Skip to content
2000
Volume 28, Issue 13
  • ISSN: 1385-2728
  • E-ISSN:

Abstract

Friedel-crafts acylation (FCAcyl) is the most widespread method used to prepare aryl ketones and aldehydes. However, depending on the type of group attached to the benzene, their derivatives influence the electronic characteristics and structural orientations of the compounds during acylation; thus, the groups are very important for the success of the reaction. The existence of strong electron-donating groups, such as polyhydroxy/polyalkoxyphenols and anilines on the aromatic ring, makes this reaction difficult. To overcome these problems and with the aim of obtaining aromatic ketones from benzene compounds, appropriate methodologies were described. Therefore, this review consists of showing the importance and applicability of the Houben-Hoesch and Sugasawa reactions as alternatives for the Friedel-crafts acylation of polyhydroxy/polyalkoxyphenols and anilines, respectively. The main advances used in the original methodologies were also described. The use of these reactions as an alternative to the renowned Friedel-crafts acylation reactions should be taken into consideration as an important synthetic tool because there is the possibility of reducing steps, with consequent improvement of yield, in addition to optimizing reaction performance.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728294270240425093501
2024-07-01
2024-10-31
Loading full text...

Full text loading...

References

  1. SinghS. MondalS. TiwariV. KarmakarT. HazraC.K. Cooperative friedel–crafts alkylation of electron-deficient arenes via catalyst activation with hexafluoroisopropanol**.Chemistry20232918e20230018010.1002/chem.20230018036680470
    [Google Scholar]
  2. FengZ. GuptaG. MamloukM. A review of anion exchange membranes prepared via Friedel-crafts reaction for fuel cell and water electrolysis.Int. J. Hydrogen Energy20234866258302585810.1016/j.ijhydene.2023.03.299
    [Google Scholar]
  3. KabiA.K. GujjarappaR. VodnalaN. KaldhiD. TyagiU. MukherjeeK. MalakarC.C. HFIP-mediated strategy towards β-oxo amides and subsequent Friedel-craft type cyclization to 2 quinolinones using recyclable catalyst.Tetrahedron Lett.2020614615253510.1016/j.tetlet.2020.152535
    [Google Scholar]
  4. AhmadT. KhanS. UllahN. Recent advances in the catalytic asymmetric Friedel-crafts reactions of indoles.ACS Omega2022740354463548510.1021/acsomega.2c0502236249392
    [Google Scholar]
  5. SinghS. MahatoR. SharmaP. YadavN. VodnalaN. Kumar HazraC. Development of transition-metal-free Lewis acid-initiated double arylation of aldehyde: A facile approach towards the total synthesis of anti-breast-cancer agent.Chemistry20222814e20210454510.1002/chem.20210454535060647
    [Google Scholar]
  6. BrunenS. MitschkeB. LeutzschM. ListB. Asymmetric catalytic friedel–crafts reactions of unactivated arenes.J. Am. Chem. Soc.202314529157081571310.1021/jacs.3c0514837440437
    [Google Scholar]
  7. CareyF.A. SundbergR.J. Advanced Organic Chemistry Part B: Reactions and Synthesis5th Springer Science+Business Media LLCSpring street: New York200710171023
    [Google Scholar]
  8. SmithM.B. MarchJ. March’s advanced organic chemistry: reactions, mechanisms, and structure6th John Wiley & sons: HobokenNew Jersey: Canada200718
    [Google Scholar]
  9. BrucknerR. Mechanisms Reactions, Stereochemistry and Synthesis, 3rd.Berlin, HeidelbergSpringer-Verlag2010229233
    [Google Scholar]
  10. ClaydenJ. GreevesN. WarrenS. Organic Chemistry.2nd edUKOUP Oxford201210.1093/hesc/9780199270293.001.0001
    [Google Scholar]
