Skip to content
2000
Volume 29, Issue 1
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

arylated heterocycles are a significant class of core scaffolds in medicinal chemistry, materials science, and agrochemistry, highlighting their importance in various fields. The development of innovative methodologies for synthesizing these fundamental structures has been a central focus in organic synthesis. Over the past few decades, numerous approaches have been established to synthesize -aryl heterocycles efficiently. Among these methods, the direct -arylation of N-H heterocycles stands out as one of the most straightforward and robust strategies for accessing -arylated heterocycles. This review provides a comprehensive review of the recent advances in the synthesis of -arylated heterocycles, encompassing the relevant literature from the past decade. The review summarizes the -arylation of N-H heterocycles using various catalytic systems, including palladium, nickel, copper, visible light-induced metal-catalyzed, and metal-free catalyzed methodologies. These advances highlighted the continuous evolution and optimization of synthetic strategies to create diverse and complex -arylated heterocycles, which are pivotal for furthering research and development in multiple scientific domains.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728320325240710053300
2024-07-24
2025-01-27
Loading full text...

Full text loading...

References

  1. KarrouchiK. RadiS. RamliY. TaoufikJ. MabkhotY.N. Al-aizariF.A. AnsarM. Synthesis and pharmacological activities of pyrazole derivatives: a review.Molecules201823113410.3390/molecules23010134 29329257
    [Google Scholar]
  2. TripathiG. SinghA.K. KumarA. Arylpyrazoles: Heterocyclic scaffold of immense therapeutic application.Curr. Org. Chem.202024141555158110.2174/1570179417999200628035645
    [Google Scholar]
  3. MermerA. KelesT. SirinY. Recent studies of nitrogen containing heterocyclic compounds as novel antiviral agents: A review.Bioorg. Chem.202111410507610.1016/j.bioorg.2021.105076 34157555
    [Google Scholar]
  4. BansalY. MinhasR. SinghalA. AroraR.K. BansalG. Benzimidazole: a multifacted nucelus for anticancer agents.Curr. Org. Chem.202125666969410.2174/1385272825666210208141107
    [Google Scholar]
  5. HashemH.E. El BakriY. An overview on novel synthetic approaches and medicinal applications of benzimidazole compounds.Arab. J. Chem.2021141110341810.1016/j.arabjc.2021.103418
    [Google Scholar]
  6. MirR.H. Mohi-ud-din, R.; Wani, T.U.; Dar, M.O.; Shah, A.J.; Lone, B.; Pooja, C.; Masoodi, M.H. Indole: A privileged heterocyclic moiety in the management of cancer.Curr. Org. Chem.202125672473610.2174/1385272825666210208142108
    [Google Scholar]
  7. RaniM. UtrejaD. SharmaS. Role of indole derivatives in agrochemistry: synthesis and future insights.Curr. Org. Chem.202226765167810.2174/1385272826666220426103835
    [Google Scholar]
  8. MondalD. KalarP.L. KoriS. GayenS. DasK. Recent developments on synthesis of indole derivatives through green approaches and their pharmaceutical applications.Curr. Org. Chem.202024222665269310.2174/1385272824999201111203812
    [Google Scholar]
  9. AllenL.A.T. NathoP. Trends in carbazole synthesis – an update (2013–2023).Org. Biomol. Chem.202321458956897410.1039/D3OB01605F 37906471
