovery: Challenges and New Therapeutics.The Royal Society of Chemistry201710.1039/9781788011532
    [Google Scholar]
  64. DunetzJ.R. MaganoJ. WeisenburgerG.A. Large-scale applications of amide coupling reagents for the synthesis of pharmaceuticals.Org. Process Res. Dev.201620214017710.1021/op500305s
    [Google Scholar]
  65. de FigueiredoR.M. SuppoJ.S. CampagneJ.M. Nonclassical routes for amide bond formation.Chem. Rev.201611619120291212210.1021/acs.chemrev.6b00237 27673596
    [Google Scholar]
  66. SabatiniM.T. BoultonL.T. SneddonH.F. SheppardT.D. A green chemistry perspective on catalytic amide bond formation.Nat. Catal.201921101710.1038/s41929‑018‑0211‑5
    [Google Scholar]
  67. KuoC.H. HsiehW.T. YangY.H. HwangT.L. ChengY.S. LinY.A. Cesium carbonate promoted direct amidation of unactivated esters with amino alcohol derivatives.J. Org. Chem.20248974958497010.1021/acs.joc.4c00162 38523317
    [Google Scholar]
  68. SurowiakA.K. LochyńskiS. StrubD.J. Unsubstituted oximes as potential therapeutic agents.Symmetry 2020126100610.3390/sym12061006
    [Google Scholar]
  69. NisingC.F. BräseS. The oxa-Michael reaction: From recent developments to applications in natural product synthesis.Chem. Soc. Rev.20083761218122810.1039/b718357g 18497934
    [Google Scholar]
  70. StahlJ. YathamV.R. CrespiS. KönigB. Cesium carbonate catalyzed oxa-Michael addition of oximes to acrylonitrile.ChemistrySelect20216174107411110.1002/slct.202100924
    [Google Scholar]
  71. BattilocchioC. HawkinsJ.M. LeyS.V. Mild and selective heterogeneous catalytic hydration of nitriles to amides by flowing through manganese dioxide.Org. Lett.20141641060106310.1021/ol403591c 24495110
    [Google Scholar]
  72. García-ÁlvarezR. CrochetP. CadiernoV. Metal-catalyzed amide bond forming reactions in an environmentally friendly aqueous medium: Nitrile hydrations and beyond.Green Chem.2013151466610.1039/C2GC36534K
    [Google Scholar]
  73. YoshimatsuM. KuwabaraJ. SawadaY. Nitrile hydration reaction using copper iodide/cesium carbonate/DBU in nitromethane-water.Synlett201829152061206510.1055/s‑0037‑1609912
    [Google Scholar]
  74. GaoH. HuB. DongW. GaoX. JiangL. XieX. ZhangZ. Synthesis of 3-CF2-containing chromones via a visible-light-induced radical cascade reaction of o-hydroxyaryl enaminones.ACS Omega2017273168317410.1021/acsomega.7b00383 31457645
    [Google Scholar]
  75. JiangW. SunJ. LiuR.Z. YanC.G. Molecular diversity of the domino annulation reaction of 2-aryl-3-nitrochromenes with pivaloylacetonitriles.Org. Biomol. Chem.201816325816582210.1039/C8OB01504J 30066005
    [Google Scholar]
  76. DaiC. LuoN. WangS. WangC. WangC. Cesium-carbonate-mediated benzalation of substituted 2-aryl-3-nitro-2H-chromenes with substituted 4-benzylidene-2-phenyloxazol-5(4H)-ones.Org. Lett.20192182828283210.1021/acs.orglett.9b00776 30939016
    [Google Scholar]
  77. GuoZ. XieM. HanR. QuG. GuoH. Ag-catalyzed monofluoromethylation of Purin-9-yl allenes with fluorobis(phenylsulfonyl)methane.Youji Huaxue201838111211710.6023/cjoc201711001
    [Google Scholar]
  78. YuM. LiuX. JiangQ. DuH. Expeditious synthesis of 9-allenylpurines via cesium carbonate catalyzed isomerization of 9-alkynylpurines.Phosphorus Sulfur Silicon Relat. Elem.2018193745145810.1080/10426507.2018.1436547
    [Google Scholar]
/content/journals/coc/10.2174/0113852728325969240711105055
Loading
/content/journals/coc/10.2174/0113852728325969240711105055
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test