  11. SumitaA. OhwadaT. Friedel-crafts-type acylation and amidation reactions in strong brønsted acid: taming superelectrophiles.Molecules20222718598410.3390/molecules2718598436144714
    [Google Scholar]
  12. HuangZ. JinL. HanH. LeiA. The “kinetic capture” of an acylium ion from live aluminum chloride promoted Friedel–crafts acylation reactions.Org. Biomol. Chem.201311111810181410.1039/c3ob27094g23389472
    [Google Scholar]
  13. OlahG.A. PrakashG.K.S. SommerJ. MolnarA. Superacid Chemistry.2nd edHoboken, New Jersey, USAWiley200910.1002/9780470421604
    [Google Scholar]
  14. SatoY. YatoM. OhwadaT. SaitoS. ShudoK. Involvement of dicationic species as the reactive intermediates in gattermann, Houben-hoesch, and Friedel-crafts reactions of nonactivated benzenes.J. Am. Chem. Soc.1995117113037304310.1021/ja00116a009
    [Google Scholar]
  15. RendyR. ZhangY. McElreaA. GomezA. KlumppD.A. Superacid-catalyzed reactions of cinnamic acids and the role of superelectrophiles.J. Org. Chem.20046972340234710.1021/jo030327t15049628
    [Google Scholar]
  16. OlahG.A. BrydonD.L. PorterR.D. Stable carbonium ions. LXXXIII. Protonation of amino acids, simple peptides, and insulin in superacid solutions.J. Org. Chem.197035231732810.1021/jo00827a006
    [Google Scholar]
  17. NasreenA. Efficient and facile regio-selective Friedel-crafts acylation of aromatics using cobalt (II) mercury tetra thiocyanate.SSRN202311310.2139/ssrn.4345379
    [Google Scholar]
  18. TamaddonF. RashidiH. ZnCl2:2HOAc: A deep eutectic solvent for the friedel–crafts acetylation of poly-phenols and chemo-selective protection of alcohols.Res. Chem. Intermed.20234983589360310.1007/s11164‑023‑05050‑2
    [Google Scholar]
  19. Saint-JacquesK. CharetteA.B. Continuous flow Friedel–Crafts acetylation of phenols and electron-rich arenes and heteroarenes.J. Flow Chem.202313219319910.1007/s41981‑023‑00270‑4
    [Google Scholar]
  20. ParkH. LeeS. Palladium and copper-catalyzed friedel–crafts acylation with activated amides.Adv. Synth. Catal.2023365183167317110.1002/adsc.202300376
    [Google Scholar]
  21. ShiT.H. AkineS. OhtaniS. KatoK. OgoshiT. Friedel–crafts acylation for accessing multi-bridge-functionalized large pillar[n]arenes.Angew. Chem. Int. Ed.2024636e20231826810.1002/anie.20231826838108597
    [Google Scholar]
  22. MartinsA. AmaroB. SantosM.S.C.S. NunesN. Elvas-LeitãoR. CarvalhoA.P. Hierarchical zeolites prepared using a surfactant-mediated strategy: ZSM-5 vs. Y as catalysts for friedel–crafts acylation reaction.Molecules202429251710.3390/molecules2902051738276595
    [Google Scholar]
  23. LiuC. YuJ. BaoL. ZhangG. ZouX. ZhengB. LiY. ZhangY. Electricity-promoted friedel–crafts acylation of biarylcarboxylic acids.J. Org. Chem.20238863794380110.1021/acs.joc.2c0307136861957
    [Google Scholar]
  24. WuX.T. XiaoE.K. MaF. YinJ. WangJ. ChenP. JiangY.J. Substrate-controlled regiodivergent synthesis of fluoroacylated carbazoles via Friedel–crafts acylation.J. Org. Chem.20218696734674310.1021/acs.joc.1c0047333852307
    [Google Scholar]
  25. ChoudharyV.R. JhaR. Acylation of nitrobenzene and substituted nitrobenzenes by benzoyl chloride using GaClx- and GaAlClx-grafted meporous Si-MCM-41 catalysts.Microporous Mesoporous Mater.20091191-336036210.1016/j.micromeso.2008.11.001
    [Google Scholar]
  26. SongY. YuZ. WangW. WangS. Ag-catalyzed acylation of N-heterocycles in aqueous solution.Tetrah. Lett.2023141133518
    [Google Scholar]
  27. PaulS. BhakatM. GuinJ. Radical C−H acylation of nitrogen heterocycles induced by an aerobic oxidation of aldehydes.Chem. Asian J.201914183154316010.1002/asia.20190085731318481
    [Google Scholar]
  28. PaulS. GuptaM. Selective fries rearrangement catalyzed by zinc powder.Synthesis20042004111789179210.1055/s‑2004‑829152