    [Google Scholar]
  10. HouW. DaiW. HuangH. LiuS.L. LiuJ. HuangL.J. HuangX.H. ZengJ.L. GanZ.W. ZhangZ.Y. LanJ.X. Pharmacological activity and mechanism of pyrazines.Eur. J. Med. Chem.202325811554410.1016/j.ejmech.2023.115544 37300915
    [Google Scholar]
  11. SinghS. TahlanS. SinghK. VermaP.K. Synthetic update on antimicrobial potential of novel pyrazole derivatives: a review.Curr. Org. Chem.202428532534510.2174/0113852728292094240216045039
    [Google Scholar]
  12. BoydE.M. SperryJ. Total synthesis of (-)-aspergilazine A.Org. Lett.201416195056505910.1021/ol5024097 25248025
    [Google Scholar]
  13. WycheT.P. RuzziniA.C. SchwabL. CurrieC.R. ClardyJ. Tryptorubin a: A polycyclic peptide from a fungus-derived streptomycete.J. Am. Chem. Soc.201713937128991290210.1021/jacs.7b06176 28853867
    [Google Scholar]
  14. TaslerS. BringmannG. Biarylic biscarbazole alkaloids: occurrence, stereochemistry, synthesis, and bioactivity.Chem. Rec.20022211312610.1002/tcr.10014 12001210
    [Google Scholar]
  15. AhmadS. AlamO. NaimM.J. ShaquiquzzamanM. AlamM.M. IqbalM. Pyrrole: An insight into recent pharmacological advances with structure activity relationship.Eur. J. Med. Chem.201815752756110.1016/j.ejmech.2018.08.002 30119011
    [Google Scholar]
  16. Li PetriG. SpanòV. SpatolaR. HollR. RaimondiM.V. BarrajaP. MontalbanoA. Bioactive pyrrole-based compounds with target selectivity.Eur. J. Med. Chem.202020811278310.1016/j.ejmech.2020.112783 32916311
    [Google Scholar]
  17. KulkarniA. SoniI. KelkarD.S. DharmarajaA.T. SankarR.K. BeniwalG. RajendranA. TamhankarS. ChopraS. KamatS.S. ChakrapaniH. Chemoproteomics of an indole-based quinone epoxide identifies druggable vulnerabilities in vancomycin-resistant Staphylococcus aureus.J. Med. Chem.201962146785679510.1021/acs.jmedchem.9b00774 31241934
    [Google Scholar]
  18. PuxedduM. ShenH. BaiR. ColucciaA. BufanoM. NalliM. SebastianiJ. BrancaccioD. Da PozzoE. TremolantiC. MartiniC. OrlandoV. BiagioniS. SinicropiM.S. CeramellaJ. IacopettaD. ColucciaA.M.L. HamelE. LiuT. SilvestriR. La ReginaG. Discovery of pyrrole derivatives for the treatment of glioblastoma and chronic myeloid leukemia.Eur. J. Med. Chem.202122111353210.1016/j.ejmech.2021.113532 34052717
    [Google Scholar]
  19. AndersenK. LiljeforsT. HyttelJ. PerregaardJ. Serotonin 5-HT2 receptor, dopamine D2 receptor, and α 1 adrenoceptor antagonists. Conformationally flexible analogues of the atypical antipsychotic sertindole.J. Med. Chem.199639193723373810.1021/jm960159f 8809161
    [Google Scholar]
  20. XuH. LiuW.Q. FanL.L. ChenY. YangL.M. LvL. ZhengY.T. Synthesis and HIV-1 integrase inhibition activity of some N-arylindoles.Chem. Pharm. Bull. (Tokyo)200856572072210.1248/cpb.56.720 18451566
    [Google Scholar]
  21. TaoY. YangC. QinJ. Organic host materials for phosphorescent organic light-emitting diodes.Chem. Soc. Rev.20114052943297010.1039/c0cs00160k 21369622
    [Google Scholar]
  22. WuY. LiY. GardnerS. OngB.S. Indolo[3,2-b]carbazole-based thin-film transistors with high mobility and stability.J. Am. Chem. Soc.2005127261461810.1021/ja0456149 15643885
    [Google Scholar]
  23. ShangT.Y. LuL.H. CaoZ. LiuY. HeW.M. YuB. Recent advances of 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) in photocatalytic transformations.Chem. Commun. (Camb.)201955385408541910.1039/C9CC01047E 31020957
