Skip to content
2000
Volume 28, Issue 13
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

The reactivity of aldehydes and ketones carries great potential for multicomponent heterocyclizations. These reactions are convergent and highly versatile in the development of synthetic methodologies for compound families, displaying variations in substituents in their structures. Therefore, they have been regarded as an important tool in the field of Green Chemistry. Furthermore, they prove to be very useful in studies of biological activity, where small structural modifications can result in significant differences. Many heterocyclizations date back to the mid-19th and early 20th centuries. In this review, we aim to demonstrate, through some of these reactions, their continuously growing potential and improvements concerning synthetic development. Additionally, we present the original studies as reported, enabling us to appreciate the evolution of chemical representations over the years until reaching the standardization we have today.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728295534240223044735
2024-07-01
2025-01-09
Loading full text...

Full text loading...

References

  1. DömlingA. WangW. WangK. Chemistry and biology of multicomponent reactions.Chem. Rev.201211263083313510.1021/cr100233r 22435608
    [Google Scholar]
  2. CiocR.C. RuijterE. OrruR.V.A. Multicomponent reactions: Advanced tools for sustainable organic synthesis.Green Chem.20141662958297510.1039/C4GC00013G
    [Google Scholar]
  3. AnastasP.T. WarnerJ.C. Green Chemistry: Theory and Practice.Great BritainOxford University Press200010.1093/oso/9780198506980.001.0001
    [Google Scholar]
  4. SilvaF.M. LacerdaP.S.B. Jones JuniorJ. Sustainable development and green chemistry.Quim. Nova200528110311010.1590/S0100‑40422005000100019
    [Google Scholar]
  5. KakabadseG. Solvent Problems in Industry.LondonElsevier1984
    [Google Scholar]
  6. CapelloC. FischerU. HungerbühlerK. What is a green solvent? A comprehensive framework for the environmental assessment of solvents.Green Chem.20079992793410.1039/b617536h
    [Google Scholar]
  7. AhluwaliaV.K. VarmaR.S. Green solvents for organic synthesis.OxfordAlpha Science International Ltd.2009
    [Google Scholar]
  8. SilvaF.M. JonesJ.Jr Organic reactions in aqueous media.Quim. Nova200124564665710.1590/S0100‑40422001000500012
    [Google Scholar]
  9. PolshettiwarV. VarmaR.S. Aqueous Microwave Assisted Chemistry: Synthesis and Catalysis.Royal Society of Chemistry201010.1039/9781849730990
    [Google Scholar]
  10. ForeroJ.S.B. Hernández MuñozJ.A. Jones JrJ. da SilvaF.M. Propylene carbonate in organic synthesis: Exploring its potential as a green solvent.Curr. Org. Synth.201613683484610.2174/1570179413999160211094705
    [Google Scholar]
  11. AparicioS. AlcaldeR. Insights into the ethyl lactate + water mixed solvent.J. Phys. Chem. B200911343142571426910.1021/jp904668e 19803527
    [Google Scholar]
  12. ClarkJ. FarmerT. HuntA. SherwoodJ. Opportunities for bio-based solvents created as petrochemical and fuel products transition towards renewable resources.Int. J. Mol. Sci.2015168171011715910.3390/ijms160817101 26225963
    [Google Scholar]
  13. VafaeezadehM. HashemiM.M. Polyethylene glycol (PEG) as a green solvent for carbon–carbon bond formation reactions.J. Mol. Liq.2015207737910.1016/j.molliq.2015.03.003
    [Google Scholar]
  14. HoffmannM.M. Polyethylene glycol as a green chemical solvent.Curr. Opin. Colloid Interface Sci.20225710153710.1016/j.cocis.2021.101537
    [Google Scholar]
  15. QureshiZ.S. DeshmukhK.M. BhanageB.M. Applications of ionic liquids in organic synthesis and catalysis.Clean Technol. Environ. Policy20141681487151310.1007/s10098‑013‑0660‑0
    [Google Scholar]
  16. TanakaK. Solvent-Free Organic Synthesis.2nd edWeinheimWiley-VCH2009
    [Google Scholar]
  17. ZangadeS. PatilP. A review on solvent-free methods in organic synthesis.Curr. Org. Chem.202023212295231810.2174/1385272823666191016165532
    [Google Scholar]
  18. MartinaK. CravottoG. VarmaR.S. Impact of microwaves on organic synthesis and strategies toward flow processes and scaling up.J. Org. Chem.20218620138571387210.1021/acs.joc.1c00865 34125541
    [Google Scholar]
  19. SharmaN. SharmaU.K. Van der EyckenE.V. Microwave-assisted organic synthesis: Overview of recent applications. Green Techniques for Organic Synthesis and Medicinal Chemistry ZhangW. CueB.W. , Eds.; John Wiley Sons, Ltd201844146810.1002/9781119288152.ch17
    [Google Scholar]
  20. de la HozA. Díaz-OrtizÁ. MorenoA. Microwaves in organic synthesis. Thermal and non-thermal microwave effects.Chem. Soc. Rev.200534216417810.1039/B411438H 15672180
    [Google Scholar]
  21. MasonT.J. Ultrasound in synthetic organic chemistry.Chem. Soc. Rev.199726644345110.1039/cs9972600443
    [Google Scholar]
  22. BoddulaI.R. AsiriA.B. Green Sustainable Process for Chemical and Environmental Engineering and Science: Sustainable Organic Synthesis.1st edElsevier Inc202010.1016/C2018‑0‑05312‑8
    [Google Scholar]
  23. WangG.W. Mechanochemical organic synthesis.Chem. Soc. Rev.201342187668770010.1039/c3cs35526h 23660585
    [Google Scholar]
  24. da Silva SantosJ. JuniorJ.J. da SilvaF.M. Solvent-free MALI-MGRE procedure for synthesizing 1,4-thiazolidin-4- one MALI (Mercaptoacetic Acid Looking Imine) mgre (mechanical grinding reaction equipment).Curr. Org. Synth.202320225826610.2174/1570179419666220414112340 35430995
    [Google Scholar]
  25. PaulingL. The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms.J. Am. Chem. Soc.19325493570358210.1021/ja01348a011
    [Google Scholar]
  26. KekuléA. Ueber die Constitution und die Metamorphosen der chemischen Verbindungen und über die chemische Natur des Kohlenstoffs.Justus Liebigs Ann. Chem.1858106212915910.1002/jlac.18581060202
    [Google Scholar]
  27. Archibald Scott Couper (1831-1892) - Couper, A. S. Sur une nouvelle théorie chimique.CR (East Lansing Mich.)18584611571160https://gallica.bnf.fr/ark:/12148/bpt6k3003h/f1157.item.zoom#
    [Google Scholar]
  28. CouperA.S. XII. On a new chemical theory.Lond. Edinb. Dublin Philos. Mag. J. Sci.18581610510411610.1080/14786445808642541
    [Google Scholar]
  29. Alexander Mikhailovich Butlerov (1828*-1896†) - Butlerov, A.M. Einiges uber die chemische Structur der Korper.Z. Chem.18614549560https://babel.hathitrust.org/cgi/pt?id=umn.31951000637410z&seq=583
    [Google Scholar]
  30. RockeA.J. Kekulé, Butlerov, and the historiography of the theory of chemical structure.Br. J. Hist. Sci.1981141275710.1017/S0007087400018276
    [Google Scholar]
  31. DebusH. Ueber die Einwirkung des Ammoniaks auf Glyoxal.Justus Liebigs Ann. Chem.1858107219920810.1002/jlac.18581070209
    [Google Scholar]
  32. JappF.R. WilcockE. LVIII. On the action of benzaldehyde on phenanthraquinone, both alone and in presence of ammonia.J. Chem. Soc. Trans.188037066167210.1039/CT8803700661
    [Google Scholar]
  33. JappF.R. WilcockE. XXXIV. On the action of aldehydes on phenanthraquinone in presence of ammonia. (Second notice.).J. Chem. Soc. Trans.188139022522810.1039/CT8813900225
    [Google Scholar]
  34. JappF.R. StreatfeildF.W. XXIII. On the action of aldehydes on phenanthraquinone in presence of ammonia. (Third notice.).J. Chem. Soc. Trans.188241014615610.1039/CT8824100146
    [Google Scholar]
  35. RadziszewskiB. Ueber die Constitution des Lophins und verwandter Verbindungen.Ber. Dtsch. Chem. Ges.18821521493149610.1002/cber.18820150207
    [Google Scholar]
  36. RadzisewskiB. Ueber Glyoxalin und seine Homologe.Ber. Dtsch. Chem. Ges.18821522706270810.1002/cber.188201502245
    [Google Scholar]
  37. MöhlauR. Ueber die Einwirkung primärer aromatischer Aminbasen auf Acetophenonbromid.Ber. Dtsch. Chem. Ges.188114117117510.1002/cber.18810140146
    [Google Scholar]
  38. MöhlauR. Ueber diphenyldiisoindol.Ber. Dtsch. Chem. Ges.18821522480249010.1002/cber.188201502204
    [Google Scholar]
  39. BischlerA. Ueber die Entstehung einiger substituirter Indole.Ber. Dtsch. Chem. Ges.18922522860287910.1002/cber.189202502123
    [Google Scholar]
  40. HantzschA. Condensationsprodukte aus Aldehydammoniak und ketonartigen Verbindungen.Ber. Dtsch. Chem. Ges.18811421637163810.1002/cber.18810140214
    [Google Scholar]
  41. HantzschA. On the synthesis of pyridine-like compounds from acetoacetic ether and aldehyde ammonia.Justus Liebigs Ann. Chem.1882215118210.1002/jlac.18822150102
    [Google Scholar]
  42. HantzschA. Experiments to determine the constitution of synthetic hydropyridine derivatives.Ber. Dtsch. Chem. Ges.18851822579258610.1002/cber.188501802158
    [Google Scholar]
  43. BiginelliP. About aldehyde duramides of acetoacetic ether.Ber. Dtsch. Chem. Ges.18912411317131910.1002/cber.189102401228
    [Google Scholar]
  44. BiginelliP. About aldehyde duramides of acetoacetic ether. II.Ber. Dtsch. Chem. Ges.18912422962296710.1002/cber.189102402126