    [Google Scholar]
  29. HoeschK. A new synthesis of aromatic ketones. I. Preparation of some phenol-ketones.Ber. Dtsch. Chem. Ges.19154811122113310.1002/cber.191504801156
    [Google Scholar]
  30. RuffJ.K. Friedel-crafts and related reactions. Volume I: General aspects. By George Olah.Inorg. Chem.1964381205120610.1021/ic50018a043
    [Google Scholar]
  31. HoeschK. Von ZarzeckiT. A new synthesis of aromatic ketones. II. Artificial production of maclurin and related ketones.Ber. Dtsch. Chem. Ges.19175046246810.1002/cber.19170500181
    [Google Scholar]
  32. HoubenJ. Über die Kern-Kondensation von Phenolen und Phenol-äthern mit Nitrilen zu Phenol- und Phenol-äther-Ketimiden und -Ketonen (I.).Ber. Dtsch. Chem. Ges.192659112878289110.1002/cber.19260591135
    [Google Scholar]
  33. KürtiL. CzakóB. Strategic Applications of Named Reactions in Organic Synthesis.Academic Press200518
    [Google Scholar]
  34. HousecroftC.E. ConstableE.C. An Introduction to Organic, Inorganic and Physical Chemistry.4th edPearson Education Limited201016
    [Google Scholar]
  35. SugasawaT. ToyodaT. AdachiM. SasakuraK. Aminohaloborane in organic synthesis. 1. Specific ortho substitution reaction of anilines.J. Am. Chem. Soc.1978100154842485210.1021/ja00483a034
    [Google Scholar]
  36. SimpsonJ.C.E. AtkinsonC.M. SchofieldK. StephensonO. 172. o-Amino-ketones of the acetophenone and benzophenone types.J. Chem. Soc.194564665710.1039/jr9450000646
    [Google Scholar]
  37. HewettC.L. LermitL.J. OpenshawH.T. ToddA.R. WilliamsA.H. WoodwardF.N. 73. Derivatives of arsacridine. Part I.J. Chem. Soc.194829229510.1039/jr948000029218914106
    [Google Scholar]
  38. SchofieldK. TheobaldR.S. 171. Indoles. Part I. The Bz-nitro-2: 3-dimethylindoles and their use in preparing nitro-2-aminoacetophenones.J. Chem. Soc.194979679910.1039/jr9490000796
    [Google Scholar]
  39. SternbachL.H. ReederE. KellerO. MetlesicsW. Quinazolines and 1,4-benzodiazepines. III. Substituted 2-amino-5-phenyl-3H-1,4-benzodiazepine 4-Oxides.J. Org. Chem.196126114488449710.1021/jo01069a069
    [Google Scholar]
  40. NiedenzuK. DawsonJ.W. Boron-nitrogen compounds. II. Aminoboranes, Part 1: The preparation of organic substituted aminoboranes through a Grinard reaction.J. Am. Chem. Soc.195981215553555510.1021/ja01530a010
    [Google Scholar]
  41. WagerC.A.B. MillerS.A. Two robust, efficient syntheses of [phenyl ring-U-14C]indole through use of [phenyl ring-U-14C]aniline.J. Labelled Comp. Radiopharm.200649761562210.1002/jlcr.1067
    [Google Scholar]
  42. DouglasA.W. AbramsonN.L. HoupisI.N. KaradyS. MolinaA. XavierL.C. YasudaN. In situ NMR spectroscopic studies of aniline ortho acylation (Sugasawa reaction): The nature of reaction intermediates and Lewis acid influence on yield.Tetrahedron Lett.199435376807681010.1016/0040‑4039(94)85010‑0
    [Google Scholar]
  43. HoupisI.N. MolinaA. DouglasA.W. XavierL. LynchJ. VolanteR.P. ReiderP.J. Synthesis of a new generation reverse transcriptase inhibitor via the BCl3/GaCl3-induced condensation of anilines with nitriles (sugasawa reaction).Tetrahedron Lett.199435376811681410.1016/0040‑4039(94)85011‑9
    [Google Scholar]
  44. RajaE.K. KlumppD.A. Fluoro-substituted ketones from nitriles using acidic and basic reaction conditions.Tetrahedron Lett.201152405170517210.1016/j.tetlet.2011.07.12522383858
    [Google Scholar]
  45. NowakK. Ratajczak-WronaW. GórskaM. Jabłońska, E. Parabens and their effects on the endocrine system.Mol. Cell. Endocrinol.201847423825110.1016/j.mce.2018.03.01429596967
    [Google Scholar]