    [Google Scholar]
  24. UoyamaH. GoushiK. ShizuK. NomuraH. AdachiC. Highly efficient organic light-emitting diodes from delayed fluorescence.Nature2012492742823423810.1038/nature11687 23235877
    [Google Scholar]
  25. HuangZ. ChenZ. JiangY. LiN. YangS. WangG. PanX. Metal-free hydrosilylation polymerization by merging photoredox and hydrogen atom transfer catalysis.J. Am. Chem. Soc.202114345191671917710.1021/jacs.1c09263 34738793
    [Google Scholar]
  26. KambojM. BajpaiS. BanikB.K. Microwave-induced reactions for pyrrole synthesis.Curr. Org. Chem.202327755956710.2174/1385272827666230508124450
    [Google Scholar]
  27. BeifussU. MoustafaA. MalakarC. AljaarN. MerisorE. ConradJ. Microwave-assisted molybdenum-catalyzed reductive cyclization of o-Nitrobenzylidene amines to 2-aryl-2H-Indazoles.Synlett201324121573157710.1055/s‑0033‑1339195
    [Google Scholar]
  28. SinghD. DeviN. KumarV. MalakarC.C. MehraS. RawalR.K. KaithB.S. SinghV. Metal-free 1,3-dipolar cycloaddition approach towards the regioselective synthesis of β-carboline and isoxazole based molecular hybrids.RSC Advances2016691880668807610.1039/C6RA15875G
    [Google Scholar]
  29. SinghD. KumarV. DeviN. MalakarC.C. ShankarR. SinghV. Metal–free decarboxylative amination: an alternative approach towards regioselective synthesis of β-carboline N-fused imidazoles.Adv. Synth. Catal.201735971213122610.1002/adsc.201600970
    [Google Scholar]
  30. GujjarappaR. VodnalaN. KabiA. KaldhiD. KumarM. BeifussU. MalakarC. Efficient syntheses of diverse N-heterocycles: The molybdenum (vi)-catalyzed reductive cyclization of nitroarenes using pinacol as a deoxygenating agent. SynOpen,2018220138014410.1055/s‑0036‑1591572
    [Google Scholar]
  31. IqbalS. RasheedH. AwanR.J. AwanR.J. MukhtarA. MoloneyM.G. Recent advances in the synthesis of pyrroles.Curr. Org. Chem.202024111196122910.2174/1385272824999200528125651
    [Google Scholar]
  32. ChebiebA. KimY.G. ChaJ.K. Synthesis of Indoles from o-Haloanilines.J. Org. Chem.20238814101641017010.1021/acs.joc.3c01047 37410990
    [Google Scholar]
  33. KumarS. KumarR. MalakarC.C. SinghV. Copper catalysed regioselective synthesis of pyrimidine substituted Indolizino[8,7-b]indole derivatives via cascade A3 annulation.Tetrahedron202314213354710.1016/j.tet.2023.133547
    [Google Scholar]
  34. PatelC.K. GujjarappaR. KantK. GhantaS. SinghV. KabiA.K. Al-ZaqriN. MalakarC.C. Copper-catalyzed c(sp3)− functionalization and annulation of 2-bromoaryl oximes with active methylene compounds towards synthesis of isoquinoline N-oxides.Adv. Synth. Catal.2023365132203221010.1002/adsc.202300217
    [Google Scholar]
  35. SinghL.S. KantK. BanerjeeS. SenguptaR. AlObaidA.A. PalM. DuttaS. AljaarN. MalakarC.C. The γ-valerolactone (GVL) as innoxious reaction media for the synthesis of 2-aryl-2H-indazoles via C-N and N-N bond formation under Cu(I)-catalyzed ligand and base free conditions.Polycyl. Arom. Comp2023202311210.1080/10406638.2023.2257846
    [Google Scholar]
  36. SinghD. SharmaS. ThakurR.K. Vaishali; Nain, S.; Jyoti; Malakar, C.C.; Singh, V. Cu-catalysed diversity-oriented synthesis of isoxazole and imidazo[1,2-a]azine conjugates.Tetrahedron202415213380910.1016/j.tet.2023.133809
    [Google Scholar]