    [Google Scholar]
  45. BiginelliP. Aldehyde derivatives of acetyl- and oxal-acetic ethers.Gazz. Chim. Ital.1893234360416http://digitale.bnc.roma.sbn.it/tecadigitale/giornale/LO10010914/1893/V.23. 1?paginateDetail_pageNum=19
    [Google Scholar]
  46. RobinsonR. CCXXXII. A new synthesis of oxazole derivatives.J. Chem. Soc. Trans.19099502167217410.1039/CT9099502167
    [Google Scholar]
  47. GabrielS. A synthesis of oxazoles and thiazoles. I.Ber. Dtsch. Chem. Ges.191043113413810.1002/cber.19100430117
    [Google Scholar]
  48. GabrielS. Synthese von oxazolen und thiazolen II.Ber. Dtsch. Chem. Ges.19104321283128710.1002/cber.19100430219
    [Google Scholar]
  49. GewaldK. On the reaction of α-oxo-mercaptans with nitriles.Angew. Chem.196173311410.1002/ange.19610730307
    [Google Scholar]
  50. GewaldK. Heterocycles from CH-acidic nitriles, VII. 2-amino-thiophenes from α-oxo-mercaptans and methylene-active nitriles.Chem. Ber.196598113571357710.1002/cber.19650981120
    [Google Scholar]
  51. GewaldK. SchinkeE. BöttcherH. Heterocyclen aus CH-aciden Nitrilen, VIII. 2‐Amino‐thiophene aus methylenaktiven Nitrilen, Carbonylverbindungen und Schwefel.Chem. Ber.19669919410010.1002/cber.19660990116
    [Google Scholar]
  52. PovarovL.S. MikhailovB.M. A new type of diene condensation reaction.Bull. Acad. Sci. USSR, Div. Chem. Sci.196312587110.1007/BF01134751
    [Google Scholar]
  53. PovarovL.S. GrigosV.I. MikhailovB.M. Reaction of benzylideneaniline with some unsaturated compounds.Bull. Acad. Sci. USSR, Div. Chem. Sci.196312111878188010.1007/BF00843814
    [Google Scholar]
  54. PovarovL.S. αβ-Unsaturated ethers and their analogues in reactions of diene synthesis.Russ. Chem. Rev.196736965667010.1070/RC1967v036n09ABEH001680
    [Google Scholar]
  55. KumarT. VermaD. Menna-BarretoR.F.S. ValençaW.O. da Silva JúniorE.N. NamboothiriI.N.N. Synthesis of imidazoles via cascade reaction of nitroallylic acetates with amidines and studies on their trypanocidal activity.Org. Biomol. Chem.20151371996200010.1039/C4OB02561J 25573664
    [Google Scholar]
  56. GopiE. KumarT. Menna-BarretoR.F.S. ValençaW.O. da Silva JúniorE.N. NamboothiriI.N.N. Imidazoles from nitroallylic acetates and α-bromonitroalkenes with amidines: Synthesis and trypanocidal activity studies.Org. Biomol. Chem.201513389862987110.1039/C5OB01444A 26288376
    [Google Scholar]
  57. LeeH.B. BalasubramanianS. Solid-phase synthesis of N-alkyl-N-(β-keto)amides and 1,2,4,5-tetrasubstituted imidazoles using a traceless cleavage strategy.Org. Lett.20002332332610.1021/ol991271l 10814313
    [Google Scholar]
  58. ClaiborneC.F. LivertonN.J. NguyenK.T. An efficient synthesis of tetrasubstituted imidazoles from N-(2-Oxo)-amides.Tetrahedron Lett.199839498939894210.1016/S0040‑4039(98)02058‑9
    [Google Scholar]
  59. BleicherK.H. GerberF. WüthrichY. AlanineA. CaprettaA. Parallel synthesis of substituted imidazoles from 1,2-aminoalcohols.Tetrahedron Lett.200243437687769010.1016/S0040‑4039(02)01839‑7
    [Google Scholar]
  60. LiW. LamY. A facile solid-phase synthesis of 1,2,4,5-tetrasubstituted imidazoles using sodium benzenesulfinate as a traceless linker.J. Comb. Chem.20057564464710.1021/cc049818x 16153057
    [Google Scholar]
  61. ShilcratS.C. MokhallalatiM.K. FortunakJ.M.D. PridgenL.N. A new regioselective synthesis of 1,2,5-trisubstituted 1H-imidazoles and its application to the development of eprosartan.J. Org. Chem.199762248449845410.1021/jo971304f 11671984
    [Google Scholar]
  62. GrimmetM.R. 4.08-imidazoles and their benzo derivatives: (iii) Synthesis and applications. In: Comprehensive Heterocyclic Chemistry. KatritzkyA.R. New YorkPergamon Press1984Vol. 545749810.1016/B978‑008096519‑2.00076‑X
    [Google Scholar]
  63. LittleT.L. WebberS.E. A simple and practical synthesis of 2-aminoimidazoles.J. Org. Chem.199459247299730510.1021/jo00103a021
    [Google Scholar]
  64. EicherT. HauptmannS. The Chemistry of Heterocycles. Structures, Reactions, Synthesis, and Applications.GermanyWiley-VCH200316517410.1002/352760183X
    [Google Scholar]
  65. KanazawaC. KamijoS. YamamotoY. Synthesis of imidazoles through the copper-catalyzed cross-cycloaddition between two different isocyanides.J. Am. Chem. Soc.200612833106621066310.1021/ja0617439 16910644
    [Google Scholar]
  66. RolfsA. LiebscherJ. Versatile novel syntheses of imidazoles.J. Org. Chem.199762113480348710.1021/jo970072h
    [Google Scholar]
  67. ZamanS. MitsuruK. AbellA.D. Synthesis of trisubstituted imidazoles by palladium-catalyzed cyclization of O-pentafluorobenzoylamidoximes: Application to amino acid mimetics with a C-terminal imidazole.Org. Lett.20057460961110.1021/ol047628p 15704906
    [Google Scholar]
  68. KatritzkyA.R. PozharskiiA.F. Handbook of heterocyclic chemistry.OxfordElsevier Science Ltd.2000570572
    [Google Scholar]
  69. LantosI. ZhangW.Y. ShuiX. EgglestonD.S. Synthesis of imidazoles via hetero-Cope rearrangements.J. Org. Chem.199358257092709510.1021/jo00077a033
    [Google Scholar]
  70. TangD. WuP. LiuX. ChenY.X. GuoS.B. ChenW.L. LiJ.G. ChenB.H. Synthesis of multisubstituted imidazoles via copper-catalyzed [3 + 2] cycloadditions.J. Org. Chem.20137862746275010.1021/jo302555z 23409756
    [Google Scholar]
  71. HofmannK. Imidazole and its Derivatives part I.New YorkInterscience Publishers, INC1953447
    [Google Scholar]
  72. PlaterM.J. The crucial early contributions of R. Japp to a general synthesis of imidazole derivatives.Bull. Hist. Chem.20083327681http://acshist.scs.illinois.edu/bulletin_open_access/v33-2/v33-2%20p76- 81.pdf
    [Google Scholar]
  73. BambergerE. BerléB. The α-positioned methyl group of the benzimidazoles and the behavior of the latter during oxidation.Justus Liebigs Ann. Chem.18932732-330334210.1002/jlac.18932730215
    [Google Scholar]
  74. ParveenA. AhmedM.R.S. ShaikhK.A. DeshmukhS.P. PawarR.P. Efficient synthesis of 2,4,5-triaryl substituted imidazoles under solvent free conditions at room temperature.ARKIVOC2007200716121810.3998/ark.5550190.0008.g02
    [Google Scholar]
  75. Mohammadi ZiaraniG. BadieiA. LashgariN. FarahaniZ. Efficient one-pot synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles using SBA-Pr-SO3H as a green nano catalyst.J. Saudi Chem. Soc.201620441942710.1016/j.jscs.2013.01.005
    [Google Scholar]
  76. BanothuJ. GaliR. VelpulaR. BavantulaR. Brønsted acidic ionic liquid catalyzed an efficient and eco-friendly protocol for the synthesis of 2,4,5-trisubstituted-1H-imidazoles under solvent-free conditions.Arab. J. Chem.2017102S2754S276110.1016/j.arabjc.2013.10.022
    [Google Scholar]
  77. ChettriS. TamangS. PradhanK. SinhaB. BrahmanD. Copper borate (CuB4O7)-promoted multi-component green synthesis of 2,4,5-triarylimidazole derivatives and evidence of in situ conversion of copper borate (CuB4O7) into Cu(OAc) 2 in the presence of NH4OAc.RSC Advances20231329198461985510.1039/D3RA03183G 37409029
    [Google Scholar]
  78. BahramiK. KhodaeiM.M. NejatiA. One-pot synthesis of 1,2,4,5-tetrasubstituted and 2,4,5-trisubstituted imidazoles by zinc oxide as efficient and reusable catalyst.Monatsh. Chem.2011142215916210.1007/s00706‑010‑0428‑8
    [Google Scholar]
  79. Das SharmaS. HazarikaP. KonwarD. An efficient and one-pot synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles catalyzed by InCl3·3H2O.Tetrahedron Lett.200849142216222010.1016/j.tetlet.2008.02.053
    [Google Scholar]
  80. HeraviM.M. BakhtiariK. OskooieH.A. TaheriS. Synthesis of 2,4,5-triaryl-imidazoles catalyzed by NiCl2·6H2O under heterogeneous system.J. Mol. Catal. Chem.20072631-227928110.1016/j.molcata.2006.08.070
    [Google Scholar]
  81. VarziZ. EsmaeiliM.S. Taheri-LedariR. MalekiA. Facile synthesis of imidazoles by an efficient and eco-friendly heterogeneous catalytic system constructed of Fe3O4 and Cu2O nanoparticles, and guarana as a natural basis.Inorg. Chem. Commun.202112510846510.1016/j.inoche.2021.108465
    [Google Scholar]
  82. OskooieH.A. AlimohammadiZ. HeraviM.M. Microwave-assisted solid-phase synthesis of 2,4,5-triaryl imidazoles in solventless system: An improved protocol.Heteroatom Chem.200617769970210.1002/hc.20237
    [Google Scholar]
  83. SonyanaikB. AshokK. RambabuS. RaviD. KurumannaA. MadhuP. SakramB. Facile one pot multi-component solvent-free synthesis of 2,4,5-trisubstituted imidazoles using “green” and expeditious ionic liquid catalyst under microwave irradiation.Russ. J. Gen. Chem.201888353754010.1134/S1070363218030234
    [Google Scholar]
  84. Hernández MuñozJ.A. Dos SantosB.D.C.F. SoaresR.F. De CarvalhoE.M. JonesJ.J. Da SilvaF.M. The synthesis of imidazoles via the Radziszewski reaction in aqueous media. Heterocyclic.Lett201114365371
    [Google Scholar]
  85. MunozJ. JuniorJ. SilvaF. Radziszewski reaction: An elegant, easy, simple and efficient method to synthesise imidazoles.Curr. Org. Synth.201411682483410.2174/1570179411666140623223611
    [Google Scholar]