  46. NeriI. LaneriS. Di LorenzoR. DiniI. RussoG. GrumettoL. Parabens permeation through biological membranes: A comparative study using franz cell diffusion system and biomimetic liquid chromatography.Molecules20222713426310.3390/molecules2713426335807508
    [Google Scholar]
  47. ReberK.P. SiveyJ.D. VollmuthM. GujaratiP.D. Synthesis of 13C-labeled parabens from isotopically enriched phenols using the Houben–Hoesch reaction.J. Labelled Comp. Radiopharm.202265925426310.1002/jlcr.399235868986
    [Google Scholar]
  48. RamR.N. SoniV.K. GuptaD.K. Organocatalytic selective benzoylation of alcohols with trichloromethyl phenyl ketone: Inverse selectivity in benzoylation of alcohols containing phenol or aromatic amine functionality.Tetrahedron201268449068907510.1016/j.tet.2012.08.051
    [Google Scholar]
  49. ColquhounH.M. LewisD.F. WilliamsD.J. Synthesis of dixanthones and poly(dixanthone)s by cyclization of 2-aryloxybenzonitriles in trifluoromethanesulfonic acid.Org. Lett.20013152337234010.1021/ol010097+11463310
    [Google Scholar]
  50. BasavaiahD. SatyanarayanaT. A novel, tandem construction of C–N and C–C bonds: Facile and one-pot transformation of the Baylis–Hillman adducts into 2-benzazepines.Chem. Commun. 20041323310.1039/B310550D14737318
    [Google Scholar]
  51. ZhuY. PengL. HuJ. ChenY. ChenF. Current anti-Alzheimer’s disease effect of natural products and their principal targets.J. Integr. Neurosci.201918332733910.31083/j.jin.2019.03.110531601083
    [Google Scholar]
  52. ZhangF.R. CaoF. LiuK. HeY.P. LuoG. YeZ.S. Bifunctional Lewis base catalyzed asymmetric N-allylic alkylation of 2-hydroxypyridines.Org. Lett.202224478603860810.1021/acs.orglett.2c0320736403156
    [Google Scholar]
  53. ChadhaN. SilakariO. Indoles as therapeutics of interest in medicinal chemistry: Bird’s eye view.Eur. J. Med. Chem.201713415918410.1016/j.ejmech.2017.04.00328412530
    [Google Scholar]
  54. HumphreyG.R. KuetheJ.T. Practical methodologies for the synthesis of indoles.Chem. Rev.200610672875291110.1021/cr050527016836303
    [Google Scholar]
  55. EicherT. HauptmannS. The Chemistry of Heterocycles2nd WILEY-VCH GmbH & CoKGaA: Weinheim200310210710.1002/352760183X
    [Google Scholar]
  56. OutlawV.K. TownsendC.A. A practical route to substituted 7-aminoindoles from pyrrole-3-carboxaldehydes.Org. Lett.201416246334633710.1021/ol503078h25479249
    [Google Scholar]
  57. ProislK. KafkaS. KosmrljJ. Chemistry and applications of 4-hydroxyquinolin-2-one and quinoline-2,4-dionebased compounds.Curr. Org. Chem.201721191949197510.2174/1385272821666170711155631
    [Google Scholar]
  58. de MacedoM.B. KimmelR. UrankarD. GazvodaM. PeixotoA. CoolsF. TorfsE. VerschaeveL. LimaE.S. Lyčka, A.; Milićević, D.; Klásek, A.; Cos, P.; Kafka, S.; Košmrlj, J.; Cappoen, D. Design, synthesis and antitubercular potency of 4-hydroxyquinolin-2(1H)-ones.Eur. J. Med. Chem.201713849150010.1016/j.ejmech.2017.06.06128689097
    [Google Scholar]
  59. KobayashiY. Nakatani, T.; Tanaka, R.; Okada, M.; Torii, E.; Harayama, T.; Kimachi, T. α-Dimethylaminomethylenation-induced Houben–Hoesch-type cyclization of cyanoacetanilides: A practical synthesis of 3-formyl-4-hydroxyquinolin-2(1H)-ones.Tetrahedron201167193457346310.1016/j.tet.2011.03.040
    [Google Scholar]
  60. WuC. HuangP. SunZ. LinM. JiangY. TongJ. GeC. Synthesis of 4-quinolones via triflic anhydride-mediated intramolecular Houben-Hoesch reaction of β-arylamino acrylonitriles.Tetrahedron201672111461146610.1016/j.tet.2016.01.051
    [Google Scholar]
  61. StasyukA.J. Smoleń S.; Glodkowska-Mrowka, E.; Brutkowski, W.; Cyrański, M.K.; Tkachenko, N.; Gryko, D.T. Synthesis of fluorescent naphthoquinolizines via intramolecular Houben-Hoesch reaction.Chem. Asian J.201510355355810.1002/asia.20140333925580599