  37. HeL. XuY. Palladium-catalyzed synthesis of carbazoles by perester.Adv. Synth. Catal.2022364142352235710.1002/adsc.202200419
    [Google Scholar]
  38. PointsG.L.III BeaudryC.M. Regioselective synthesis of substituted carbazoles, bicarbazoles, and clausine c.Org. Lett.202123176882688510.1021/acs.orglett.1c02449 34424701
    [Google Scholar]
  39. LintottM. PerryA. Straightforward synthesis of N -arylindoles via one-pot Fischer indolisation–indole N -arylation.RSC Advances20231323159931599710.1039/D3RA02658B 37250219
    [Google Scholar]
  40. HieuT.T. DungV.C. ChungN.T. DucD.X. Recent achievement in the synthesis of imidazoles.Curr. Org. Chem.202327161398144610.2174/0113852728259414231010050749
    [Google Scholar]
  41. RoughleyS.D. JordanA.M. The medicinal chemist’s toolbox: an analysis of reactions used in the pursuit of drug candidates.J. Med. Chem.201154103451347910.1021/jm200187y 21504168
    [Google Scholar]
  42. DorelR. GrugelC.P. HaydlA.M. The Buchwald–Hartwig amination after 25 years.Angew. Chem. Int. Ed.20195848171181712910.1002/anie.201904795 31166642
    [Google Scholar]
  43. Forero-CortésP.A. HaydlA.M. The 25th anniversary of the Buchwald–Hartwig amination: development, applications, and outlook.Org. Process Res. Dev.20192381478148310.1021/acs.oprd.9b00161
    [Google Scholar]
  44. HeraviM.M. KheilkordiZ. ZadsirjanV. HeydariM. MalmirM. Buchwald-Hartwig reaction: An overview.J. Organomet. Chem.20188611710410.1016/j.jorganchem.2018.02.023
    [Google Scholar]
  45. KunzK. ScholzU. GanzerD. Renaissance of Ullmann and goldberg reactions - progress in copper catalyzed C-N-, C-O- and C-S-coupling.Synlett20032003152428243910.1055/s‑2003‑42473
    [Google Scholar]
  46. SambiagioC. MarsdenS.P. BlackerA.J. McGowanP.C. Copper catalysed Ullmann type chemistry: from mechanistic aspects to modern development.Chem. Soc. Rev.201443103525355010.1039/C3CS60289C 24585151
    [Google Scholar]
  47. ChenJ.Q. LiJ.H. DongZ.B. A review on the latest progress of Chan-Lam coupling reaction.Adv. Synth. Catal.2020362163311333110.1002/adsc.202000495
    [Google Scholar]
  48. MunirI. ZahoorA.F. RasoolN. NaqviS.A.R. ZiaK.M. AhmadR. Synthetic applications and methodology development of Chan–Lam coupling: a review.Mol. Divers.201923121525910.1007/s11030‑018‑9870‑z 30159807
    [Google Scholar]
  49. WestM.J. FyfeJ.W.B. VantouroutJ.C. WatsonA.J.B. Mechanistic development and recent applications of the Chan–Lam amination.Chem. Rev.201911924124911252310.1021/acs.chemrev.9b00491 31756093
    [Google Scholar]
  50. HisanaK.N. AfsinaC.M.A. AnilkumarG. Copper-catalyzed N -arylation of pyrroles: an overview.New J. Chem.20214537170611707610.1039/D1NJ02638K
    [Google Scholar]
  51. MarínM. RamaR.J. NicasioM.C. Ni-catalyzed amination reactions: an overview.Chem. Rec.20161641819183210.1002/tcr.201500305 27265724
    [Google Scholar]
  52. HaylerJ.D. LeahyD.K. SimmonsE.M. A pharmaceutical industry perspective on sustainable metal catalysis.Organometallics2019381364610.1021/acs.organomet.8b00566
    [Google Scholar]
  53. GujjarappaR. VodnalaN. MalakarC.C. Comprehensive strategies for the synthesis of isoquinolines: progress since 2008.Adv. Synth. Catal.2020362224896499010.1002/adsc.202000658
    [Google Scholar]