  86. Hernández MuñozJ.A. de CavalhoE.M. JonesJ.J. da SilvaF.M. Propylene carbonate as a solvent in the eco-friendly synthesis of highly substituted imidazoles through the radziszewski reaction.Curr. Org. Synth.201613343243910.2174/1570179413999151110121949
    [Google Scholar]
  87. SundbergR.J. Indoles.New YorkAcademic Press1996
    [Google Scholar]
  88. SundbergR.J. Synthesis of the indole ring. In.In: The Chemistry of Indoles; SundbergAcademic PressNew York1970;1814221310.1016/B978‑0‑12‑676950‑0.50008‑0
    [Google Scholar]
  89. BrownE.G. Indoles. Ring Nitrogen and Key Biomolecules.DordrechtSpringer199819220710.1007/978‑94‑011‑4906‑8_9
    [Google Scholar]
  90. TaberD.F. TirunahariP.K. Indole synthesis: A review and proposed classification.Tetrahedron201167387195721010.1016/j.tet.2011.06.040 25484459
    [Google Scholar]
  91. RobinsonB. The Fischer indole synthesis.Chem. Rev.196363437340110.1021/cr60224a003
    [Google Scholar]
  92. HeraviM.M. RohaniS. ZadsirjanV. ZahediN. Fischer indole synthesis applied to the total synthesis of natural products.RSC Advances2017783528525288710.1039/C7RA10716A
    [Google Scholar]
  93. BartoliG. PalmieriG. BoscoM. DalpozzoR. The reaction of vinyl grignard reagents with 2-substituted nitroarenes: A new approach to the synthesis of 7-substituted indoles.Tetrahedron Lett.198930162129213210.1016/S0040‑4039(01)93730‑X
    [Google Scholar]
  94. BartoliG. DalpozzoR. NardiM. Applications of Bartoli indole synthesis.Chem. Soc. Rev.201443134728475010.1039/C4CS00045E 24718836
    [Google Scholar]
  95. ReissertA. Effects of oxalester and sodium ethylate on nitrotoluenes. Synthesis of nitrated phenylpyruvic acids.Ber. Dtsch. Chem. Ges.18973011030105310.1002/cber.189703001200
    [Google Scholar]
  96. MadelungW. On a new way of representing substituted indoles. I.Ber. Dtsch. Chem. Ges.19124511128113410.1002/cber.191204501160
    [Google Scholar]
  97. BaudinJ.B. JuliaS.A. Synthesis of indoles from N-aryl-1-alkenylsulphinamides.Tetrahedron Lett.198627783784010.1016/S0040‑4039(00)84114‑3
    [Google Scholar]
  98. PchalekK. JonesA.W. WekkingM.M.T. BlackD.S. Synthesis of activated 3-substituted indoles: An optimised one-pot procedure.Tetrahedron2005611778210.1016/j.tet.2004.10.060
    [Google Scholar]
  99. MenéndezJ.C. SridharanV. PerumalS. AvendañoC. Microwaveassisted, solvent-free bischler indole synthesis.Synlett2006200610091009510.1055/s‑2005‑922760
    [Google Scholar]
  100. Buu-HoïN.P. Saint-RufG. DeschampsD. HieuH-T. HieuH.T. Carcinogenic nitrogen compounds. Part LXXII. The Möhlau–Bischler reaction as a preparative route to 2-arylindoles.J. Chem. Soc. C1971002606260910.1039/J39710002606 5167555
    [Google Scholar]
  101. BlackD.S.C. KumarN. WongL.C.H. Synthesis of 4,6-Dimethoxyindoles.Aust. J. Chem.1986391152010.1071/CH9860015
    [Google Scholar]
  102. BlackD.S. BowyerM.C. BowyerP.K. IvoryA.J. KimM. KumarN. McconnellD.B. PopiolekM. Synthesis of activated 3-arylindoles.Aust. J. Chem.19944791741175010.1071/CH9941741
    [Google Scholar]
  103. VaraY. AldabaE. ArrietaA. PizarroJ.L. ArriortuaM.I. CossíoF.P. Regiochemistry of the microwave-assisted reaction between aromatic amines and α-bromoketones to yield substituted 1H-indoles.Org. Biomol. Chem.20086101763177210.1039/b719641e 18452011
    [Google Scholar]
  104. YaoG. ZhangZ.X. ZhangC.B. XuH.H. TangR.Y. HFIP-promoted bischler indole synthesis under microwave irradiation.Molecules201823123317332710.3390/molecules23123317 30558133
    [Google Scholar]
  105. ThennakoonN. KaurG. WangJ. PliegerP.G. RowlandsG.J. An asymmetric variant of the bischler–möhlau indole synthesis.Aust. J. Chem.201568456657510.1071/CH14548
    [Google Scholar]
  106. EisnerU. KuthanJ. Chemistry of dihydropyridines.Chem. Rev.197272114210.1021/cr60275a001
    [Google Scholar]
  107. SwarnalathaG. PrasanthiG. SirishaN. ChettyC.M. 1,4-Dihydropyridines: A multtifunctional molecule: A review.Int. J. Chemtech Res.2011317589https://sphinxsai.com/Vol.3No.1/chem_jan-mar11/pdf/CT=13(75-89)%20JMCT11.pdf
    [Google Scholar]
  108. SainiA. KumarS. SandhuJ.S. Hantzsch reaction: Recent advances in Hantzsch 1,4-dihydropyridines.J. Sci. Ind. Res.20086795111https://nopr.niscpr.res.in/bitstream/123456789/753/1/JSIR%2067%282%29%20%282008%29%2095-111.pdf
    [Google Scholar]
  109. PleissU. 1,4-Dihydropyridines (DHPs): A class of very potent drugs: syntheses of isotopically labeled DHP derivatives during the last four decades.J. Labelled Comp. Radiopharm.2007509-1081883010.1002/jlcr.1418
    [Google Scholar]
  110. EvansC.G. JinwalU.K. MakleyL.N. DickeyC.A. GestwickiJ.E. Identification of dihydropyridines that reduce cellular tau levels.Chem. Commun. 201147152953110.1039/C0CC02253E 21082080
    [Google Scholar]
  111. YadavJ.S. Subba ReddyB.V. ReddyP.T. Unprecedented synthesis of Hantzsch 1,4-dihydropyridines under Biginelli reaction conditions.Synth. Commun.200131342543010.1081/SCC‑100000534
    [Google Scholar]
  112. PajusteK. PlotnieceA. KoreK. IntenbergaL. CekavicusB. KaldreD. DubursG. SobolevA. Use of pyridinium ionic liquids as catalysts for the synthesis of 3,5-bis(dodecyloxycarbonyl)-1,4-dihydropyridine derivative.Open Chem.20119114314810.2478/s11532‑010‑0132‑x
    [Google Scholar]
  113. Palakshi ReddyB. RajeshK. VijayakumarV. Ionic liquid[tbmim]Cl2/AlCl3 under ultrasonic irradiation towards synthesis of 1,4-DHP’s.Arab. J. Chem.20158113814110.1016/j.arabjc.2011.01.027
    [Google Scholar]
  114. DattaB. PashaM.A. Silica sulfuric acid: An efficient heterogeneous catalyst for the one-pot synthesis of 1,4-dihydropyridines under mild and solvent-free conditions.Chin. J. Catal.2011326-81180118410.1016/S1872‑2067(10)60252‑5
    [Google Scholar]
  115. MurthyY.L.N. RajackA. Taraka RamjiM. Jeson babu, J.; Praveen, C.; Aruna Lakshmi, K. Design, solvent free synthesis, and antimicrobial evaluation of 1,4 dihydropyridines.Bioorg. Med. Chem. Lett.201222186016602310.1016/j.bmcl.2012.05.003 22901391
    [Google Scholar]
  116. KoS. SastryM.N.V. LinC. YaoC.F. Molecular iodine-catalyzed one-pot synthesis of 4-substituted-1,4-dihydropyridine derivatives via Hantzsch reaction.Tetrahedron Lett.200546345771577410.1016/j.tetlet.2005.05.148
    [Google Scholar]
  117. ReddyC.S. RaghuM. Facile ZrCl4 promoted fourcomponent coupling one-pot synthesis of polyhydroquinoline derivatives through unsymmetric Hantzsch reaction. Indian J. Chem. B200815781582
    [Google Scholar]
  118. DebacheA. GhalemW. BoulcinaR. BelfaitahA. RhouatiS. CarboniB. An efficient one-step synthesis of 1,4-dihydropyridines via a triphenylphosphine-catalyzed three-component Hantzsch reaction under mild conditions.Tetrahedron Lett.200950375248525010.1016/j.tetlet.2009.07.018
    [Google Scholar]
  119. ZolfigolM.A. SafaieeM. Synthesis of 1,4-dihydropyridines under solventfree conditions.Synlett2004200450827082810.1055/s‑2004‑820010
    [Google Scholar]
  120. LiangJ.C. YehJ.L. WangC.S. LiouS.F. TsaiC.H. ChenI.J. The new generation dihydropyridine type calcium blockers, bearing 4-phenyl oxypropanolamine, display α-/β-Adrenoceptor antagonist and long-Acting antihypertensive activities.Bioorg. Med. Chem.200210371973010.1016/S0968‑0896(01)00318‑2 11814861
    [Google Scholar]
  121. CorreaW.H. ScottJ.L. Solvent-free, two-step synthesis of some unsymmetrical 4-aryl-1,4-dihydropyridines.Green Chem.20013629630110.1039/b106397a
    [Google Scholar]
  122. SapkalS.B. ShelkeK.F. ShingateB.B. ShingareM.S. Nickel nanoparticle-catalyzed facile and efficient one-pot synthesis of polyhydroquinoline derivatives via Hantzsch condensation under solvent-free conditions.Tetrahedron Lett.200950151754175610.1016/j.tetlet.2009.01.140
    [Google Scholar]
  123. BridgwoodK.L. VeitchG.E. LeyS.V. Magnesium nitride as a convenient source of ammonia: Preparation of dihydropyridines.Org. Lett.200810163627362910.1021/ol801399w 18642824
    [Google Scholar]
  124. KumarA. MauryaR. Efficient synthesis of hantzsch esters and polyhydroquinoline derivatives in aqueous micelles.Synlett20082008688388510.1055/s‑2008‑1042908
    [Google Scholar]
  125. SafariJ. BanitabaS.H. KhaliliS.D. Cellulose sulfuric acid catalyzed multicomponent reaction for efficient synthesis of 1,4-dihydropyridines via unsymmetrical Hantzsch reaction in aqueous media.J. Mol. Catal. Chem.20113351-2465010.1016/j.molcata.2010.11.012
    [Google Scholar]
  126. MansoorS.S. AswinK. LogaiyaK. SudhanP.N. MalikS. Silica-supported perchloric acid (HClO4-SiO2): A mild, reusable and highly efficient heterogeneous catalyst for multicomponent synthesis of 1,4-dihydropyridines via unsymmetrical Hantzsch reaction.Res. Chem. Intermed.201440135736910.1007/s11164‑012‑0968‑0
    [Google Scholar]
  127. da SilvaF.M. GonçalvesM. FerreF.T. SenaJ.D. CoelhoR.B. Jones JuniorJ. 4-phenyl-1,4-dihydropyridines by Hantzsch reaction in water.Heterocycl. Commun.2009151576010.1515/HC.2009.15.1.57
    [Google Scholar]