    [Google Scholar]
  62. KulkarniM.R. GaikwadN.D. Recent advances towards the synthesis of 4H-quinolizin-4-one.Tetrahedron2020763513140910.1016/j.tet.2020.131409
    [Google Scholar]
  63. ZhangY. CaiP. ChengG. ZhangY. A brief review of phenolic compounds identified from plants: Their extraction, analysis, and biological activity.Nat. Prod. Commun.20221711934578X211069710.1177/1934578X211069721
    [Google Scholar]
  64. de AraújoF.F. de Paulo FariasD. Neri-NumaI.A. PastoreG.M. Polyphenols and their applications: An approach in food chemistry and innovation potential.Food Chem.202133812753510.1016/j.foodchem.2020.12753532798817
    [Google Scholar]
  65. PetrovskaB. Historical review of medicinal plants′ usage.Pharmacogn. Rev.20126111510.4103/0973‑7847.9584922654398
    [Google Scholar]
  66. ZhangQ. Techniques for extraction and isolation of natural products: A comprehensive review.Chin. Med.20181320126
    [Google Scholar]
  67. FrancoD.P. PereiraT.M. VitorioF. NadurN.F. LacerdaR.B. KümmerleA.E. The importance of cumarins for medicinal chemistry and the development of bioactive compounds in the last years.Quim. Nova2021442180197
    [Google Scholar]
  68. GonçalvesR.S.B. BarretoM.B. GomesC.R.B. SouzaM.V.N. Natural products as HIV reverse transcriptase inhibitors.Fitos2009418710710.32712/2446‑4775.2009.89
    [Google Scholar]
  69. ViegasC.Jr BolzaniV.S. BarreiroE.J. Os produtos naturais e a química medicinal moderna.Quim. Nova200629232633710.1590/S0100‑40422006000200025
    [Google Scholar]
  70. RaoA.V.R. GaitondeA.S. PrakashK.R.C. RaoS.P. A concise synthesis of chiral 2-methyl chroman-4-ones: Stereo selective build-up of the chromanol moiety of anti-HIV agent calanolide A.Tetrahedron Lett.199435346347635010.1016/S0040‑4039(00)73429‑0
    [Google Scholar]
  71. Křížová, L.; Dadáková, K.; Kašparovská, J.; Kašparovský, T. Isoflavones.Molecules2019246107610.3390/molecules2406107630893792
    [Google Scholar]
  72. DurazzoA. LucariniM. SoutoE.B. CicalaC. CaiazzoE. IzzoA.A. NovellinoE. SantiniA. Polyphenols: A concise overview on the chemistry, occurrence, and human health.Phytother. Res.20193392221224310.1002/ptr.641931359516
    [Google Scholar]
  73. HouS. Genistein: Therapeutic and preventive effects, mechanisms, and clinical application in digestive tract tumor.Evid. Based Complement. Alternat. Med.2022202211010.1155/2022/595737835815271
    [Google Scholar]
  74. StachulskiA.V. BerryN.G. Lilian LowA.C. MooresS.L. RowE. WarhurstD.C. AdaguI.S. RossignolJ.F. Identification of isoflavone derivatives as effective anticryptosporidial agents in vitro and in vivo.J. Med. Chem.20064941450145410.1021/jm050973f16480281
    [Google Scholar]
  75. WangD. HuM. LiX. ZhangD. ChenC. FuJ. ShaoS. ShiG. ZhouY. WuS. ZhangT. Design, synthesis, and evaluation of isoflavone analogs as multifunctional agents for the treatment of Alzheimer’s disease.Eur. J. Med. Chem.201916820722010.1016/j.ejmech.2019.02.05330822710
    [Google Scholar]
  76. ChoH.W. GimH.J. LiH. SubediL. KimS.Y. RyuJ.H. JeonR. Structure–activity relationship of phytoestrogen analogs as erα/β agonists with neuroprotective activities.Chem. Pharm. Bull. 20216919910510.1248/cpb.c20‑0070633390527
    [Google Scholar]
  77. ArkhipovV.V. SmirnovM.N. KhilyaV.P. Chemistry of modified flavonoids.Chem. Heterocycl. Compd.199733551551910.1007/BF02291930
    [Google Scholar]
  78. ShouQ.Y. TanQ. ShenZ.W. Hirtellanines A and B, a pair of isomeric isoflavonoid derivatives from Campylotropis hirtella and their immunosuppressive activities.Bioorg. Med. Chem. Lett.200919133389339110.1016/j.bmcl.2009.05.04319481938
    [Google Scholar]