  54. GujjarappaR. VodnalaN. MalakarC.C. Recent advances in pyridine-based organocatalysis and its application towards valuable chemical transformations.ChemistrySelect20205288745875810.1002/slct.202002765
    [Google Scholar]
  55. ReetuR. GujjarappaR. MalakarC.C. Recent advances in synthesis and medicinal evaluation of 1,2-benzothiazine analogues.Asian J. Org. Chem.2022118e20220016310.1002/ajoc.202200163
    [Google Scholar]
  56. MalakarC.C. Dell’AmicoL. ZhangW. Dual catalysis in organic synthesis: current challenges and new trends.Eur. J. Org. Chem.2023261e20220111410.1002/ejoc.202201114
    [Google Scholar]
  57. AljaarN. IbrahimM.M. YounesE.A. Al-NoaimiM. Abu-SafiehK.A. AliB.F. KantK. Al-ZaqriN. SenguptaR. MalakarC.C. Strategies towards the synthesis of 2-ketoaryl azole derivatives using C-H functionalization approach and 1,2-bis-nucleophile precursors.Asian J. Org. Chem.2023124e20230003610.1002/ajoc.202300036
    [Google Scholar]
  58. PatelC.K. BanerjeeS. KantK. SenguptaR. AljaarN. MalakarC.C. Roles of alkali metals tert-butoxide as catalysts and activators in organic transformations.Asian J. Org. Chem.2023128e20230031110.1002/ajoc.202300311
    [Google Scholar]
  59. KantK. PatelC.K. BanerjeeS. NaikP. AttaA.K. KabiA.K. MalakarC.C. Recent advancements in strategies for the synthesis of imidazoles, thiazoles, oxazoles, and benzimidazoles.ChemistrySelect2023847e20230398810.1002/slct.202303988
    [Google Scholar]
  60. AnanthuS. AneejaT. AnilkumarG. N-arylation of imidazoles: An overview.ChemistrySelect20216379794980510.1002/slct.202102411
    [Google Scholar]
  61. OeserP. KoudelkaJ. PetrenkoA. TobrmanT. Recent progress concerning the N-arylation of indoles.Molecules20212616507910.3390/molecules26165079 34443667
    [Google Scholar]
  62. CrawfordS.M. LaveryC.B. StradiottoM. BippyPhos: a single ligand with unprecedented scope in the Buchwald-Hartwig amination of (hetero)aryl chlorides.Chemistry20131949167601677110.1002/chem.201302453 24281816
    [Google Scholar]
  63. ChenH. YangH. LiN. XueX. HeZ. ZengQ. Palladium-catalyzed C–N cross-coupling of NH-heteroarenes and quaternary ammonium salts via C–N bond cleavage.Org. Process Res. Dev.20192381679168510.1021/acs.oprd.9b00194
    [Google Scholar]
  64. HeX. HuS. XiaoY. YuL. DuanW. Access to ketones through palladium-catalyzed cross-coupling of phenol derivatives with nitroalkanes followed by nef reaction.Eur. J. Org. Chem.2022202235e20220073110.1002/ejoc.202200731
    [Google Scholar]
  65. YaoJ. YuL. DuanW. LiC.J. Palladium-catalyzed C–Si bond formation via denitrative cross-coupling of nitroarenes with hexamethyldisilane.Org. Chem. Front.202310252453010.1039/D2QO01764D
    [Google Scholar]
  66. HuS. HeX. LeiZ. YuL. DuanW. Palladium-catalyzed α-arylation of nitroalkanes with aryl triflates through the C(sp2)−C(sp3) bond coupling.J. Mol. Struct.2023128613556510.1016/j.molstruc.2023.135565
    [Google Scholar]
  67. LiuJ. YaoJ. DuJ. YuL. DuanW. XiaoY. LeiZ. Direct synthesis of α-ketoamides via copper-catalyzed reductive amidation of nitroarenes with α-oxocarboxylic acids.J. Org. Chem.20248996575658310.1021/acs.joc.4c00237 38656973
    [Google Scholar]
  68. LeiZ. YaoJ. XiaoY. LiuW.H. YuL. DuanW. LiC.J. Dual role of nitroarenes as electrophiles and arylamine surrogates in Buchwald–Hartwig-type coupling for C–N bond construction.Chem. Sci.202415103552356110.1039/D3SC06618E 38455022