  128. ChenL. ZhangZ. ZuL. Organocatalytic hantzsch type reaction using aryl hydrazines, propiolic acid esters and enals: Enantioselective synthesis of paroxetine.Adv. Synth. Catal.2020362235385539010.1002/adsc.202000779
    [Google Scholar]
  129. SobolevA. FranssenM.C.R. ViganteB. CekavicusB. ZhalubovskisR. KooijmanH. SpekA.L. DubursG. de GrootA. Effect of acyl chain length and branching on the enantioselectivity of Candida rugosa lipase in the kinetic resolution of 4-(2-difluoromethoxyphenyl)-substituted 1,4-dihydropyridine 3,5-diesters.J. Org. Chem.200267240141010.1021/jo0104025 11798310
    [Google Scholar]
  130. MartínN. QuinteiroM. SeoaneC. SotoJ.L. MoraA. SuárezM. OchoaE. MoralesA. BosqueJ.R.D. Synthesis and conformational study of acridine derivatives related to 1,4-dihydropyridines.J. Heterocycl. Chem.199532123523810.1002/jhet.5570320139
    [Google Scholar]
  131. LoupyA. SuárezM. EsperanzaS. MoránL. RolandoE. Synthesis of decahydroacridines under microwaves using ammonium acetate supported on alumina.Heterocycles1999511212710.3987/COM‑98‑8272
    [Google Scholar]
  132. SinghS.K. SinghK.N. Eco-friendly and facile one-pot multicomponent synthesis of acridinediones in water under microwave.J. Heterocycl. Chem.2011481697310.1002/jhet.508
    [Google Scholar]
  133. KidwaiM. BhatnagarD. Polyethylene glycol-mediated synthesis of decahydroacridine-1,8-diones catalyzed by ceric ammonium nitrate.Chem. Pap.201064682582810.2478/s11696‑010‑0070‑2
    [Google Scholar]
  134. MagyarÁ. HellZ. An efficient one-pot four-component synthesis of 9-aryl-hexahydroacridine-1,8-dione derivatives in the presence of a molecular sieves supported iron catalyst.Catal. Lett.201914992528253410.1007/s10562‑019‑02845‑0
    [Google Scholar]
  135. SchrammM. ThomasG. TowartR. FranckowiakG. Novel dihydropyridines with positive inotropic action through activation of Ca2+ channels.Nature1983303591753553710.1038/303535a0 6190088
    [Google Scholar]
  136. RameshK.B. PashaM.A. Study on one-pot four-component synthesis of 9-aryl-hexahydro-acridine-1,8-diones using SiO2–I as a new heterogeneous catalyst and their anticancer activity.Bioorg. Med. Chem. Lett.201424163907391310.1016/j.bmcl.2014.06.047 25042338
    [Google Scholar]
  137. AlvalaM. BhatnagarS. RaviA. JeankumarV.U. ManjashettyT.H. YogeeswariP. SriramD. Novel acridinedione derivatives: Design, synthesis, SIRT1 enzyme and tumor cell growth inhibition studies.Bioorg. Med. Chem. Lett.20122293256326010.1016/j.bmcl.2012.03.030 22464458
    [Google Scholar]
  138. PatelM.M. MaliM.D. PatelS.K. Bernthsen synthesis, antimicrobial activities and cytotoxicity of acridine derivatives.Bioorg. Med. Chem. Lett.201020216324632610.1016/j.bmcl.2010.06.001 20850303
    [Google Scholar]
  139. AlpontiL.H.R. PicininiM. Urquieta-GonzalezE.A. CorrêaA.G. USY-zeolite catalyzed synthesis of 1,4-dihydropyridines under microwave irradiation: structure and recycling of the catalyst.J. Mol. Struct.20211227512943010.1016/j.molstruc.2020.129430
    [Google Scholar]
  140. SchiffH. Ueber condensirte Harnstoffe.Justus Liebigs Ann. Chem.1869151218621310.1002/jlac.18691510208
    [Google Scholar]
  141. ClaisenL. MatthewsF.E. Condensations of acetoacetic ether with aldehydes.Justus Liebigs Ann. Chem.1883218217018510.1002/jlac.18832180205
    [Google Scholar]
  142. BehrendR. Experiments on the synthesis of bodies of the uric acid series.Justus Liebigs Ann. Chem.18852291-214410.1002/jlac.18852290102
    [Google Scholar]
  143. BehrendR. Ueber das Verhalten von substituirten Harnstoffen gegen Acetessigäther.Justus Liebigs Ann. Chem.1886233111510.1002/jlac.18862330102
    [Google Scholar]
  144. YadavL.D.S. RaiA. RaiV.K. AwasthiC. Chiral ionic liquid-catalyzed Biginelli reaction: Stereoselective synthesis of polyfunctionalized perhydropyrimidines.Tetrahedron20086471420142910.1016/j.tet.2007.11.044
    [Google Scholar]
  145. DadhaniaA.N. PatelV.K. RavalD.K. A facile approach for the synthesis of 3,4-dihydropyrimidin-2-(1H)-ones using a microwave promoted Biginelli protocol in ionic liquid.J. Chem. Sci.2012124492192610.1007/s12039‑012‑0278‑5
    [Google Scholar]
  146. Muñoz-MuñizO. JuaristiE. An enantioselective approach to the Biginelli dihydropyrimidinone condensation reaction using CeCl3 and InCl3 in the presence of chiral ligands.ARKIVOC2003200311162610.3998/ark.5550190.0004.b03
    [Google Scholar]
  147. StarcevichJ.T. LaughlinT.J. MohanR.S. Iron(III) tosylate catalyzed synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones via the Biginelli reaction.Tetrahedron Lett.201354898398510.1016/j.tetlet.2012.12.032
    [Google Scholar]
  148. LitvićM. VečenajI. LadišićZ.M. LovrićM. VinkovićV. Filipan-LitvićM. First application of hexaaquaaluminium(III) tetrafluoroborate as a mild, recyclable, non-hygroscopic acid catalyst in organic synthesis: A simple and efficient protocol for the multigram scale synthesis of 3,4-dihydropyrimidinones by Biginelli reaction.Tetrahedron201066193463347110.1016/j.tet.2010.03.024
    [Google Scholar]
  149. KumarP.M. KumarK.S. PoreddyS.R. MohakhudP.K. MukkantiK. PalM. Biginelli reaction beyond three-component limit: synthesis of functionalized pyrimidinones via a one-pot Biginelli-Pd mediated C–C coupling strategy.Tetrahedron Lett.201152111187119110.1016/j.tetlet.2011.01.015
    [Google Scholar]
  150. PatilR.V. ChavanJ.U. DalalD.S. ShindeV.S. BeldarA.G. Biginelli reaction: Polymer supported catalytic approaches.ACS Comb. Sci.201921310514810.1021/acscombsci.8b00120 30645098
    [Google Scholar]
  151. YarM. BajdaM. ShahzadiL. ShahzadS.A. AhmedM. AshrafM. AlamU. KhanI.U. KhanA.F. Novel synthesis of dihydropyrimidines for α-glucosidase inhibition to treat type 2 diabetes: In vitro biological evaluation and in silico docking.Bioorg. Chem.2014549610410.1016/j.bioorg.2014.05.003 24880489
    [Google Scholar]
  152. ChikhaleR.V. BholeR.P. KhedekarP.B. BhusariK.P. Synthesis and pharmacological investigation of 3-(substituted 1-phenylethanone)-4-(substituted phenyl)-1, 2, 3, 4-tetrahydropyrimidine-5-carboxylates.Eur. J. Med. Chem.20094493645365310.1016/j.ejmech.2009.02.021 19321237
    [Google Scholar]
  153. ChopdaL.V. DaveP.N. Recent advances in homogeneous and heterogeneous catalyst in Biginelli reaction from 2015-19: A concise review.ChemistrySelect20205195552557210.1002/slct.202000742
    [Google Scholar]
  154. CervasioR.J. Bello ForeroJ.S. Hernández MuñozJ.A. JrJ.J. da SilvaF.M. Biginelli reaction using propylene carbonate as green solvent: An elegant methodology for the synthesis of dihydropyrimidinones and dihydropyrimidinthiones.Curr. Org. Synth.201714571572010.2174/1570179414666161229162243
    [Google Scholar]
  155. WangG. YanC. LuY. Exploring DNA binding properties and biological activities of dihydropyrimidinones derivatives.Colloids Surf. B Biointerfaces2013106283610.1016/j.colsurfb.2013.01.019 23434688
    [Google Scholar]
  156. Oliver KappeC. FabianW.M.F. SemonesM.A. Conformational analysis of 4-aryl-dihydropyrimidine calcium channel modulators. A comparison of ab initio, semiempirical and X-ray crystallographic studies.Tetrahedron19975382803281610.1016/S0040‑4020(97)00022‑7
    [Google Scholar]
  157. Prashantha KumarB.R. MasihP. KarthikeyanE. BansalA. Suja; Vijayan, P. Synthesis of novel Hantzsch dihydropyridines and Biginelli dihydropyrimidines of biological interest: A 3D-QSAR study on their cytotoxicity.Med. Chem. Res.201019434436310.1007/s00044‑009‑9195‑7
    [Google Scholar]
  158. MayerT.U. KapoorT.M. HaggartyS.J. KingR.W. SchreiberS.L. MitchisonT.J. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen.Science1999286544197197410.1126/science.286.5441.971 10542155
    [Google Scholar]
  159. RamosL.M. GuidoB.C. NobregaC.C. CorrêaJ.R. SilvaR.G. de OliveiraH.C.B. GomesA.F. GozzoF.C. NetoB.A.D. The Biginelli reaction with an imidazolium-tagged recyclable iron catalyst: Kinetics, mechanism, and antitumoral activity.Chemistry201319134156416810.1002/chem.201204314 23460474
    [Google Scholar]
  160. SoniR. SinghG. KaurR. KaurG. GillR.K. BariwalJ. Review on monastrol: A novel kinesin-5 inhibitor.Chem. Biol. Interf.201443163175https://cbijournal.com/paper-archive/may-june-2014-vol-3/Review-Paper-2.pdf
    [Google Scholar]
  161. NagarajaiahH. MukhopadhyayA. MoorthyJ.N. Biginelli reaction: An overview.Tetrahedron Lett.201657475135514910.1016/j.tetlet.2016.09.047
    [Google Scholar]
  162. KappeC.O. UrayG. RoschgerP. LindnerW. KratkyC. KellerW. Synthesis and reactions of biginelli compounds −5. Facile preparation and resolution of a stable 5-dihydropyrimidinecarboxylic acid.Tetrahedron199248265473548010.1016/S0040‑4020(01)88301‑0
    [Google Scholar]
  163. LewandowskiK. MurerP. SvecF. FréchetJ.M.J. A combinatorial approach to recognition of chirality: preparation of highly enantioselective aryl-dihydropyrimidine selectors for chiral HPLC.J. Comb. Chem.19991110511210.1021/cc980014p 10746018