  79. ZhengS. LiX. TanH. YuC. ZhangJ. ShenZ. Studies on the total synthesis of hirtellanine A: Regioselective synthesis of benzopyran.Eur. J. Org. Chem.2013201371356136610.1002/ejoc.201201339
    [Google Scholar]
  80. Jalili-BalehL. BabaeiE. AbdpourS. Nasir Abbas BukhariS. ForoumadiA. RamazaniA. SharifzadehM. AbdollahiM. KhoobiM. A review on flavonoid-based scaffolds as multi-target-directed ligands (MTDLs) for Alzheimer’s disease.Eur. J. Med. Chem.201815257058910.1016/j.ejmech.2018.05.004
    [Google Scholar]
  81. MazziottiI. PetraroloG. La MottaC. Aurones: A golden resource for active compounds.Molecules2021271210.3390/molecules2701000235011233
    [Google Scholar]
  82. KumarS. LathwalE. KumarG. SarohaB. KumarS. MahataS. SahooP.K. NasareV.D. Synthesis of pyrazole based novel aurone analogs and their cytotoxic activity against MCF-7 cell line.Chem. Data Collect.20203010055910.1016/j.cdc.2020.100559
    [Google Scholar]
  83. SarohaB. KumarG. AryaP. RaghavN. KumarS. Some morpholine tethered novel aurones: Design, synthesis, biological, kinetic and molecular docking studies.Bioorg. Chem.202314010680510.1016/j.bioorg.2023.10680537634269
    [Google Scholar]
  84. CaburetJ. VerdirosaF. MorettiM. RoulierB. SimoncelliG. HaudecoeurR. GhaziS. JametH. DocquierJ.D. BoucherleB. PeuchmaurM. Aurones and derivatives as promising New Delhi metallo-β-lactamase (NDM-1) inhibitors.Bioorg. Med. Chem.20249711755910.1016/j.bmc.2023.11755938109811
    [Google Scholar]
  85. MulrooneyC.A. O’BrienE.M. MorganB.J. KozlowskiM.C. Perylenequinones: Isolation, synthesis, and biological activity.Eur. J. Org. Chem.20122012213887390410.1002/ejoc.20120018424039544
    [Google Scholar]
  86. OlivoM. ChinW.W.L. Perylenequinones in photodynamic therapy: Cellular versus vascular response.J. Environ. Pathol. Toxicol. Oncol.2006251-222323810.1615/JEnvironPatholToxicolOncol.v25.i1‑2.14016566720
    [Google Scholar]
  87. KhirallaA. MohammedA.O. YagiS. Fungal perylenequinones.Mycol. Prog.20222133810.1007/s11557‑022‑01790‑435401071
    [Google Scholar]
  88. KimB.T. KimH.S. MoonW.S. HwangK.J. The construction of novel perylenequinone core via efficient synthesis of versatile ortho-naphthoquinone as a key intermediate.Tetrahedron200965234625462810.1016/j.tet.2009.03.057
    [Google Scholar]
  89. HwangK.J. ShinY-M. KimD-H. KimB-T. Synthesis of versatile 1-indanones and their conversion to 1,2-naphthoquinones, key precursors for the construction of perylenequinone core.Bull. Korean Chem. Soc.20123393095309810.5012/bkcs.2012.33.9.3095
    [Google Scholar]
  90. TanC.J. DiY.T. WangY.H. ZhangY. SiY.K. ZhangQ. GaoS. HuX.J. FangX. LiS.F. HaoX.J. Three new indole alkaloids from Trigonostemon lii.Org. Lett.201012102370237310.1021/ol100715x20405956
    [Google Scholar]
  91. ZhaoB. HaoX.Y. ZhangJ.X. LiuS. HaoX.J. Rapid total synthesis of (±)trigonoliimine A via a Strecker/Houben-Hoesch sequence.Org. Lett.201315352853010.1021/ol303344d23311984
    [Google Scholar]
  92. KimI.S. Current perspectives on the beneficial effects of soybean isoflavones and their metabolites for humans.Antioxidants2021107106410.3390/antiox1007106434209224
    [Google Scholar]
  93. LiuJ. YangZ. LuoS. HaoY. RenJ. SuY. WangW. LiR. Facile method for the large-scale synthesis of 6,7,4´-trihydroxyisoflavanone.Synth. Commun.201444223296330310.1080/00397911.2014.886331
    [Google Scholar]
  94. O’HaganD. YoungR.J. Future challenges and opportunities with fluorine in drugs?Med. Chem. Res.20233271231123410.1007/s00044‑023‑03094‑y
    [Google Scholar]
  95. MakarenkoO. BondarenkoS. MrugG. FrasinyukM. Synthesis and transformation of 6-aminomethyl derivatives of 7-hydroxy-2′-fluoroisoflavones.Fren.Ukrain. J. Chem.20208220321310.17721/fujcV8I2P203‑213