    [Google Scholar]
  69. FengL. YaoJ. YuL. DuanW. Palladium-catalyzed denitrative N -arylation of nitroarenes with pyrroles, indoles, and carbazoles.Org. Chem. Front.2022992351235610.1039/D2QO00010E
    [Google Scholar]
  70. PaulA. ChatterjeeD. BanerjeeS. YadavS. Ligand and Cu free N -arylation of indoles, pyrroles and benzylamines with aryl halides catalyzed by a Pd nanocatalyst.New J. Chem.20204434144471445210.1039/D0NJ02129F
    [Google Scholar]
  71. RullS.G. Funes-ArdoizI. MayaC. MaserasF. FructosM.R. BelderrainT.R. NicasioM.C. Elucidating the mechanism of aryl aminations mediated by NHC-supported nickel complexes: Evidence for a nonradical Ni(0)/Ni(ii) pathway.ACS Catal.2018853733374210.1021/acscatal.8b00856
    [Google Scholar]
  72. McGuireR.T. PaffileJ.F.J. ZhouY. StradiottoM. Nickel-catalyzed C–N cross-coupling of ammonia, (hetero)anilines, and indoles with activated (hetero)aryl chlorides enabled by ligand design.ACS Catal.20199109292929710.1021/acscatal.9b03715
    [Google Scholar]
  73. MoriokaT. NakataniS. SakamotoY. KodamaT. OgoshiS. ChataniN. TobisuM. Nickel-catalyzed decarbonylation of N -acylated N-heteroarenes.Chem. Sci. (Camb.)201910276666667110.1039/C9SC02035G 31367320
    [Google Scholar]
  74. MalapitC.A. BorrellM. MilbauerM.W. BrighamC.E. SanfordM.S. Nickel-catalyzed decarbonylative amination of carboxylic acid esters.J. Am. Chem. Soc.2020142135918592310.1021/jacs.9b13531 32207616
    [Google Scholar]
  75. Dindarloo InalooI. MajnooniS. EslahiH. EsmaeilpourM. N -Arylation of (hetero)arylamines using aryl sulfamates and carbamates via C–O bond activation enabled by a reusable and durable nickel(0) catalyst.New J. Chem.20204431132661327810.1039/D0NJ01610A
    [Google Scholar]
  76. IranpoorN. FirouzabadiH. Etemadi DavanE. RostamiA. NematollahiA. Triphenyltin chloride as a new source of phenyl group for C-heteroatom and C–C bond formation.J. Organomet. Chem.201374012313010.1016/j.jorganchem.2013.04.053
    [Google Scholar]
  77. ToumminiD. TliliA. BergèsJ. OuazzaniF. TailleferM. Copper-catalyzed arylation of nitrogen heterocycles from anilines under ligand-free conditions.Chemistry20142045146191462310.1002/chem.201404982 25284684
    [Google Scholar]
  78. PawarG.G. WuH. DeS. MaD. Copper(i) oxide/N,N′-bis[(2-furyl)methyl]oxalamide-catalyzed coupling of (hetero)aryl halides and nitrogen heterocycles at low catalytic loading.Adv. Synth. Catal.2017359101631163610.1002/adsc.201700026
    [Google Scholar]
  79. SharghiH. SepehriS. AberiM. Cu(II) complex of pyridine-based polydentate as a novel, efficient, and highly reusable catalyst in C–N bond-forming reaction.Mol. Divers.201721485586410.1007/s11030‑017‑9759‑2 28653129
    [Google Scholar]
  80. MinnickJ.L. DomyatiD. AmmonsR. TahsiniL. (X = N, O) cross-coupling reactions catalyzed by copper-pincer bis(N-heterocyclic carbene) complexes.Front Chem.201971210.3389/fchem.2019.00012 30766865
    [Google Scholar]
  81. ZhangM. ZhangY. ZhangH. ZengY. LiuG. N-heterocyclic carbene copper(I) complex catalyzed coupling of (hetero)aryl chlorides and nitrogen heterocycles: Highly efficient catalytic system.Chin. J. Chem.202038111252125610.1002/cjoc.201900461
    [Google Scholar]