    [Google Scholar]
  164. KleiderniggO.P. KappeC.O. Separation of enantiomers of 4-aryldihydropyrimidines by direct enantioselective HPLC. A critical comparison of chiral stationary phases.Tetrahedron Asymmetry19978122057206710.1016/S0957‑4166(97)00214‑0
    [Google Scholar]
  165. LewandowskiK. MurerP. SvecF. FréchetJ.M.J. Highly selective chiral recognition on polymer supports: preparation of a combinatorial library of dihydropyrimidines and its screening for novel chiral HPLC ligands.Chem. Commun. 1998202237223810.1039/a806395h
    [Google Scholar]
  166. SinghK. AroraD. FalkowskiD. LiuQ. MorelandR.S. An efficacious protocol for C-4 substituted 3,4-dihydropyrimidinones. Synthesis and calcium channel binding studies.Eur. J. Org. Chem.20092009193258326410.1002/ejoc.200900208 24273442
    [Google Scholar]
  167. SinghK. SinghS. Chemical resolution of inherently racemic dihydropyrimidinones via a site selective functionalization of Biginelli compounds with chiral electrophiles: A case study.Tetrahedron200965214106411210.1016/j.tet.2009.03.060
    [Google Scholar]
  168. AlvimH.G.O. PinheiroD.L.J. Carvalho-SilvaV.H. FioramonteM. GozzoF.C. da SilvaW.A. AmaranteG.W. NetoB.A.D. Combined role of the asymmetric counteranion-directed catalysis (ACDC) and ionic liquid effect for the enantioselective biginelli multicomponent reaction.J. Org. Chem.20188319121431215310.1021/acs.joc.8b02101 30160956
    [Google Scholar]
  169. GuoY. ZouC. GaoZ. FanC. ChenJ. LiJ. HuangY. HuangG. YuH. Enantioselective biginelli reaction of aliphatic aldehydes catalyzed by a chiral phosphoric acid: A key step in the synthesis of the bicyclic guanidine core of crambescin a and batzelladine A.Synthesis201850122394240610.1055/s‑0036‑1591567
    [Google Scholar]
  170. GuoY. ZouC. GaoZ. MengX. HuangG. ZhongH. YuH. DingX. TangH. Highly enantioselective biginelli reaction of aliphatic aldehydes catalyzed by chiral phosphoric acids.Synlett201728152041204510.1055/s‑0036‑1588853
    [Google Scholar]
  171. HuX. ZhangR. XieJ. ZhouZ. ShanZ. Synthesis of a novel sterically hindered chiral cyclic phosphoric acid derived from l-tartaric acid and application to the asymmetric catalytic Biginelli reaction.Tetrahedron Asymmetry2017281697410.1016/j.tetasy.2016.11.014
    [Google Scholar]
  172. BhaduryP. SunZ. Axially chiral brønsted acid catalyzed transformations of electrophilic imines.Curr. Org. Chem.201418112715010.2174/138527281801140121154544
    [Google Scholar]
  173. AnD. FanY.S. GaoY. ZhuZ.Q. ZhengL.Y. ZhangS.Q. Highly enantioselective Biginelli reaction catalyzed by double axially chiral bisphosphorylimides.Eur. J. Org. Chem.20142014230130610.1002/ejoc.201301560
    [Google Scholar]
  174. XuF. HuangD. LinX. WangY. Highly enantioselective Biginelli reaction catalyzed by SPINOL-phosphoric acids.Org. Biomol. Chem.201210224467447010.1039/c2ob25663k 22565820
    [Google Scholar]
  175. GossJ.M. SchausS.E. Enantioselective synthesis of SNAP-7941: Chiral dihydropyrimidone inhibitor of MCH1-R.J. Org. Chem.200873197651765610.1021/jo801463j 18767801
    [Google Scholar]
  176. ChenX.H. XuX.Y. LiuH. CunL.F. GongL.Z. Highly enantioselective organocatalytic Biginelli reaction.J. Am. Chem. Soc.200612846148021480310.1021/ja065267y 17105279
    [Google Scholar]
  177. LiN. ChenX.H. SongJ. LuoS.W. FanW. GongL.Z. Highly enantioselective organocatalytic Biginelli and Biginelli-like condensations: reversal of the stereochemistry by tuning the 3,3′-disubstituents of phosphoric acids.J. Am. Chem. Soc.200913142153011531010.1021/ja905320q 19785440
    [Google Scholar]
  178. YuJ. ShiF. GongL.Z. Brønsted-acid-catalyzed asymmetric multicomponent reactions for the facile synthesis of highly enantioenriched structurally diverse nitrogenous heterocycles.Acc. Chem. Res.201144111156117110.1021/ar2000343 21800828
    [Google Scholar]
  179. WanJ.P. LinY. LiuY. Catalytic asymmetric Biginelli reaction for the enantioselective synthesis of 3,4-dihydropyrimidinones (DHPMs).Curr. Org. Chem.201418668769910.2174/138527281806140415235855
    [Google Scholar]
  180. HuangY. YangF. ZhuC. Highly enantioselective Biginelli reaction using a new chiral ytterbium catalyst: Asymmetric synthesis of dihydropyrimidines.J. Am. Chem. Soc.200512747163861638710.1021/ja056092f 16305212
    [Google Scholar]
  181. CaiY.F. YangH.M. LiL. JiangK.Z. LaiG.Q. JiangJ.X. XuL.W. Cooperative and enantioselective NbCl5/primary amine catalyzed Biginelli reaction.Eur. J. Org. Chem.20102010264986499010.1002/ejoc.201000894
    [Google Scholar]
  182. FedorovaO.V. TitovaY.A. OvchinnikovaI.G. RusinovG.L. CharushinV.N. 4-Hydroxyproline containing podands as new chiralcatalysts for the asymmetric Biginelli reaction.Mendeleev Commun.201828435735810.1016/j.mencom.2018.07.004
    [Google Scholar]
  183. YuH. DaiG. HeQ.R. TangJ.J. Enantioselective synthesis and evaluation of 4-styryldihydropyrimidin-2-thiones as anti-proliferative agents.Med. Chem. Res.201726478779510.1007/s00044‑017‑1790‑4
    [Google Scholar]
  184. YuH. XuP. HeH. ZhuJ. LinH. HanS. Highly enantioselective Biginelli reactions using methanopyroline/thiourea – based dual organocatalyst systems: Asymmetric synthesis of 4-substituted unsaturated aryl dihydropyrimidines.Tetrahedron Asymmetry201728225726510.1016/j.tetasy.2016.11.015
    [Google Scholar]
  185. HangZ. ZhuJ. LianX. XuP. YuH. HanS. A highly enantioselective Biginelli reaction using self-assembled methanoproline–thiourea organocatalysts: Asymmetric synthesis of 6-isopropyl-3,4-dihydropyrimidines.Chem. Commun. 2016521808310.1039/C5CC07880F 26498376
    [Google Scholar]
  186. BarrulasP. BenagliaM. BurkeA.J. Synthesis of novel cinchona-amino acid hybrid organocatalysts for asymmetric catalysis.Tetrahedron Asymmetry2014251292393510.1016/j.tetasy.2014.05.003
    [Google Scholar]
  187. XuD.Z. LiH. WangY. Highly enantioselective Biginelli reaction catalyzed by a simple chiral primary amine catalyst: Asymmetric synthesis of dihydropyrimidines.Tetrahedron201268387867787210.1016/j.tet.2012.07.027
    [Google Scholar]
  188. WangY. YuJ. MiaoZ. ChenR. Bifunctional primary amine-thiourea–TfOH (BPAT·TfOH) as a chiral phase-transfer catalyst: The asymmetric synthesis of dihydropyrimidines.Org. Biomol. Chem.2011983050305410.1039/c0ob01268h 21394354
    [Google Scholar]
  189. SahaS. MoorthyJ.N. Enantioselective organocatalytic Biginelli reaction: Dependence of the catalyst on sterics, hydrogen bonding, and reinforced chirality.J. Org. Chem.201176239640210.1021/jo101717m 21192642
    [Google Scholar]
  190. XinJ. ChangL. HouZ. ShangD. LiuX. FengX. An enantioselective biginelli reaction catalyzed by a simple chiral secondary amine and achiral brønsted acid by a dual-activation route.Chemistry200814103177318110.1002/chem.200701581 18246559
    [Google Scholar]
  191. González-OlveraR. DemareP. ReglaI. JuaristiE. Application of (1S,4S)-2,5-diazabicyclo[2.2.1]heptane derivatives in asymmetric organocatalysis: the Biginelli reaction.ARKIVOC200820086617210.3998/ark.5550190.0009.606
    [Google Scholar]
  192. DingD. ZhaoC.G. Primary amine catalyzed biginelli reaction for the enantioselective synthesis of 3,4-dihydropyrimidin-2(1H)-ones.Eur. J. Org. Chem.20102010203802300510.1002/ejoc.201000448 21188287
    [Google Scholar]
  193. WangY. YangH. YuJ. MiaoZ. ChenR. Highly enantioselective biginelli reaction promoted by chiral bifunctional primary amine-thiourea catalysts: Asymmetric synthesis of dihydropyrimidines.Adv. Synth. Catal.2009351183057306210.1002/adsc.200900597
    [Google Scholar]
  194. WuY.Y. ChaiZ. LiuX.Y. ZhaoG. WangS.W. Synthesis of substituted 5-(Pyrrolidin-2-yl)tetrazoles and their application in the asymmetric biginelli reaction.Eur. J. Org. Chem.20092009690491110.1002/ejoc.200801046
    [Google Scholar]
  195. Deepa; Yadav, G.D.; Aalam, M.J.; Chaudhary, P.; Singh, S. Synthesis of dihydropyrimidinones (DHPMs) and hexahydro xanthene catalyzed by 1,4-diazabicyclo [2.2.2] octane triflate under solvent-free condition.Curr. Org. Synth.201916577678610.2174/1570179415666181113154232 31984893
    [Google Scholar]
  196. TitovaY.A. GruzdevD.A. FedorovaO.V. AlisienokO.A. MurashkevichA.N. KrasnovV.P. RusinovG.L. CharushinV.N. New chiral proline-based catalysts for silicon and zirconium oxides-promoted asymmetric Biginelli reaction.Chem. Heterocycl. Compd.201854441742710.1007/s10593‑018‑2285‑z
    [Google Scholar]
  197. FedorovaO.V. TitovaY.A. VigorovA.Y. ToporovaM.S. AlisienokO.A. MurashkevichA.N. KrasnovV.P. RusinovG.L. CharushinV.N. Asymmetric biginelli reaction catalyzed by silicon, titanium and aluminum oxides.Catal. Lett.2016146249349810.1007/s10562‑015‑1666‑5
    [Google Scholar]
  198. FedorovaO.V. ValovaM.S. TitovaY.A. OvchinnikovaI.G. GrishakovA.N. UiminM.A. MysikA.A. ErmakovA.E. RusinovG.L. CharushinV.N. Catalytic effect of nanosized metal oxides in the Biginelli reaction.Kinet. Catal.201152222623310.1134/S0023158411020066