    [Google Scholar]
  96. BiZ. ZhangW. YanX. Anti-inflammatory and immunoregulatory effects of icariin and icaritin.Biomed. Pharmacother.202215111318010.1016/j.biopha.2022.11318035676785
    [Google Scholar]
  97. ZengY. XiongY. YangT. WangY. ZengJ. ZhouS. LuoY. LiL. Icariin and its metabolites as potential protective phytochemicals against cardiovascular disease: From effects to molecular mechanisms.Biomed. Pharmacother.202214711264210.1016/j.biopha.2022.11264235078094
    [Google Scholar]
  98. YangX. Icaritin: A novel natural candidate for hemetological malignancies therapy.BioMed Res. Int.201920194860268
    [Google Scholar]
  99. MuG. PuW. ZhouM. LiuY. YangH. WangC. Synthesis of Icaritin.Youji Huaxue20133361298130310.6023/cjoc201303016
    [Google Scholar]
  100. OcholaE.A. KaranjaD.M.S. ElliottS.J. The impact of Neglected Tropical Diseases (NTDs) on health and wellbeing in Sub-Saharan Africa (SSA): A case study of Kenya.PLoS Negl. Trop. Dis.2021152e000913110.1371/journal.pntd.000913133571200
    [Google Scholar]
  101. WengH.B. ChenH.X. WangM.W. Innovation in neglected tropical disease drug discovery and development.Infect. Dis. Poverty2018716710.1186/s40249‑018‑0444‑129950174
    [Google Scholar]
  102. TabutiJ.R.S. ObakiroS.B. NabatanziA. AnywarG. NambejjaC. MutyabaM.R. OmaraT. WaakoP. Medicinal plants used for treatment of malaria by indigenous communities of Tororo district.Eastern Uganda. Trop. Med. Health20235113410.1186/s41182‑023‑00526‑837303066
    [Google Scholar]
  103. World Health Organization Africa Region. Available from: https://www.afro.who.int/health-topics/malaria (Acessed March 25, 2024)
  104. NigussieG. WaleM. Medicinal plants used in traditional treatment of malaria in Ethiopia: A review of ethnomedicine, anti-malarial and toxicity studies.Malar. J.202221126210.1186/s12936‑022‑04264‑w36088324
    [Google Scholar]
  105. SanonS. OllivierE. AzasN. MahiouV. GasquetM. OuattaraC.T. NebieI. TraoreA.S. EspositoF. BalansardG. Timon-DavidP. FumouxF. Ethnobotanical survey and in vitro antiplasmodial activity of plants used in traditional medicine in Burkina Faso.J. Ethnopharmacol.2003862-314314710.1016/S0378‑8741(02)00381‑112738078
    [Google Scholar]
  106. EkasariW. WidyawaruyantiA. Cholies ZainiN. HondaT. MoritaH. SyafruddinD. Antimalarial activity of cassiarin a from the leaves of Cassia siamea.Heterocycles20097871831183610.3987/COM‑09‑11680
    [Google Scholar]
  107. RudyantoM. TomizawaY. MoritaH. HondaT. First total synthesis of cassiarin A, a naturally occurring potent antiplasmodial alkaloid.Org. Lett.200810101921192210.1021/ol800411218412353
    [Google Scholar]
  108. DeguchiJ. HiraharaT. OshimiS. HirasawaY. EkasariW. ShirotaO. HondaT. MoritaH. Total synthesis of a novel tetracyclic alkaloid, cassiarin F from the flowers of Cassia siamea.Org. Lett.201113164344434710.1021/ol201674a21755916
    [Google Scholar]
  109. SasakuraK. TeruiY. SugasawaT. Aminohaloborane in organic synthesis. X. A convenient, economical exclusive ortho substitution reaction of N-alkyl and N-aminoalkyl anilines.Chem. Pharm. Bull. 19853351836184210.1248/cpb.33.1836
    [Google Scholar]
  110. EarleyJ.V. GilmanN.W. Synthesis of substituted (2-aminophenyl)-3-(and-4-)pyridinylmethanones.Synth. Commun.198515141271127610.1080/00397918508077275
    [Google Scholar]
  111. TabuchiS. ItoH. SogabeH. KunoM. KinoshitaT. TatumiI. YamamotoN. MitsuiH. SatohY. Dual CCK-A and CCK-B receptor antagonists (II). Preparation and structure activity relationships of 5-alkyl-9-methyl-1,4-benzodiazepines and discovery of FR208419.Chem. Pharm. Bull. 200048111510.1248/cpb.48.110705468