  82. XieQ. ZhangX. LiuH. ZhangF. LuoX. LuoH. Copper-catalyzed N-arylation of indoles and anilines with aryltrialkoxysilanes.Asian J. Org. Chem.2022113e20210079210.1002/ajoc.202100792
    [Google Scholar]
  83. WuF. YanF. WuL. ZhangC. ZengR. SunY. LiuX. CuiC. WangP. Reduction system “vitamin C/glycerol” promoted copper(II)‐catalyzed N ‐arylation.Appl. Organomet. Chem.2022365e661810.1002/aoc.6618
    [Google Scholar]
  84. NémethJ. DebreczeniN. GresitsI. BálintM. HellZ. An efficient heterogeneous catalytic method for the N-arylation of pyrrole and other N-heterocycles.Catal. Lett.201514551113111910.1007/s10562‑015‑1523‑6
    [Google Scholar]
  85. DasS.K. DekaP. ChetiaM. DekaR.C. BharaliP. BoraU. Spherical CuO nanoparticles as catalyst for Chan–Lam cross-coupling reaction under base free condition.Catal. Lett.2018148254755410.1007/s10562‑017‑2278‑z
    [Google Scholar]
  86. LüX. RuanJ. ChenX. QianC. Cross-linked chitosan bead supported copper complex in water as a green and efficient catalytic protocol for Ullmann reaction.Youji Huaxue20193961720172610.6023/cjoc201901018
    [Google Scholar]
  87. SaikiaR. BoruahP.K. AhmedS.M. DasM.R. ThakurA.J. BoraU. An avenue to Chan-Lam N-arylation by Cu(0) nanoparticles immobilized graphitic carbon-nitride oxide surface.Appl. Catal. A Gen.202264311876710.1016/j.apcata.2022.118767
    [Google Scholar]
  88. KavianiN. BehrouzS. JafariA.A. Soltani RadM.N. Functionalization of Fe3O4@SiO2 nanoparticles with Cu(I)-thiosemicarbazone complex as a robust and efficient heterogeneous nanocatalyst for N-arylation of N-heterocycles with aryl halides.RSC Advances20231343302933030510.1039/D3RA06327E 37849694
    [Google Scholar]
  89. MoB. LiZ. PengJ. ChenC. Novel lignin-supported copper complex as a highly efficient and recyclable nanocatalyst for Ullmann reaction.Int. J. Biol. Macromol.202323912426310.1016/j.ijbiomac.2023.124263 37004929
    [Google Scholar]
  90. CreutzS.E. LotitoK.J. FuG.C. PetersJ.C. Photoinduced Ullmann C-N coupling: demonstrating the viability of a radical pathway.Science2012338610764765110.1126/science.1226458 23118186
    [Google Scholar]
  91. ZieglerD.T. ChoiJ. Muñoz-MolinaJ.M. BissemberA.C. PetersJ.C. FuG.C. A versatile approach to Ullmann C-N couplings at room temperature: new families of nucleophiles and electrophiles for photoinduced, copper-catalyzed processes.J. Am. Chem. Soc.201313535131071311210.1021/ja4060806 23968565
    [Google Scholar]
  92. YooW.J. TsukamotoT. KobayashiS. Visible light-mediated Ullmann-type C–N coupling reactions of carbazole derivatives and aryl iodides.Org. Lett.201517143640364210.1021/acs.orglett.5b01645 26151428
    [Google Scholar]
  93. BarangeS.H. BhagatP.R. A metal/solvent/additive free compliant route to Ullmann-type C−N coupling using ionic liquid entangled porphyrin heterogeneous photocatalyst.ChemistrySelect2022735e20220117710.1002/slct.202201177
    [Google Scholar]
  94. MataghareB.C. BhagatP.R. Construction of porphyrin-based photocatalyst comprising pyridinium ionic liquid moiety for the metal-free visible light-assisted N-arylation of amines: facile approach to afford drug intermediates.New J. Chem.20234747217642178010.1039/D3NJ04295B
    [Google Scholar]
/content/journals/coc/10.2174/0113852728320325240710053300
Loading
/content/journals/coc/10.2174/0113852728320325240710053300
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test