    [Google Scholar]
  199. TitovaY. FedorovaO. RusinovaG. VigorovaA. KrasnovaV. MurashkevichA. CharushinV. Effect of nanosized TiO2–SiO2 covalently modified by chiral moleculeson the asymmetric Biginelli reaction.Catal. Today201524127027410.1016/j.cattod.2014.01.035
    [Google Scholar]
  200. UhmY.R. LeeH.M. OlgaF. IrinaO. MarinaV. GennadyR. ValeryC. RheeC.K. Synthesis of carbon encapsulated metal (Ni and Cu) nano particles and applications for chiral catalysts.Res. Chem. Intermed.2010366-786787310.1007/s11164‑010‑0194‑6
    [Google Scholar]
  201. Dias BenincáL.A. Pereira LigiéroC.B. da Silva SantosJ. JuniorJ.J. da SilvaF.M. Eco-friendly and enantiospecific biginelli synthesis using (+)-myrtenal as the substrate: An impeccable and unequivocal analysis of the product.Curr. Org. Synth.202017538939510.2174/1570179417666200506103137 32370718
    [Google Scholar]
  202. ZengM. XueY. QinY. PengF. LiQ. ZengM.H. CuBr-promoted domino Biginelli reaction for the diastereoselective synthesis of bridged polyheterocycles: Mechanism studies and in vitro anti-tumor activities.Chin. Chem. Lett.202233114891489510.1016/j.cclet.2022.02.075
    [Google Scholar]
  203. WiegandE.E. RathburnD.W. Synthesis of some propionamido ketones and 2,5-diethyl-1,3-oxazoles.J. Chem. Eng. Data197318223710.1021/je60057a001
    [Google Scholar]
  204. MaedaI. TakeharaM. TogoK. AsaiS. YoshidaR. The synthetic intermediate of pyridoxine. I. A Novel Synthesis of 5-Alkoxy-2-carboxy-4-methyloxazole.Bull. Chem. Soc. Jpn.19694251435143710.1246/bcsj.42.1435
    [Google Scholar]
  205. WiegandE.E. RathburnD.W. Polyphosphoric acid cyclization of acetamidoketones to 2,5-dimethyl-1,3-oxazoles.Synthesis197019701264864910.1055/s‑1970‑21655
    [Google Scholar]
  206. DaubG.H. AckermanM.E. HayesF.N. Anhydrous hydrofluoric acid as a cyclizing agent in the preparation of several substituted oxazoles from N-aroyl-.alpha.-amino ketones.J. Org. Chem.197338482882910.1021/jo00944a051
    [Google Scholar]
  207. MeguroK. TawadaH. SugiyamaY. FujitaT. KawamatsuY. Studies on antidiabetic agents. VII Synthesis and hypoglycemic activity of 4-oxazoleacetic acid derivatives.Chem. Pharm. Bull. 19863472840285110.1248/cpb.34.2840 3769086
    [Google Scholar]
  208. MorwickT. HrapchakM. DeTuriM. CampbellS. A practical approach to the synthesis of 2,4-disubstituted oxazoles from amino acids.Org. Lett.20024162665266810.1021/ol020092s 12153204
    [Google Scholar]
  209. SzabóT. KormányR. DancsóA. VolkB. MilenM. Total synthesis of bacterial 5-(3-indolyl)oxazole alkaloids: Pimprinols A–C.SynOpen20193414815610.1055/s‑0039‑1690336
    [Google Scholar]
  210. DaviesJ.R. KaneP.D. MoodyC.J. SlawinA.M.Z. Control of competing N-H insertion and Wolff rearrangement in dirhodium(II)-catalyzed reactions of 3-indolyl diazoketoesters. synthesis of a potential precursor to the marine 5-(3-indolyl)oxazole martefragin A.J. Org. Chem.200570155840585110.1021/jo050303h 16018676
    [Google Scholar]
  211. ThompsonM.J. HealW. ChenB. Synthesis of 5-aminothiazoles as building blocks for library synthesis.Tetrahedron Lett.200647142361236410.1016/j.tetlet.2006.02.004
    [Google Scholar]
  212. ZhouR.R. CaiQ. LiD.K. ZhuangS.Y. WuY.D. WuA.X. Acid-promoted multicomponent tandem cyclization to synthesize fully substituted oxazoles via robinson–gabriel-type reaction.J. Org. Chem.201782126450645610.1021/acs.joc.7b00763 28523909
    [Google Scholar]
  213. AxelrodB. BelzileJ. Notes: Isolation of an alkaloid annuloline, from the roots of lolium multiflorum.J. Org. Chem.195823691992010.1021/jo01100a617
    [Google Scholar]
  214. O’DonovanD.G. HoranH. The biosynthesis of annuloline, a unique oxazole alkaloid.J. Chem. Soc. C19711971033133410.1039/j39710000331
    [Google Scholar]
  215. KarimotoR.S. AxelrodB. WolinskyJ. SchallE.D. The structure and synthesis of annuloline, an oxazole alkaloid occurring in annual rye grass.Phytochemistry19643234935510.1016/S0031‑9422(00)88062‑0
    [Google Scholar]
  216. KeniM. TepeJ.J. One-pot friedel-crafts/robinson-gabriel synthesis of oxazoles using oxazolone templates.J. Org. Chem.200570104211421310.1021/jo0501590 15876123
    [Google Scholar]
  217. SavelsonE. TepeJ.J. One-pot friedel–crafts/robinson–gabriel synthesis of the indole-oxazole scaffold and its application to the synthesis of breitfussins.J. Org. Chem.202388275576110.1021/acs.joc.2c00033 35235750
    [Google Scholar]
  218. RomagnoliR. BaraldiP.G. CarrionM.D. CaraC.L. PretiD. FruttaroloF. PavaniM.G. TabriziM.A. TolomeoM. GrimaudoS. Di CristinaA. BalzariniJ. HadfieldJ.A. BrancaleA. HamelE. Synthesis and biological evaluation of 2- and 3-aminobenzo[b]thiophene derivatives as antimitotic agents and inhibitors of tubulin polymerization.J. Med. Chem.20075092273227710.1021/jm070050f 17419607
    [Google Scholar]
  219. FergusonG.N. ValantC. HorneJ. FiglerH. FlynnB.L. LindenJ. ChalmersD.K. SextonP.M. ChristopoulosA. ScammellsP.J. 2-aminothienopyridazines as novel adenosine A1 receptor allosteric modulators and antagonists.J. Med. Chem.200851196165617210.1021/jm800557d 18771255
    [Google Scholar]
  220. OberdorfC. SchepmannD. VelaJ.M. DiazJ.L. HolenzJ. WünschB. Thiophene bioisosteres of spirocyclic σ receptor ligands. 1. N-substituted spiro[piperidine-4,4′-thieno[3,2-c]pyransJ. Med. Chem.200851206531653710.1021/jm8007739 18816044
    [Google Scholar]
  221. MeltzerH.Y. FibigerH.C. Olanzapine: A new typical antipsychotic drug.Neuropsychopharmacology1996142838510.1016/0893‑133X(95)00197‑L 8822530
    [Google Scholar]
  222. WangK. KimD. DömlingA. Cyanoacetamide MCR (III): Three-component Gewald reactions revisited.J. Comb. Chem.201012111111810.1021/cc9001586 19958011
    [Google Scholar]
  223. SeckP. ThomaeD. KirschG. Synthesis of substituted amino-cycloalkyl[b]thieno-[3,2-e]pyridines.J. Heterocycl. Chem.200845385385710.1002/jhet.5570450333
    [Google Scholar]
  224. KoikeK. JiaZ. NikaidoT. LiuY. ZhaoY. GuoD. Echinothiophene, a novel benzothiophene glycoside from the roots of Echinops grijissii.Org. Lett.19991219719810.1021/ol9905295
    [Google Scholar]
  225. BrielD. RybakA. KronbachC. UnverferthK. Substituted 2-Aminothiopen-derivatives: A potential new class of GluR6-Antagonists.Eur. J. Med. Chem.2010451697710.1016/j.ejmech.2009.09.025 19819046
    [Google Scholar]
  226. SinghD. MohanS. SharmaP.C. SarvananJ. Synthesis and evaluation of some novel piperidino thiophenes as potential antioxidant and anti-inflammatory agents. Acta.Pharm. Sci.20074912938
    [Google Scholar]
  227. RomagnoliR. BaraldiP.G. CarrionM.D. CaraC.L. Cruz-LopezO. IaconinotoM.A. PretiD. ShryockJ.C. MoormanA.R. VincenziF. VaraniK. Andrea BoreaP. Synthesis and biological evaluation of 2-amino-3-(4-chlorobenzoyl)-4-[N-(substituted) piperazin-1-yl]thiophenes as potent allosteric enhancers of the A1 adenosine receptor.J. Med. Chem.200851185875587910.1021/jm800586p 18729349
    [Google Scholar]
  228. Abd-El-AzizA.S. AfifiT.H. Novel azo disperse dyes derived from aminothiophenes: Synthesis and UV–visible studies.Dyes Pigments200670181710.1016/j.dyepig.2005.03.004
    [Google Scholar]
  229. TümerF. EkinciD. ZilbeyazK. DemirÜ. An efficient synthesis of substituted 4-aryl-3-cyano-2-amino thiophenes by a stepwise gewald reaction.Turk. J. Chem.2004284395403https://journals.tubitak.gov.tr/cgi/viewcontent.cgi?article=2697&context=chem
    [Google Scholar]
  230. SolovyevA.Y. AndrosovD.A. NeckersD.C. One-pot synthesis of substituted 2-aminobenzo[b]thiophenes.J. Org. Chem.20077283122312410.1021/jo062141a 17375954
    [Google Scholar]
  231. FevigT.L. PhillipsW.G. LauP.H. A novel and expeditious approach to thiophene-3-carboxylates.J. Org. Chem.20016672493249710.1021/jo001376y 11281794
    [Google Scholar]
  232. VaghasiyaS.J. DodiyaD.K. TrivediA.R. SuraniJ.J. ShahV.H. Synthesis and biological screening of some novel pyrazolo[[3′,4′:4,5]thieno[2,3-d]pyrimidin-8-ones via Gewald reaction.ARKIVOC20082008121810.3998/ark.5550190.0009.c01
    [Google Scholar]
  233. PinkertonA.B. LeeT.T. HoffmanT.Z. WangY. KahramanM. CookT.G. SeveranceD. GahmanT.C. NobleS.A. ShiauA.K. DavisR.L. Synthesis and SAR of thiophene containing kinesin spindle protein (KSP) inhibitors.Bioorg. Med. Chem. Lett.200717133562356910.1016/j.bmcl.2007.04.076 17498954
    [Google Scholar]
  234. DzhavakhishviliS.G. GorobetsN.Y. MusatovV.I. DesenkoS.M. PaponovB.V. Three possible products from the reactions of gewald’s amide with aromatic aldehydes.J. Heterocycl. Chem.200845257357710.1002/jhet.5570450243
    [Google Scholar]
  235. SridharM. RaoR.M. BabaN.H.K. KumbhareR.M. Microwave accelerated Gewald reaction: Synthesis of 2-aminothiophenes.Tetrahedron Lett.200748183171317210.1016/j.tetlet.2007.03.052
    [Google Scholar]
  236. HoenerA.P. HenkelB. GauvinJ.C. Novel one-pot microwave assisted gewald synthesis of 2-acyl amino thiophenes on solid support.Synlett2002200310063006610.1055/s‑2003‑36229
    [Google Scholar]