    [Google Scholar]
  112. AtechianS. NockN. NorcrossR.D. RatniH. ThomasA.W. VerronJ. MasciadriR. New vistas in quinoline synthesis.Tetrahedron200763132811282310.1016/j.tet.2007.01.050
    [Google Scholar]
  113. LeeG.T. PrasadK. Repič O. A facile synthesis of 2,4-diaza-1-borines from anilines.Tetrahedron Lett.200243173255325710.1016/S0040‑4039(02)00365‑9
    [Google Scholar]
  114. CampaniçoA. HarjivanS.G. FreitasE. SerafiniM. GasparM.M. CapelaR. GomesP. JordaanA. MadureiraA.M. AndréV. SilvaA.B. DuarteM.T. PortugalI. PerdigãoJ. MoreiraR. WarnerD.F. LopesF. Structural optimization of antimycobacterial azaaurones towards improved solubility and metabolic stability.ChemMedChem20231824e20230041010.1002/cmdc.20230041037845182
    [Google Scholar]
  115. LeiteD.I. CampaniçoA. CostaP.A.G. CorreaI.A. da CostaL.J. BastosM.M. MoreiraR. LopesF. JordaanA. WarnerD.F. BoechatN. New azaaurone derivatives as potential multitarget agents in HIV-TB coinfection.Arch. Pharm.20243572230056010.1002/ardp.20230056038032154
    [Google Scholar]
  116. BusaccaC.A. WeiX. HaddadN. KapadiaS. LorenzJ.C. SahaA.K. VarsolonaR.J. BerkenbuschT. CampbellS.C. FarinaV. FengX. GonnellaN.C. GrinbergN. JonesP.J. LeeH. LiZ. NiemeierO. SamstagW. SarvestaniM. SchroederJ. SmoligaJ. SpinelliE.M. VitousJ. SenanayakeC.H. Practical large-scale synthesis of the hepatitis C virus protease inhibitor BI 201335.Asian J. Org. Chem.201211808910.1002/ajoc.201200014
    [Google Scholar]
  117. PrasadK. LeeG.T. ChaudharyA. GirgisM.J. StreemkeJ.W. Repič,; O. Design of new reaction conditions for the Sugasawa reaction based on mechanistic insights.Org. Process Res. Dev.20037572373210.1021/op0340659
    [Google Scholar]
  118. YaegashiT. SawadaS. NagataH. FurutaT. YokokuraT. MiyasakaT. Synthesis and antitumor activity of 20(S)-camptothecin derivatives. A-ring-substituted 7-ethylcamptothecins and their E-ring-modified water-soluble derivatives.Chem. Pharm. Bull. 199442122518252510.1248/cpb.42.25187697767
    [Google Scholar]
  119. DesratS. JeanM. van de WegheP. Setbacks and hopes: En route to the synthesis of uncialamycin.Tetrahedron201167397510751610.1016/j.tet.2011.07.090
    [Google Scholar]
  120. LiuC. YangZ. JiJ. LiH. ManL. LiR. ZhangZ. Synthesis of 4-Pyridinylquinolines via Sugasawa and Friedlander reaction from 4-cyanopyridine with anilines and ketones.Lett. Org. Chem.202320875576210.2174/1570178620666230214100138
    [Google Scholar]
  121. SternbachL.H. The benzodiazepine story.Prog. Drug Res.19782222926630117
    [Google Scholar]
  122. LiuJ.J. DaniewskiI. DingQ. HigginsB. JuG. KolinskyK. KonzelmannF. LukacsC. PizzolatoG. RossmanP. SwainA. ThakkarK. WeiC.C. MiklowskiD. YangH. YinX. WovkulichP.M. Pyrazolobenzodiazepines: Part I. Synthesis and SAR of a potent class of kinase inhibitors.Bioorg. Med. Chem. Lett.201020205984598710.1016/j.bmcl.2010.08.079
    [Google Scholar]
  123. LiuJ.J. HigginsB. JuG. KolinskyK. LukK.C. PackmanK. PizzolatoG. RenY. ThakkarK. TovarC. ZhangZ. WovkulichP.M. Discovery of a highly potent, orally active mitosis/angiogenesis inhibitor r1530 for the treatment of solid tumors.ACS Med. Chem. Lett.20134225926310.1021/ml300351e24900658
    [Google Scholar]
  124. AntoniF. BauseM. SchollerM. BauerS. StarkS.A. JacksonS.M. ManolaridisI. LocherK.P. KönigB. BuschauerA. BernhardtG. Tariquidar-related triazoles as potent, selective and stable inhibitors of ABCG2 (BCRP).Eur. J. Med. Chem.202019111213310.1016/j.ejmech.2020.11213332105979
    [Google Scholar]
/content/journals/coc/10.2174/0113852728294270240425093501
Loading
/content/journals/coc/10.2174/0113852728294270240425093501
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test