  237. HuY. WeiP. HuangH. HanS.Q. OuyangP.K. Synthesis of 2-aminothiophenes on ionic liquid phase support using the gewald reaction.Synth. Commun.200636111543154810.1080/00397910600588819
    [Google Scholar]
  238. MekheimerR.A. AmeenM.A. SadekK.U. Solar thermochemical reactions II1: Synthesis of 2-aminothiophenes via Gewald reaction induced by solar thermal energy.Chin. Chem. Lett.200819778879010.1016/j.cclet.2008.04.041
    [Google Scholar]
  239. HuangY. DömlingA. The Gewald multicomponent reaction.Mol. Divers.201115133310.1007/s11030‑010‑9229‑6 20191319
    [Google Scholar]
  240. XuX-Y. ZengB-B. WangT. HuangX-G. LiuJ. LiB. WuJ-J. ChenK-X. ZhuW-L. An efficient one-pot synthesis of substituted 2-aminothiophenes via three-component gewald reaction catalyzed by l-proline.Synlett2010201091351135410.1055/s‑0029‑1219917
    [Google Scholar]
  241. Rezaei-SereshtE. Bakhshi-NorooziM. MalekiB. Piperazine-grafted magnetic reduced graphene oxide (Fe3O4@rgo-nh) as a reusable heterogeneous catalyst for gewald three-component reaction.Polycycl. Aromat. Compd.20214191944195210.1080/10406638.2019.1708417
    [Google Scholar]
  242. KurmachM. YaremovP. ShvetsO. Cs-containing hierarchical zeolites as catalysts for Gewald reaction.Mater. Today Proc.202262157745775010.1016/j.matpr.2022.04.766
    [Google Scholar]
  243. ForeroJ.S.B. de CarvalhoE.M. JonesJ.Jr da SilvaF.M. A new protocol for the synthesis of 2-aminothiophenes through the Gewald reaction in solvent-free conditions. Heterocyclic.Lett2011116167https://www.heteroletters.org/issue1/Paper-9.pdf
    [Google Scholar]
  244. dos SantosB.D.C.F. ForeroJ.S.B. de CarvalhoE.M. JonesJ.Jr da SilvaF.M. A solvente less synthesis of 2-aminothiophenes via the Gewald reaction under ultrasonic conditions.Heterocyclic. Lett.2012213136https://www.heteroletters.org/issue5/Paper-4.pdf
    [Google Scholar]
  245. ForeroJ.S.B. JonesJ.Jr da SilvaF.M. The synthetic potential and chemical aspects of the Gewald reaction: Application in the preparation of 2-aminothiophenes and related heterocycles.Curr. Org. Synth.201310334736510.2174/1570179411310030002
    [Google Scholar]
  246. DuvauchelleV. MeffreP. BenfoddaZ. Green methodologies for the synthesis of 2-aminothiophene.Environ. Chem. Lett.202321159762110.1007/s10311‑022‑01482‑1 36060495
    [Google Scholar]
  247. KavithaK. SrikrishnaD. DubeyP.K. AparnaP. An efficient one-pot four-component Gewald reaction: Synthesis of substituted 2-aminothiophenes with coumarin–thiazole scaffolds under environmentally benign conditions.J. Sulfur Chem.201940219520810.1080/17415993.2018.1556275
    [Google Scholar]
  248. DuW. Towards new anticancer drugs: A decade of advances in synthesis of camptothecins and related alkaloids.Tetrahedron200359448649868710.1016/S0040‑4020(03)01203‑1
    [Google Scholar]
  249. KumarS. BawaS. GuptaH. Biological activities of quinoline derivatives.Mini Rev. Med. Chem.20099141648165410.2174/138955709791012247 20088783
    [Google Scholar]
  250. SridharanV. SuryavanshiP.A. MenéndezJ.C. Advances in the chemistry of tetrahydroquinolines.Chem. Rev.2011111117157725910.1021/cr100307m 21830756
    [Google Scholar]
  251. SuD.S. LimJ.J. TinneyE. WanB.L. YoungM.B. AndersonK.D. RuddD. MunshiV. BahnckC. FelockP.J. LuM. LaiM.T. TouchS. MoyerG. DiStefanoD.J. FlynnJ.A. LiangY. SanchezR. PrasadS. YanY. Perlow-PoehneltR. TorrentM. MillerM. VaccaJ.P. WilliamsT.M. AnthonyN.J. Substituted tetrahydroquinolines as potent allosteric inhibitors of reverse transcriptase and its key mutants.Bioorg. Med. Chem. Lett.200919175119512310.1016/j.bmcl.2009.07.031 19631528
    [Google Scholar]
  252. RameshE. ManianR.D.R.S. RaghunathanR. SainathS. RaghunathanM. Synthesis and antibacterial property of quinolines with potent DNA gyrase activity.Bioorg. Med. Chem.200917266066610.1016/j.bmc.2008.11.058 19097914
    [Google Scholar]
  253. PaglieroR.J. LusvarghiS. PieriniA.B. BrunR. MazzieriM.R. Synthesis, stereoelectronic characterization and antiparasitic activity of new 1-benzenesulfonyl-2-methyl-1,2,3,4-tetrahydroquinolines.Bioorg. Med. Chem.201018114215010.1016/j.bmc.2009.11.010 19942439
    [Google Scholar]
  254. ThevisM. KohlerM. SchänzerW. New drugs and methods of doping and manipulation.Drug Discov. Today2008131-2596610.1016/j.drudis.2007.11.003 18190865
    [Google Scholar]
  255. CaiS.X. ZhouZ-L. HuangJ-C. WhittemoreE.R. EgbuwokuZ.O. LüY. HawkinsonJ.E. WoodwardR.M. WeberE. KeanaJ.F.W. Synthesis and structure-activity relationships of 1,2,3,4-tetrahydroquinolines-2,3-4-trioxine 3-oximes: Novel and highly potent antagonist for nmda receptor glycine site.J. Med. Chem.199639173248325510.1021/jm960214k 8765507
    [Google Scholar]
  256. LiuJ. WangY. SunY. MarshallD. MiaoS. TonnG. AndersP. TockerJ. TangH.L. MedinaJ. Tetrahydroquinoline derivatives as CRTH2 antagonists.Bioorg. Med. Chem. Lett.200919246840684410.1016/j.bmcl.2009.10.094 19896843
    [Google Scholar]
  257. KouznetsovV.V. ArenasD.R.M. ArveloF. Bello-ForeroJ.S. SojoF. MuñozA. 4-Hydroxy-3-methoxyphenyl Substituted 3-methyl-tetrahydro-quinoline derivatives obtained through imino diels-alder reactions as potential antitumoral agents.Lett. Drug Des. Discov.20107963263910.2174/157018010792929577
    [Google Scholar]
  258. NagataN. FuruyaK. OguroN. NishiyamaD. KawaiK. YamamotoN. OhyabuY. SatsukawaM. MiyakawaM. Lead evaluation of tetrahydroquinolines as nonsteroidal selective androgen receptor modulators for the treatment of osteoporosis.ChemMedChem20149119720610.1002/cmdc.201300348 24273094
    [Google Scholar]
  259. GhashghaeiO. MasdeuC. AlonsoC. PalaciosF. LavillaR. Recent advances of the Povarov reaction in medicinal chemistry.Drug Discov. Today. Technol.201829717910.1016/j.ddtec.2018.08.004 30471676
    [Google Scholar]
  260. de FátimaÂ. FernandesS.A. Ferreira de PaivaW. de Freitas RegoY. The povarov reaction: A versatile method to synthesize tetrahydroquinolines, quinolines and julolidines.Synthesis202254143162317910.1055/a‑1794‑8355
    [Google Scholar]
  261. ForeroJ.S.B. JonesJ.Jr da SilvaF.M. The povarov reaction as a versatile strategy for the preparation of 1, 2, 3, 4-tetrahydroquinoline derivatives: An overview.Curr. Org. Synth.201613215717510.2174/1570179412666150706183906
    [Google Scholar]
  262. FranceS. PhunL.H. Enantio- and diastereoselective rh(ii)-catalyzed 1,3-dipolar cycloadditions of carbonyl ylides and their recent applications in complex molecule synthesis.Curr. Org. Synth.20107433234710.2174/157017910791414463
    [Google Scholar]
  263. XieM. LinL. FengX. Catalytic asymmetric inverse-electron-demand hetero-diels−alder reactions.Chem. Rec.201717121184120210.1002/tcr.201700006 28508470
    [Google Scholar]
  264. VinogradovM.G. TurovaO.V. ZlotinS.G. Catalytic asymmetric aza-diels-alder reaction: Pivotal milestones and recent applications to synthesis of nitrogen-containing heterocycles.Adv. Synth. Catal.202136361466152610.1002/adsc.202001307
    [Google Scholar]
  265. FochiM. BernardiL. CaruanaL. Catalytic asymmetric aza-diels-alder reactions: The povarov cycloaddition reaction.Synthesis201346213515710.1055/s‑0033‑1338581
    [Google Scholar]
  266. ForeroJ.S.B. de CarvalhoE.M. JonesJ.Jr da SilvaF.M. Facile, efficient diastereoselective synthesis of tetrahydroquinoline scaffolds using propylene carbonate as an eco-friendly solvent.Curr. Org. Synth.201512110210710.2174/1570179411666140722175810
    [Google Scholar]
  267. DehnhardtC.M. EspinalY. VenkatesanA.M. Practical one-pot procedure for the synthesis of 1,2,3,4-tetrahydroquinolines by the imino-diels-alder reaction.Synth. Commun.200838579680210.1080/00397910701820988
    [Google Scholar]
  268. TrifonovL.S. OrahovatsA.S. A facile 2,6-transannular cyclisation of 2-aryl-1,2,4,5-tetrahydro-1-benzazocine-3,6-diones from 1,2-Bis(trimethylsilyloxy)cyclobutene and Schiff bases.Heterocycles198422235536410.3987/R‑1984‑02‑0355
    [Google Scholar]
  269. StevensonP.J. NieuwenhuyzenM. OsborneD. Three component coupling reactions of N-acetyl-2-azetine-rapid stereoselective entry to 2,3,4-trisubstituted tetrahydroquinolines.Chem. Commun. 20025544444510.1039/b110242g 12120533
    [Google Scholar]
  270. ShaoL.X. ShiM. Montmorillonite KSF-catalyzed one-pot, three-component, aza-diels–alder reactions of methylenecyclopropanes with arenecarbaldehydes and arylamines.Adv. Synth. Catal.2003345896396610.1002/adsc.200303057
    [Google Scholar]
  271. ShiM. ShaoL.X. XuB. The Lewis acids catalyzed aza-Diels-Alder reaction of methylenecyclopropanes with imines.Org. Lett.20035457958210.1021/ol0275365 12583774
    [Google Scholar]
  272. LuJ.M. ShiM. Lewis acid catalyzed reaction of arylvinylidenecyclopropanes with ethyl (arylimino)acetates: A facile synthetic protocol for pyrrolidine and 1,2,3,4-tetrahydroquinoline derivatives.Org. Lett.2007991805180810.1021/ol070501q 17402743
    [Google Scholar]
  273. SmithC.D. GavrilyukJ.I. LoughA.J. BateyR.A. Lewis acid catalyzed three-component hetero-Diels-alder (povarov) reaction of N-arylimines with strained norbornene-derived dienophiles.J. Org. Chem.201075370271510.1021/jo9021106 20039638
    [Google Scholar]
  274. KouznetsovV.V. Bello ForeroJ.S. Amado TorresD.F. A simple entry to novel spiro dihydroquinoline-oxindoles using Povarov reaction between 3-N-aryliminoisatins and isoeugenol.Tetrahedron Lett.200849415855585710.1016/j.tetlet.2008.07.096
    [Google Scholar]
  275. GoliN. KallepuS. MainkarP.S. LakshmiJ.K. ChegondiR. ChandrasekharS. Synthetic strategy toward the pentacyclic core of melodinus alkaloids.J. Org. Chem.20188342244224910.1021/acs.joc.7b03138 29338221
    [Google Scholar]
  276. RibellesP. SridharanV. VillacampaM. RamosM.T. MenéndezJ.C. Diastereoselective, multicomponent access to trans-2-aryl-4-arylamino-1,2,3,4-tetrahydroquinolines via an AA′BC sequential four-component reaction and their application to 2-arylquinoline synthesis.Org. Biomol. Chem.201311456957910.1039/C2OB26754C 23090014
    [Google Scholar]
  277. MenéndezJ. SridharanV. AvendañoC. New findings on the cerium(iv) ammonium nitrate catalyzed povarov reaction: stereoselective synthesis of 4-alkoxy-2-aryl-1,2,3,4-tetrahydroquinoline derivatives.Synthesis2008200871039104410.1055/s‑2008‑1032126
    [Google Scholar]
  278. Martínez BonillaC.A. Puerto GalvisC.E. Vargas MéndezL.Y. KouznetsovV.V. Ce(SO4)2-catalysed the highly diastereoselective synthesis of tetrahydroquinolines via an imino Diels Alder ABB′ type reaction and their in vivo toxicity and imaging in zebrafish embryos.RSC Advances2016644374783748610.1039/C6RA04325A
    [Google Scholar]
  279. WangX.S. YinM.Y. WangW. TuS.J. A stereoselective povarov reaction leading to exo-tetrahydroindolo[3,2-c]quinoline derivatives catalyzed by iodine.Eur. J. Org. Chem.20122012254811481810.1002/ejoc.201200551
    [Google Scholar]
  280. RaiN.P. ShashikanthS. ArunachalamP.N. Iodine-catalyzed aza-diels–alder reactions of aliphatic n-arylaldimines.Synth. Commun.200939122125213610.1080/00397910802638552
    [Google Scholar]
  281. SridharanV. PerumalP.T. AvendañoC. MenéndezJ.C. The first aza Diels–Alder reaction involving an αβ-unsaturated hydrazone as the dienophile: stereoselective synthesis of C-4 functionalized 1,2,3,4-tetrahydroquinolines containing a quaternary stereocenter.Org. Biomol. Chem.2007591351135310.1039/B703083E 17464403
    [Google Scholar]
  282. PriestleyE.S. De LuccaI. ZhouJ. ZhouJ. SaiahE. StantonR. RobinsonL. LuettgenJ.M. WeiA. WenX. KnabbR.M. WongP.C. WexlerR.R. Discovery and gram-scale synthesis of BMS-593214, a potent, selective FVIIa inhibitor.Bioorg. Med. Chem. Lett.20132382432243510.1016/j.bmcl.2013.02.013 23478148
    [Google Scholar]
  283. KiselyovA.S. SmithL.,II ArmstrongR.W. Solid support synthesis of polysubstituted tetrahydroquinolines via three-component condensation catalyzed by Yb(OTf)3.Tetrahedron199854205089509610.1016/S0040‑4020(98)00248‑8
    [Google Scholar]
  284. BenmeddahA. BarN. VilleminD. LohierJ.F. Mostefa-KaraB. LegayR. First examples of Povarov reaction of cyclopentadienones.Helv. Chim. Acta20181015e180002310.1002/hlca.201800023
    [Google Scholar]
  285. Peñaranda GómezA. Rodríguez BejaranoO. KouznetsovV.V. Ochoa-PuentesC. One-pot diastereoselective synthesis of tetrahydroquinolines from star anise oil in choline chloride/zinc chloride eutectic mixture.ACS Sustain. Chem. Eng.2019722186301863910.1021/acssuschemeng.9b05073
    [Google Scholar]
  286. KouznetsovV.V. Meléndez GómezC.M. Rojas RuízF.A. del OlmoE. Simple entry to new 2-alkyl-1,2,3,4-tetrahydroquinoline and 2,3-dialkylquinoline derivatives using BiCl3-catalyzed three component reactions of anilines and aliphatic aldehydes in the presence (or lack) of N-vinyl amides.Tetrahedron Lett.201253253115311810.1016/j.tetlet.2012.04.008
    [Google Scholar]
  287. ChakrabortyB. KarA. ChandaR. JanaU. Application of the povarov reaction in biaryls under iron catalysis for the general synthesis of dibenzo.[a,c]Acridines. J. Org. Chem.202085149281928910.1021/acs.joc.0c0130032588630
    [Google Scholar]
  288. JarrigeL. BlanchardF. MassonG. Enantioselective organocatalytic intramolecular Aza-Diels–Alder reaction.Angew. Chem. Int. Ed.20175635105731057610.1002/anie.201705746 28661020
    [Google Scholar]
  289. FriedlaenderP. Ueber o.Amidobenzaldehyd. Ber. Dtsch. Chem. Ges.18821522572257510.1002/cber.188201502219
    [Google Scholar]
  290. Von PechmannH. DuisbergC. On the compounds of phenols with acetoacetic ether.Ber. Dtsch. Chem. Ges.18831622119212810.1002/cber.188301602117
    [Google Scholar]
  291. FischerE. HessO. Synthese von Indolderivaten.Ber. Dtsch. Chem. Ges.188417155956810.1002/cber.188401701155
    [Google Scholar]
  292. PaalC. Synthese von Thiophen- und Pyrrolderivaten.Ber. Dtsch. Chem. Ges.188518136737110.1002/cber.18850180175
    [Google Scholar]
  293. ConradM. LimpachL. synthesen von Chinolinderivaten mittelst Acetessigester.Ber. Dtsch. Chem. Ges.188720194494810.1002/cber.188702001215
    [Google Scholar]
  294. DöbnerO. On α-alkylcinchoninic acids and α-alkylquinolines.Justus Liebigs Ann. Chem.1887242326528910.1002/jlac.18872420302
    [Google Scholar]
  295. KnorrL. Synthetic experiments with the acetoacetic ester.Justus Liebigs Ann. Chem.18872381-213721910.1002/jlac.18872380107
    [Google Scholar]
  296. ClaisenL. LowmanO. About benzoylacetone.Ber. Dtsch. Chem. Ges.18882111149115710.1002/cber.188802101217
    [Google Scholar]
  297. CombesA. On syntheses in the quinole series using acetylacetone and its derivatives.Bull. Soc. Chim. Fr.1888498992https://gallica.bnf.fr/ark:/12148/bpt6k281998h/f93.image.langDE
    [Google Scholar]
  298. HantzschA. New way of forming pyrrole derivatives.Ber. Dtsch. Chem. Ges.18902311474147610.1002/cber.189002301243
    [Google Scholar]
  299. FritschP. Synthesen in der Isocumarin- und Isochinolinreihe.Ber. Dtsch. Chem. Ges.189326141942210.1002/cber.18930260191
    [Google Scholar]
  300. PomeranzC. Über eine neue Isochinolinsynthese.Monatsh. Chem.189314111611910.1007/BF01517862
    [Google Scholar]
  301. FischerE. Neue bildungsweise der oxazole.Ber. Dtsch. Chem. Ges.189629120521410.1002/cber.18960290143
    [Google Scholar]
  302. GuareschiI. Synthesis of pyridine compounds from ketone ethers with cyanacetic ether in the presence of ammonia and aminesTorinoMem. Reale Accad. Sci.18961-30.
    [Google Scholar]
  303. CampsR. Synthese von α‐ und γ‐ Oxychinolinen. Ber. Dtsch. Chem. Ges.18993233228323410.1002/cber.18990320389
    [Google Scholar]
  304. CampsR. Synthesis of α- and γ-oxyquinolines.Arch. Pharm.1899237965969110.1002/ardp.18992370902
    [Google Scholar]
  305. KostaneckiS. Różycki, A. On a mode of formation of chromone derivatives.Ber. Dtsch. Chem. Ges.190134110210910.1002/cber.19010340119
    [Google Scholar]
  306. FeistF. Studies in the furan and pyrrole groups.Ber. Dtsch. Chem. Ges.19023521537154410.1002/cber.19020350263
    [Google Scholar]
  307. BaronH. RemfryF.G.P. ThorpeJ.F. CLXXV. The formation and reactions of imino-compounds. Part I. Condensation of ethyl cyanoacetate with its sodium derivative.J. Chem. Soc. Trans.19048501726176110.1039/CT9048501726
    [Google Scholar]
  308. ChichibabinA.E. (A.E, ChichiBABINA) About the synthesis of pyridine bases from aldehydes of a saturated nature and ammonia.Zhurnal obshchei khimii190537112291253
    [Google Scholar]
  309. HinsbergO. Synthetische Versuche mit Thiodiglykolsäureester.Ber. Dtsch. Chem. Ges.191043190190610.1002/cber.191004301153
    [Google Scholar]
  310. BenaryE. Synthese von Pyridin-Derivaten aus Dichlor-äther und β-Amino-crotonsäureester.Ber. Dtsch. Chem. Ges.191144148949310.1002/cber.19110440175
    [Google Scholar]
  311. PictetA. KayF.W. Über eine synthetische Darstellungsmethode der Isochinolin.Basen. Ber. Dtsch. Chem. Ges.19094221973197910.1002/cber.19090420274
    [Google Scholar]
  312. AllanJ. RobinsonR. CCXC. An accessible derivative of chromonol.J. Chem. Soc. Trans.192412502192219510.1039/CT9242502192
    [Google Scholar]
  313. NenitzescuC.D. Über einige derivate des methyl-5-oxy-indols.Bull. Soc. Chim. Romania1929111-217
    [Google Scholar]
  314. BergsH. Method for representing hydanyoins.56609419291929
  315. BuchererH.T. FischbeckH.T. Hexahydrodiphenylamin und seine derivate.J. Prakt. Chem.19341406989https://gallica.bnf.fr/ark:/12148/bpt6k909140/f76.item.r=J
    [Google Scholar]
  316. AlgarJ. FlynnJ.P. A new method for the synthesis of flavonols.Proc. R. Ir. Acad.1934/1935421934/193518https://www.jstor.org/stable/20517064
    [Google Scholar]
  317. OyamadaT. A new general method for the synthesis of the derivatives of flavonol.Bull. Chem. Soc. Jpn.193510518218610.1246/bcsj.10.182
    [Google Scholar]
/content/journals/coc/10.2174/0113852728295534240223044735
Loading
/content/journals/coc/10.2174/0113852728295534240223044735
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test